1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
|
/*
* Copyright (C) 2017 Caio Lima <ticaiolima@gmail.com>
* Copyright (C) 2019-2022 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "CPU.h"
#include "Error.h"
#include "ExceptionHelpers.h"
#include "JSObject.h"
#include "MathCommon.h"
#include <wtf/CagedUniquePtr.h>
#include <wtf/Int128.h>
#include <wtf/text/StringBuilder.h>
#include <wtf/text/StringView.h>
#include <wtf/text/WTFString.h>
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
namespace JSC {
class Int32BigIntImpl;
class HeapBigIntImpl;
class JSBigInt final : public JSCell {
public:
using Base = JSCell;
using Digit = UCPURegister;
static constexpr unsigned StructureFlags = Base::StructureFlags | StructureIsImmortal | OverridesPut;
friend class CachedBigInt;
DECLARE_VISIT_CHILDREN;
template<typename CellType, SubspaceAccess>
static GCClient::IsoSubspace* subspaceFor(VM& vm)
{
return &vm.bigIntSpace();
}
enum class InitializationType { None, WithZero };
void initialize(InitializationType);
static size_t estimatedSize(JSCell*, VM&);
static Structure* createStructure(VM&, JSGlobalObject*, JSValue prototype);
JS_EXPORT_PRIVATE static JSBigInt* createZero(JSGlobalObject*);
JS_EXPORT_PRIVATE static JSBigInt* tryCreateZero(VM&);
JS_EXPORT_PRIVATE static JSBigInt* tryCreateWithLength(VM&, unsigned length);
JS_EXPORT_PRIVATE static JSBigInt* createWithLength(JSGlobalObject*, unsigned length);
JS_EXPORT_PRIVATE static JSBigInt* createFrom(JSGlobalObject*, int32_t value);
static JSBigInt* tryCreateFrom(VM&, int32_t value);
static JSBigInt* createFrom(JSGlobalObject*, uint32_t value);
JS_EXPORT_PRIVATE static JSBigInt* createFrom(JSGlobalObject*, int64_t value);
JS_EXPORT_PRIVATE static JSBigInt* createFrom(JSGlobalObject*, uint64_t value);
JS_EXPORT_PRIVATE static JSBigInt* createFrom(JSGlobalObject*, Int128 value);
static JSBigInt* createFrom(JSGlobalObject*, bool value);
static JSBigInt* createFrom(JSGlobalObject*, double value);
static JSBigInt* createFrom(JSGlobalObject*, VM&, int32_t value);
static constexpr size_t offsetOfLength()
{
return OBJECT_OFFSETOF(JSBigInt, m_length);
}
static constexpr size_t offsetOfSign()
{
return OBJECT_OFFSETOF(JSBigInt, m_sign);
}
static constexpr size_t offsetOfData()
{
return OBJECT_OFFSETOF(JSBigInt, m_data);
}
DECLARE_EXPORT_INFO;
JSValue toPrimitive(JSGlobalObject*, PreferredPrimitiveType) const;
void setSign(bool sign) { m_sign = sign; }
bool sign() const { return m_sign; }
unsigned length() const { return m_length; }
ALWAYS_INLINE static JSValue makeHeapBigIntOrBigInt32(JSGlobalObject* globalObject, int64_t value)
{
#if USE(BIGINT32)
if (value <= INT_MAX && value >= INT_MIN)
return jsBigInt32(static_cast<int32_t>(value));
#endif
return JSBigInt::createFrom(globalObject, value);
}
ALWAYS_INLINE static JSValue makeHeapBigIntOrBigInt32(JSGlobalObject* globalObject, uint64_t value)
{
#if USE(BIGINT32)
if (value <= INT_MAX)
return jsBigInt32(static_cast<int32_t>(value));
#endif
return JSBigInt::createFrom(globalObject, value);
}
ALWAYS_INLINE static JSValue makeHeapBigIntOrBigInt32(JSGlobalObject* globalObject, double value)
{
ASSERT(isInteger(value));
