1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
|
/*
* Copyright (C) 2015-2023 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "CPU.h"
#include "JITOperationValidation.h"
#include "OperationResult.h"
#include <climits>
#include <cmath>
#include <optional>
namespace JSC {
const int32_t maxExponentForIntegerMathPow = 1000;
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(operationMathPow, double, (double x, double y));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(operationToInt32, UCPUStrictInt32, (double));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(operationToInt32SensibleSlow, UCPUStrictInt32, (double));
constexpr double maxSafeInteger()
{
// 2 ^ 53 - 1
return 9007199254740991.0;
}
constexpr double minSafeInteger()
{
// -(2 ^ 53 - 1)
return -9007199254740991.0;
}
constexpr uint64_t maxSafeIntegerAsUInt64()
{
// 2 ^ 53 - 1
return 9007199254740991ULL;
}
inline bool isInteger(double value)
{
return std::isfinite(value) && std::trunc(value) == value;
}
inline bool isInteger(float value)
{
return std::isfinite(value) && std::trunc(value) == value;
}
inline bool isSafeInteger(double value)
{
return std::trunc(value) == value && std::abs(value) <= maxSafeInteger();
}
inline bool isNegativeZero(double value)
{
return std::signbit(value) && value == 0;
}
// This in the ToInt32 operation is defined in section 9.5 of the ECMA-262 spec.
// Note that this operation is identical to ToUInt32 other than to interpretation
// of the resulting bit-pattern (as such this method is also called to implement
// ToUInt32).
//
// The operation can be described as round towards zero, then select the 32 or 64 least
// bits of the resulting value in 2s-complement representation.
enum ToIntMode {
Generic,
Int32AfterSensibleConversionAttempt,
};
template<class Int, ToIntMode Mode = Generic>
ALWAYS_INLINE Int toIntImpl(double number)
{
static_assert(std::is_same_v<Int, int32_t> || std::is_same_v<Int, int64_t>);
constexpr unsigned intBytes = sizeof(Int);
constexpr unsigned intBits = intBytes * CHAR_BIT;
constexpr unsigned intBitsMinusOne = intBits - 1;
static_assert(intBitsMinusOne == 63 || intBitsMinusOne == 31);
using UInt = std::make_unsigned_t<Int>;
uint64_t bits = std::bit_cast<uint64_t>(number);
int32_t exp = (static_cast<int32_t>(bits >> 52) & 0x7ff) - 0x3ff;
// If exponent < 0 there will be no bits to the left of the decimal point
// after rounding; if the exponent is > maxExpForLeftShift then no bits of precision can be
// left in the low intBits range of the result (IEEE-754 doubles have 52 bits
// of fractional precision).
// Note this case handles 0, -0, and all infinite, NaN, & denormal value.
constexpr uint32_t maxExpForLeftShift = intBitsMinusOne + 52;
// We need to check exp > maxExpForLeftShift because:
// 1. exp may be used as a left shift value below in (exp - 52), and
// 2. Left shift amounts that exceed intBitsMinusOne results in undefined behavior. See:
// http://en.cppreference.com/w/cpp/language/operator_arithmetic#Bitwise_shift_operators
//
// Using an unsigned comparison here also gives us a exp < 0 check for free.
if (static_cast<uint32_t>(exp) > maxExpForLeftShift)
return 0;
// Select the appropriate intBits from the floating point mantissa. If the
// exponent is 52 then the bits we need to select are already aligned to the
// lowest bits of the 64-bit integer representation of the number, no need
// to shift. If the exponent is greater than 52 we need to shift the value
// left by (exp - 52), if the value is less than 52 we need to shift right
// accordingly.
UInt result = (exp > 52)
? static_cast<UInt>(bits << (exp - 52))
: static_cast<UInt>(bits >> (52 - exp));
// IEEE-754 double precision values are stored omitting an implicit 1 before
// the decimal point; we need to reinsert this now. We may also the shifted
// invalid bits into the result that are not a part of the mantissa (the sign
// and exponent bits from the floatingpoint representation); mask these out.
// Note that missingOne should be held as UInt since ((1 << intBitsMinusOne) - 1) causes
// Int overflow.
if constexpr (Mode == ToIntMode::Int32AfterSensibleConversionAttempt) {
static_assert(intBitsMinusOne == 31);
if (exp == intBitsMinusOne) {
// This is an optimization for when toInt32() is called in the slow path
// of a JIT operation. Currently, this optimization is only applicable for
// x86 ports. This optimization offers 5% performance improvement in
// kraken-crypto-pbkdf2.