if (std::abs(value) <= maxSafeInteger())
return makeHeapBigIntOrBigInt32(globalObject, static_cast<int64_t>(value));
return JSBigInt::createFrom(globalObject, value);
}
enum class ErrorParseMode {
ThrowExceptions,
IgnoreExceptions
};
enum class ParseIntMode { DisallowEmptyString, AllowEmptyString };
enum class ParseIntSign { Unsigned, Signed };
static JSValue parseInt(JSGlobalObject*, VM&, StringView, uint8_t radix, ErrorParseMode = ErrorParseMode::ThrowExceptions, ParseIntSign = ParseIntSign::Unsigned);
static JSValue parseInt(JSGlobalObject*, StringView, ErrorParseMode = ErrorParseMode::ThrowExceptions);
static JSValue stringToBigInt(JSGlobalObject*, StringView);
static String tryGetString(VM&, JSBigInt*, unsigned radix);
String toString(JSGlobalObject*, unsigned radix);
enum class ComparisonMode {
LessThan,
LessThanOrEqual
};
enum class ComparisonResult {
Equal,
Undefined,
GreaterThan,
LessThan
};
JS_EXPORT_PRIVATE static bool equals(JSBigInt*, JSBigInt*);
bool equalsToNumber(JSValue);
JS_EXPORT_PRIVATE bool equalsToInt32(int32_t);
static ComparisonResult compare(JSBigInt* x, JSBigInt* y);
static ComparisonResult compare(int32_t x, JSBigInt* y);
static ComparisonResult compare(JSBigInt* x, int32_t y);
static ComparisonResult compare(JSBigInt* x, int64_t y);
static ComparisonResult compare(JSValue x, int64_t y);
static ComparisonResult compare(JSBigInt* x, uint64_t y);
static ComparisonResult compare(JSValue x, uint64_t y);
static ComparisonResult compare(JSValue x, JSValue y);
double toNumber(JSGlobalObject*) const;
JSObject* toObject(JSGlobalObject*) const;
inline bool toBoolean() const { return !isZero(); }
static ComparisonResult compareToDouble(JSBigInt* x, double y);
static ComparisonResult compareToDouble(double x, JSBigInt* y);
template<typename BigIntImpl>
static ComparisonResult compareToDouble(BigIntImpl x, double y);
template <typename BigIntImpl>
static ComparisonResult compareToDouble(double x, BigIntImpl y) { return flip(compareToDouble(y, x)); }
static ComparisonResult compareToDouble(int32_t x, double y);
static ComparisonResult compareToDouble(double x, int32_t y) { return flip(compareToDouble(y, x)); }
static ComparisonResult compareToDouble(int64_t x, double y);
static ComparisonResult compareToDouble(double x, int64_t y) { return flip(compareToDouble(y, x)); }
static ComparisonResult compareToDouble(uint64_t x, double y);
static ComparisonResult compareToDouble(double x, uint64_t y) { return flip(compareToDouble(y, x)); }
static ComparisonResult compareToDouble(JSValue x, double y);
static ComparisonResult compareToDouble(double x, JSValue y) { return flip(compareToDouble(y, x)); }
private:
ALWAYS_INLINE static ComparisonResult flip(ComparisonResult result)
{
switch (result) {
case JSBigInt::ComparisonResult::LessThan:
return JSBigInt::ComparisonResult::GreaterThan;
case JSBigInt::ComparisonResult::GreaterThan:
return JSBigInt::ComparisonResult::LessThan;
case JSBigInt::ComparisonResult::Equal:
case JSBigInt::ComparisonResult::Undefined:
return result;
default:
RELEASE_ASSERT_NOT_REACHED();
return JSBigInt::ComparisonResult::Undefined;
}
}
private:
friend class HeapBigIntImpl;
public:
struct ImplResult {
ImplResult(HeapBigIntImpl&);
ImplResult(JSBigInt*);
#if USE(BIGINT32)
ImplResult(Int32BigIntImpl&);
#endif
ImplResult(JSValue);
JSValue payload;
};
private:
static JSBigInt* createWithLength(JSGlobalObject*, VM&, unsigned length);
static JSBigInt* createZero(JSGlobalObject*, VM&);
template <typename BigIntImpl1, typename BigIntImpl2>
static ImplResult exponentiateImpl(JSGlobalObject*, BigIntImpl1 base, BigIntImpl2 exponent);
template <typename BigIntImpl1, typename BigIntImpl2>
static ImplResult multiplyImpl(JSGlobalObject*, BigIntImpl1 x, BigIntImpl2 y);
template <typename BigIntImpl>
static ImplResult incImpl(JSGlobalObject*, BigIntImpl x);
template <typename BigIntImpl>
static ImplResult decImpl(JSGlobalObject*, BigIntImpl x);
template <typename BigIntImpl1, typename BigIntImpl2>
static ImplResult addImpl(JSGlobalObject*, BigIntImpl1 x, BigIntImpl2 y);
template <typename BigIntImpl1, typename BigIntImpl2>
static ImplResult subImpl(JSGlobalObject*, BigIntImpl1 x, BigIntImpl2 y);
template <typename BigIntImpl1, typename BigIntImpl2>
static ImplResult divideImpl(JSGlobalObject*, BigIntImpl1 x, BigIntImpl2 y);
template <typename BigIntImpl1, typename BigIntImpl2>
static ImplResult remainderImpl(JSGlobalObject*, BigIntImpl1 x, BigIntImpl2 y);
template <typename BigIntImpl>
static ImplResult unaryMinusImpl(JSGlobalObject*, BigIntImpl x);
template <typename BigIntImpl1, typename BigIntImpl2>
static ImplResult bitwiseAndImpl(JSGlobalObject*, BigIntImpl1 x, BigIntImpl2 y);
template <typename BigIntImpl1, typename BigIntImpl2>
static ImplResult bitwiseOrImpl(JSGlobalObject*, BigIntImpl1 x, BigIntImpl2 y);
template <typename BigIntImpl1, typename BigIntImpl2>
static ImplResult bitwiseXorImpl(JSGlobalObject*, BigIntImpl1 x, BigIntImpl2 y);
template <typename BigIntImpl>
static ImplResult bitwiseNotImpl(JSGlobalObject*, BigIntImpl x);
template <typename BigIntImpl1, typename BigIntImpl2>
static ImplResult leftShiftImpl(JSGlobalObject*, BigIntImpl1 x, BigIntImpl2 y);
template <typename BigIntImpl1, typename BigIntImpl2>
static ImplResult signedRightShiftImpl(JSGlobalObject*, BigIntImpl1 x, BigIntImpl2 y);
template <typename BigIntImpl1, typename BigIntImpl2>
static ComparisonResult compareImpl(BigIntImpl1 x, BigIntImpl2 y);
public:
static JSValue exponentiate(JSGlobalObject*, JSBigInt* base, JSBigInt* exponent);
#if USE(BIGINT32)
static JSValue exponentiate(JSGlobalObject*, JSBigInt* base, int32_t exponent);
static JSValue exponentiate(JSGlobalObject*, int32_t base, JSBigInt* exponent);
static JSValue exponentiate(JSGlobalObject*, int32_t base, int32_t exponent);
#endif
static JSValue multiply(JSGlobalObject*, JSBigInt* x, JSBigInt* y);
#if USE(BIGINT32)
static JSValue multiply(JSGlobalObject*, int32_t x, JSBigInt* y);
static JSValue multiply(JSGlobalObject*, JSBigInt* x, int32_t y);
static JSValue multiply(JSGlobalObject* globalObject, int32_t x, int32_t y)
{
int64_t result = static_cast<int64_t>(x) * static_cast<int64_t>(y);
return makeHeapBigIntOrBigInt32(globalObject, result);
}
#endif
static JSValue inc(JSGlobalObject*, JSBigInt* x);
#if USE(BIGINT32)
static JSValue inc(JSGlobalObject* globalObject, int32_t x)