//
// On x86, the fast path does a sensible double-to-int32 conversion, by
// first attempting to truncate the double value to int32 using the
// cvttsd2si_rr instruction. According to Intel's manual, cvttsd2si performs
// the following truncate operation:
//
// If src = NaN, +-Inf, or |(src)rz| > 0x7fffffff and (src)rz != 0x80000000,
// then the result becomes 0x80000000. Otherwise, the operation succeeds.
//
// Note that the ()rz notation means rounding towards zero.
// We'll call the slow case function only when the above cvttsd2si fails. The
// JIT code checks for fast path failure by checking if result == 0x80000000.
// Hence, the slow path will only see the following possible set of numbers:
//
// NaN, +-Inf, or |(src)rz| > 0x7fffffff.
//
// As a result, the exp of the double is always >= 31. We can take advantage
// of this by specifically checking for (exp == 31) and give the compiler a
// chance to constant fold the operations below.
const constexpr UInt missingOne = static_cast<UInt>(1U) << intBitsMinusOne;
result &= missingOne - 1;
result += missingOne;
}
} else {
if (exp < static_cast<int32_t>(intBits)) {
const UInt missingOne = static_cast<UInt>(1U) << exp;
result &= missingOne - 1;
result += missingOne;
}
}
// If the input value was negative (we could test either 'number' or 'bits',
// but testing 'bits' is likely faster) invert the result appropriately.
return static_cast<int64_t>(bits) < 0 ? -static_cast<Int>(result) : static_cast<Int>(result);
}
ALWAYS_INLINE int32_t toInt32(double number)
{
#if HAVE(FJCVTZS_INSTRUCTION)
int32_t result = 0;
__asm__ ("fjcvtzs %w0, %d1" : "=r" (result) : "w" (number) : "cc");
return result;
#else
return toIntImpl<int32_t>(number);
#endif
}
// This implements ToUInt32, defined in ECMA-262 9.6.
inline uint32_t toUInt32(double number)
{
// As commented in the spec, the operation of ToInt32 and ToUint32 only differ
// in how the result is interpreted; see NOTEs in sections 9.5 and 9.6.
return toInt32(number);
}
ALWAYS_INLINE constexpr UCPUStrictInt32 toUCPUStrictInt32(int32_t value)
{
// StrictInt32 format requires that higher bits are all zeros even if value is negative.
return static_cast<UCPUStrictInt32>(static_cast<uint32_t>(value));
}
// This implementation follows https://tc39.es/ecma262/#sec-touint32 but use int64 instead.
ALWAYS_INLINE int64_t toInt64(double number)
{
return toIntImpl<int64_t>(number);
}
ALWAYS_INLINE uint64_t toUInt64(double number)
{
return static_cast<uint64_t>(toInt64(number));
}
inline std::optional<double> safeReciprocalForDivByConst(double constant)
{
// No "weird" numbers (NaN, Denormal, etc).
if (!constant || !std::isnormal(constant))
return std::nullopt;
int exponent;
if (std::frexp(constant, &exponent) != 0.5)
return std::nullopt;
// Note that frexp() returns the value divided by two
// so we to offset this exponent by one.
exponent -= 1;
// A double exponent is between -1022 and 1023.
// Nothing we can do to invert 1023.
if (exponent == 1023)
return std::nullopt;
double reciprocal = std::ldexp(1, -exponent);
ASSERT(std::isnormal(reciprocal));
ASSERT(1. / constant == reciprocal);
ASSERT(constant == 1. / reciprocal);
ASSERT(1. == constant * reciprocal);
return reciprocal;
}
ALWAYS_INLINE bool canBeStrictInt32(double value)
{
if (std::isinf(value) || std::isnan(value))
return false;
const int32_t asInt32 = static_cast<int32_t>(value);
return !(asInt32 != value || (!asInt32 && std::signbit(value))); // true for -0.0
}
ALWAYS_INLINE bool canBeInt32(double value)
{
if (std::isinf(value) || std::isnan(value))
return false;
return static_cast<int32_t>(value) == value;
}
extern "C" {
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(jsRound, double, (double));
}
namespace Math {
// This macro defines a set of information about all known arith unary generic node.