{
return makeHeapBigIntOrBigInt32(globalObject, static_cast<int64_t>(x) + 1);
}
#endif
static JSValue dec(JSGlobalObject*, JSBigInt* x);
#if USE(BIGINT32)
static JSValue dec(JSGlobalObject* globalObject, int32_t x)
{
return makeHeapBigIntOrBigInt32(globalObject, static_cast<int64_t>(x) - 1);
}
#endif
static JSValue add(JSGlobalObject*, JSBigInt* x, JSBigInt* y);
#if USE(BIGINT32)
static JSValue add(JSGlobalObject*, JSBigInt* x, int32_t y);
static JSValue add(JSGlobalObject*, int32_t x, JSBigInt* y);
static JSValue add(JSGlobalObject* globalObject, int32_t x, int32_t y)
{
return makeHeapBigIntOrBigInt32(globalObject, static_cast<int64_t>(x) + static_cast<int64_t>(y));
}
#endif
static JSValue sub(JSGlobalObject*, JSBigInt* x, JSBigInt* y);
#if USE(BIGINT32)
static JSValue sub(JSGlobalObject*, JSBigInt* x, int32_t y);
static JSValue sub(JSGlobalObject*, int32_t x, JSBigInt* y);
static JSValue sub(JSGlobalObject* globalObject, int32_t x, int32_t y)
{
return makeHeapBigIntOrBigInt32(globalObject, static_cast<int64_t>(x) - static_cast<int64_t>(y));
}
#endif
static JSValue divide(JSGlobalObject*, JSBigInt* x, JSBigInt* y);
#if USE(BIGINT32)
static JSValue divide(JSGlobalObject*, JSBigInt* x, int32_t y);
static JSValue divide(JSGlobalObject*, int32_t x, JSBigInt* y);
static JSValue divide(JSGlobalObject* globalObject, int32_t x, int32_t y)
{
if (!y) {
auto scope = DECLARE_THROW_SCOPE(getVM(globalObject));
throwRangeError(globalObject, scope, "0 is an invalid divisor value."_s);
return JSValue();
}
return makeHeapBigIntOrBigInt32(globalObject, static_cast<int64_t>(x) / static_cast<int64_t>(y));
}
#endif
static JSValue remainder(JSGlobalObject*, JSBigInt* x, JSBigInt* y);
#if USE(BIGINT32)
static JSValue remainder(JSGlobalObject*, JSBigInt* x, int32_t y);
static JSValue remainder(JSGlobalObject*, int32_t x, JSBigInt* y);
static JSValue remainder(JSGlobalObject* globalObject, int32_t x, int32_t y)
{
if (!y) {
auto scope = DECLARE_THROW_SCOPE(getVM(globalObject));
throwRangeError(globalObject, scope, "0 is an invalid divisor value."_s);
return JSValue();
}
return makeHeapBigIntOrBigInt32(globalObject, static_cast<int64_t>(x) % static_cast<int64_t>(y));
}
#endif
static JSValue unaryMinus(JSGlobalObject*, JSBigInt* x);
#if USE(BIGINT32)
static JSValue unaryMinus(JSGlobalObject* globalObject, int32_t x)
{
return makeHeapBigIntOrBigInt32(globalObject, -static_cast<int64_t>(x));
}
#endif
static JSValue bitwiseAnd(JSGlobalObject*, JSBigInt* x, JSBigInt* y);
#if USE(BIGINT32)
static JSValue bitwiseAnd(JSGlobalObject*, JSBigInt* x, int32_t y);
static JSValue bitwiseAnd(JSGlobalObject*, int32_t x, JSBigInt* y);
static JSValue bitwiseAnd(JSGlobalObject* globalObject, int32_t x, int32_t y)
{
return makeHeapBigIntOrBigInt32(globalObject, x & y);
}
#endif
static JSValue bitwiseOr(JSGlobalObject*, JSBigInt* x, JSBigInt* y);
#if USE(BIGINT32)
static JSValue bitwiseOr(JSGlobalObject*, JSBigInt* x, int32_t y);
static JSValue bitwiseOr(JSGlobalObject*, int32_t x, JSBigInt* y);
static JSValue bitwiseOr(JSGlobalObject* globalObject, int32_t x, int32_t y)
{
return makeHeapBigIntOrBigInt32(globalObject, x | y);
}
#endif
static JSValue bitwiseXor(JSGlobalObject*, JSBigInt* x, JSBigInt* y);
#if USE(BIGINT32)
static JSValue bitwiseXor(JSGlobalObject*, JSBigInt* x, int32_t y);
static JSValue bitwiseXor(JSGlobalObject*, int32_t x, JSBigInt* y);
static JSValue bitwiseXor(JSGlobalObject* globalObject, int32_t x, int32_t y)
{
return makeHeapBigIntOrBigInt32(globalObject, x ^ y);
}
#endif
static JSValue bitwiseNot(JSGlobalObject*, JSBigInt* x);
#if USE(BIGINT32)
static JSValue bitwiseNot(JSGlobalObject* globalObject, int32_t x)
{
return makeHeapBigIntOrBigInt32(globalObject, ~x);
}
#endif
static JSValue leftShift(JSGlobalObject*, JSBigInt* x, JSBigInt* y);
#if USE(BIGINT32)
static JSValue leftShift(JSGlobalObject*, JSBigInt* x, int32_t y);
static JSValue leftShift(JSGlobalObject*, int32_t x, JSBigInt* y);
private:
static JSValue leftShiftSlow(JSGlobalObject*, int32_t x, int32_t y);
public:
static JSValue leftShift(JSGlobalObject* globalObject, int32_t x, int32_t y)
{
if (y < 0) {
// Shifts one less than requested, but doesn't matter since lhs is int32
return signedRightShift(globalObject, x, y == INT32_MIN ? INT32_MAX : -y);
}
// Do some checks to detect overflow of left-shift. But this is much cheaper compared to allocating two JSBigInt and perform shift operations in JSBigInt.
if (!x)
return jsBigInt32(0);
if (y < 32)
return makeHeapBigIntOrBigInt32(globalObject, static_cast<int64_t>(x) << y);
return leftShiftSlow(globalObject, x, y);
}
#endif
static JSValue signedRightShift(JSGlobalObject*, JSBigInt* x, JSBigInt* y);
#if USE(BIGINT32)
static JSValue signedRightShift(JSGlobalObject*, JSBigInt* x, int32_t y);
static JSValue signedRightShift(JSGlobalObject*, int32_t x, JSBigInt* y);
static JSValue signedRightShift(JSGlobalObject* globalObject, int32_t x, int32_t y)
{
if (y < 0) {
// Shifts one less than requested, but doesn't matter since lhs is int32
return leftShift(globalObject, x, y == INT32_MIN ? INT32_MAX : -y);
}
return jsBigInt32(x >> std::min(y, 31));
}
#endif
static JSValue toNumberHeap(JSBigInt*);
static JSValue toNumber(JSValue bigInt)
{
ASSERT(bigInt.isBigInt());
#if USE(BIGINT32)
if (bigInt.isBigInt32())
return jsNumber(bigInt.bigInt32AsInt32());
#endif
return toNumberHeap(jsCast<JSBigInt*>(bigInt));
}
static JSValue asIntN(JSGlobalObject*, uint64_t numberOfBits, JSBigInt*);
static JSValue asUintN(JSGlobalObject*, uint64_t numberOfBits, JSBigInt*);
#if USE(BIGINT32)
static JSValue asIntN(JSGlobalObject*, uint64_t numberOfBits, int32_t bigIntAsInt32);
static JSValue asUintN(JSGlobalObject*, uint64_t numberOfBits, int32_t bigIntAsInt32);
#endif
static uint64_t toBigUInt64(JSValue bigInt)
{
ASSERT(bigInt.isBigInt());
#if USE(BIGINT32)
if (bigInt.isBigInt32())
return static_cast<uint64_t>(static_cast<int64_t>(bigInt.bigInt32AsInt32()));
#endif
return toBigUInt64Heap(bigInt.asHeapBigInt());
}
static int64_t toBigInt64(JSValue bigInt)
{
ASSERT(bigInt.isBigInt());
#if USE(BIGINT32)
if (bigInt.isBigInt32())
return static_cast<int64_t>(bigInt.bigInt32AsInt32());
#endif
return static_cast<int64_t>(toBigUInt64Heap(bigInt.asHeapBigInt()));
}
Digit digit(unsigned);
void setDigit(unsigned, Digit); // Use only when initializing.