#define FOR_EACH_ARITH_UNARY_OP_CUSTOM(macro) \
macro(Log1p, log1p) \
#define FOR_EACH_ARITH_UNARY_OP_STD(macro) \
macro(Sin, sin) \
macro(Sinh, sinh) \
macro(Cos, cos) \
macro(Cosh, cosh) \
macro(Tan, tan) \
macro(Tanh, tanh) \
macro(ASin, asin) \
macro(ASinh, asinh) \
macro(ACos, acos) \
macro(ACosh, acosh) \
macro(ATan, atan) \
macro(ATanh, atanh) \
macro(Log, log) \
macro(Log10, log10) \
macro(Log2, log2) \
macro(Cbrt, cbrt) \
macro(Exp, exp) \
macro(Expm1, expm1) \
#define FOR_EACH_ARITH_UNARY_OP(macro) \
FOR_EACH_ARITH_UNARY_OP_STD(macro) \
FOR_EACH_ARITH_UNARY_OP_CUSTOM(macro) \
#define JSC_DEFINE_VIA_STD(capitalizedName, lowerName) \
using std::lowerName; \
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(lowerName##Double, double, (double)); \
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(lowerName##Float, float, (float));
FOR_EACH_ARITH_UNARY_OP_STD(JSC_DEFINE_VIA_STD)
#undef JSC_DEFINE_VIA_STD
#define JSC_DEFINE_VIA_CUSTOM(capitalizedName, lowerName) \
JS_EXPORT_PRIVATE double lowerName(double); \
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(lowerName##Double, double, (double)); \
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(lowerName##Float, float, (float));
FOR_EACH_ARITH_UNARY_OP_CUSTOM(JSC_DEFINE_VIA_CUSTOM)
#undef JSC_DEFINE_VIA_CUSTOM
template<typename FloatType>
ALWAYS_INLINE FloatType fMax(FloatType a, FloatType b)
{
if (std::isnan(a) || std::isnan(b))
return a + b;
if (a == static_cast<FloatType>(0.0) && b == static_cast<FloatType>(0.0) && std::signbit(a) != std::signbit(b))
return static_cast<FloatType>(0.0);
return std::max(a, b);
}
template<typename FloatType>
ALWAYS_INLINE FloatType fMin(FloatType a, FloatType b)
{
if (std::isnan(a) || std::isnan(b))
return a + b;
if (a == static_cast<FloatType>(0.0) && b == static_cast<FloatType>(0.0) && std::signbit(a) != std::signbit(b))
return static_cast<FloatType>(-0.0);
return std::min(a, b);
}
ALWAYS_INLINE double jsMaxDouble(double lhs, double rhs)
{
#if CPU(ARM64)
// Intentionally using fmax, not fmaxnm since fmax is aligned to JS Math.max semantics.
// fmaxnm returns non-NaN number when either lhs or rhs is NaN. But Math.max returns NaN.
double result;
asm (
"fmax %d[result], %d[lhs], %d[rhs]"
: [result] "=w"(result)
: [lhs] "w"(lhs), [rhs] "w"(rhs)
:
);
return result;
#else
return fMax(lhs, rhs);
#endif
}
ALWAYS_INLINE double jsMinDouble(double lhs, double rhs)
{
#if CPU(ARM64)
// Intentionally using fmin, not fminnm since fmin is aligned to JS Math.min semantics.
// fminnm returns non-NaN number when either lhs or rhs is NaN. But Math.min returns NaN.
double result;
asm (
"fmin %d[result], %d[lhs], %d[rhs]"
: [result] "=w"(result)
: [lhs] "w"(lhs), [rhs] "w"(rhs)
:
);
return result;
#else
return fMin(lhs, rhs);
#endif
}
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(truncDouble, double, (double));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(truncFloat, float, (float));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(ceilDouble, double, (double));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(ceilFloat, float, (float));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(floorDouble, double, (double));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(floorFloat, float, (float));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(sqrtDouble, double, (double));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(sqrtFloat, float, (float));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(stdPowDouble, double, (double, double));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(stdPowFloat, float, (float, float));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(fmodDouble, double, (double, double));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(roundDouble, double, (double));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(jsRoundDouble, double, (double));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(roundFloat, float, (float));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(f32_nearest, float, (float));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(f64_nearest, double, (double));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(f32_roundeven, float, (float));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(f64_roundeven, double, (double));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(f32_trunc, float, (float));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(f64_trunc, double, (double));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(i32_div_s, int32_t, (int32_t, int32_t));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(i32_div_u, uint32_t, (uint32_t, uint32_t));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(i32_rem_s, int32_t, (int32_t, int32_t));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(i32_rem_u, uint32_t, (uint32_t, uint32_t));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(i64_div_s, int64_t, (int64_t, int64_t));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(i64_div_u, uint64_t, (uint64_t, uint64_t));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(i64_rem_s, int64_t, (int64_t, int64_t));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(i64_rem_u, uint64_t, (uint64_t, uint64_t));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(i64_trunc_u_f32, uint64_t, (float));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(i64_trunc_s_f32, int64_t, (float));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(i64_trunc_u_f64, uint64_t, (double));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(i64_trunc_s_f64, int64_t, (double));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(f32_convert_u_i64, float, (uint64_t));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(f32_convert_s_i64, float, (int64_t));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(f64_convert_u_i64, double, (uint64_t));
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(f64_convert_s_i64, double, (int64_t));
} // namespace Math
} // namespace JSC
|