JS_EXPORT_PRIVATE JSBigInt* rightTrim(JSGlobalObject*);
JS_EXPORT_PRIVATE JSBigInt* tryRightTrim(VM&);
JS_EXPORT_PRIVATE std::optional<unsigned> concurrentHash();
unsigned hash()
{
if (m_hash)
return m_hash;
return hashSlow();
}
static std::optional<double> tryExtractDouble(JSValue);
inline bool isZero() const
{
ASSERT(length() || !sign());
return !length();
}
private:
JSBigInt(VM&, Structure*, Digit*, unsigned length);
JSBigInt* rightTrim(JSGlobalObject*, VM&);
JS_EXPORT_PRIVATE unsigned hashSlow();
static JSBigInt* createFromImpl(JSGlobalObject*, uint64_t value, bool sign);
static constexpr unsigned bitsPerByte = 8;
static constexpr unsigned digitBits = sizeof(Digit) * bitsPerByte;
static constexpr unsigned halfDigitBits = digitBits / 2;
static constexpr Digit halfDigitMask = (1ull << halfDigitBits) - 1;
static constexpr int maxInt = 0x7FFFFFFF;
static constexpr unsigned doubleMantissaSize = 53;
static constexpr unsigned doublePhysicalMantissaSize = 52; // Excluding hidden-bit.
static constexpr uint64_t doublePhysicalMantissaMask = (1ULL << doublePhysicalMantissaSize) - 1;
static constexpr uint64_t doubleMantissaHiddenBit = 1ULL << doublePhysicalMantissaSize;
// The maximum length that the current implementation supports would be
// maxInt / digitBits. However, we use a lower limit for now, because
// raising it later is easier than lowering it.
// Support up to 1 million bits.
static constexpr unsigned maxLengthBits = 1024 * 1024;
static constexpr unsigned maxLength = maxLengthBits / digitBits;
static_assert(maxLengthBits % digitBits == 0);
static uint64_t calculateMaximumCharactersRequired(unsigned length, unsigned radix, Digit lastDigit, bool sign);
template <typename BigIntImpl1, typename BigIntImpl2>
static ComparisonResult absoluteCompare(BigIntImpl1 x, BigIntImpl2 y);
template <typename BigIntImpl>
static bool absoluteDivWithDigitDivisor(JSGlobalObject*, VM&, BigIntImpl x, Digit divisor, JSBigInt** quotient, Digit& remainder);
template <typename BigIntImpl>
static void internalMultiplyAdd(BigIntImpl source, Digit factor, Digit summand, unsigned, JSBigInt* result);
template <typename BigIntImpl>
static void multiplyAccumulate(BigIntImpl multiplicand, Digit multiplier, JSBigInt* accumulator, unsigned accumulatorIndex);
template <typename BigIntImpl1>
static void absoluteDivWithBigIntDivisor(JSGlobalObject*, BigIntImpl1 dividend, JSBigInt* divisor, JSBigInt** quotient, JSBigInt** remainder);
enum class LeftShiftMode {
SameSizeResult,
AlwaysAddOneDigit
};
template <typename BigIntImpl>
static JSBigInt* absoluteLeftShiftAlwaysCopy(JSGlobalObject*, BigIntImpl x, unsigned shift, LeftShiftMode);
static bool productGreaterThan(Digit factor1, Digit factor2, Digit high, Digit low);
Digit absoluteInplaceAdd(JSBigInt* summand, unsigned startIndex);
Digit absoluteInplaceSub(JSBigInt* subtrahend, unsigned startIndex);
void inplaceRightShift(unsigned shift);
enum class RoundingResult {
RoundDown,
Tie,
RoundUp
};
static RoundingResult decideRounding(JSBigInt*, int32_t mantissaBitsUnset, int32_t digitIndex, uint64_t currentDigit);
enum class ExtraDigitsHandling {
Copy,
Skip
};
template<typename BigIntImpl1, typename BigIntImpl2, typename BitwiseOp>
static JSBigInt* absoluteBitwiseOp(JSGlobalObject*, BigIntImpl1 x, BigIntImpl2 y, ExtraDigitsHandling, BitwiseOp&&);
template <typename BigIntImpl1, typename BigIntImpl2>
static JSBigInt* absoluteAnd(JSGlobalObject*, BigIntImpl1 x, BigIntImpl2 y);
template <typename BigIntImpl1, typename BigIntImpl2>
static JSBigInt* absoluteOr(JSGlobalObject*, BigIntImpl1 x, BigIntImpl2 y);
template <typename BigIntImpl1, typename BigIntImpl2>
static JSBigInt* absoluteAndNot(JSGlobalObject*, BigIntImpl1 x, BigIntImpl2 y);
template <typename BigIntImpl1, typename BigIntImpl2>
static JSBigInt* absoluteXor(JSGlobalObject*, BigIntImpl1 x, BigIntImpl2 y);
enum class SignOption {
Signed,
Unsigned
};
template <typename BigIntImpl>
static JSBigInt* absoluteAddOne(JSGlobalObject*, BigIntImpl x, SignOption);
template <typename BigIntImpl>
static JSBigInt* absoluteSubOne(JSGlobalObject*, BigIntImpl x, unsigned resultLength);
// Digit arithmetic helpers.
static Digit digitAdd(Digit a, Digit b, Digit& carry);
static Digit digitSub(Digit a, Digit b, Digit& borrow);
static Digit digitMul(Digit a, Digit b, Digit& high);
static Digit digitDiv(Digit high, Digit low, Digit divisor, Digit& remainder);
static Digit digitPow(Digit base, Digit exponent);
static String toStringBasePowerOfTwo(VM&, JSGlobalObject*, JSBigInt*, unsigned radix);
static String toStringGeneric(VM&, JSGlobalObject*, JSBigInt*, unsigned radix);
template <typename CharType>
static JSValue parseInt(JSGlobalObject*, std::span<const CharType> data, ErrorParseMode);
template <typename CharType>
static JSValue parseInt(JSGlobalObject*, VM&, std::span<const CharType> data, unsigned startIndex, unsigned radix, ErrorParseMode, ParseIntSign = ParseIntSign::Signed, ParseIntMode = ParseIntMode::AllowEmptyString);
static JSBigInt* allocateFor(JSGlobalObject*, VM&, unsigned radix, unsigned charcount);
template <typename BigIntImpl>
static JSBigInt* copy(JSGlobalObject*, BigIntImpl x);
void inplaceMultiplyAdd(Digit multiplier, Digit part);
template <typename BigIntImpl1, typename BigIntImpl2>
static ImplResult absoluteAdd(JSGlobalObject*, BigIntImpl1 x, BigIntImpl2 y, bool resultSign);
template <typename BigIntImpl1, typename BigIntImpl2>
static ImplResult absoluteSub(JSGlobalObject*, BigIntImpl1 x, BigIntImpl2 y, bool resultSign);
template <typename BigIntImpl1, typename BigIntImpl2>
static ImplResult leftShiftByAbsolute(JSGlobalObject*, BigIntImpl1 x, BigIntImpl2 y);
template <typename BigIntImpl1, typename BigIntImpl2>
static ImplResult rightShiftByAbsolute(JSGlobalObject*, BigIntImpl1 x, BigIntImpl2 y);
static ImplResult rightShiftByMaximum(JSGlobalObject*, bool sign);
template <typename BigIntImpl>
static std::optional<Digit> toShiftAmount(BigIntImpl x);
template <typename BigIntImpl>
static ImplResult asIntNImpl(JSGlobalObject*, uint64_t, BigIntImpl);
template <typename BigIntImpl>
static ImplResult asUintNImpl(JSGlobalObject*, uint64_t, BigIntImpl);
template <typename BigIntImpl>
static ImplResult truncateToNBits(JSGlobalObject*, int32_t, BigIntImpl);
template <typename BigIntImpl>
static ImplResult truncateAndSubFromPowerOfTwo(JSGlobalObject*, int32_t, BigIntImpl, bool resultSign);
JS_EXPORT_PRIVATE static uint64_t toBigUInt64Heap(JSBigInt*);
inline Digit* dataStorage() { return m_data.get(); }
inline Digit* dataStorageUnsafe() { return m_data.getUnsafe(); }
const unsigned m_length;
unsigned m_hash { 0 };
uint8_t m_sign { false };
CagedBarrierPtr<Gigacage::Primitive, Digit> m_data;
};
inline JSBigInt* asHeapBigInt(JSValue value)
{
ASSERT(value.asCell()->isHeapBigInt());
return jsCast<JSBigInt*>(value.asCell());
}
inline JSBigInt::Digit JSBigInt::digit(unsigned n)
{
ASSERT(n < length());
return dataStorage()[n];
}
inline void JSBigInt::setDigit(unsigned n, Digit value)
{
ASSERT(n < length());
dataStorage()[n] = value;
}
ALWAYS_INLINE JSBigInt::ComparisonResult invertBigIntCompareResult(JSBigInt::ComparisonResult comparisonResult)
{
switch (comparisonResult) {
case JSBigInt::ComparisonResult::GreaterThan:
return JSBigInt::ComparisonResult::LessThan;
case JSBigInt::ComparisonResult::LessThan:
return JSBigInt::ComparisonResult::GreaterThan;
default:
return comparisonResult;
}
}
ALWAYS_INLINE JSValue tryConvertToBigInt32(JSBigInt* bigInt)
{
#if USE(BIGINT32)
if (UNLIKELY(!bigInt))
return JSValue();
if (bigInt->length() <= 1) {
if (!bigInt->length())
return jsBigInt32(0);
JSBigInt::Digit digit = bigInt->digit(0);
if (bigInt->sign()) {
static constexpr uint64_t maxValue = -static_cast<int64_t>(std::numeric_limits<int32_t>::min());
if (digit <= maxValue)
return jsBigInt32(static_cast<int32_t>(-static_cast<int64_t>(digit)));
} else {
static constexpr uint64_t maxValue = static_cast<uint64_t>(std::numeric_limits<int32_t>::max());
if (digit <= maxValue)
return jsBigInt32(static_cast<int32_t>(digit));
}
}
#endif
return bigInt;
}
ALWAYS_INLINE std::optional<double> JSBigInt::tryExtractDouble(JSValue value)
{
if (value.isNumber())
return value.asNumber();
if (!value.isBigInt())
return std::nullopt;
#if USE(BIGINT32)
if (value.isBigInt32())
return value.bigInt32AsInt32();
#endif
ASSERT(value.isHeapBigInt());
JSBigInt* bigInt = value.asHeapBigInt();
if (!bigInt->length())
return 0;
uint64_t integer = 0;
if constexpr (sizeof(Digit) == 8) {
if (bigInt->length() != 1)
return std::nullopt;
integer = bigInt->digit(0);
} else {
ASSERT(sizeof(Digit) == 4);
if (bigInt->length() > 2)
return std::nullopt;
integer = bigInt->digit(0);
if (bigInt->length() == 2)
integer |= (static_cast<uint64_t>(bigInt->digit(1)) << 32);
}
if (integer <= static_cast<uint64_t>(maxSafeInteger()))
return (bigInt->sign()) ? -static_cast<double>(integer) : static_cast<double>(integer);
return std::nullopt;
}
} // namespace JSC
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
|