File: PropertyTable.h

package info (click to toggle)
webkit2gtk 2.48.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 429,764 kB
  • sloc: cpp: 3,697,587; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,295; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (686 lines) | stat: -rw-r--r-- 24,081 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
/*
 *  Copyright (C) 2004-2022 Apple Inc. All rights reserved.
 *
 *  This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Library General Public
 *  License as published by the Free Software Foundation; either
 *  version 2 of the License, or (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Library General Public License for more details.
 *
 *  You should have received a copy of the GNU Library General Public License
 *  along with this library; see the file COPYING.LIB.  If not, write to
 *  the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 *  Boston, MA 02110-1301, USA.
 *
 */

#pragma once

#include "JSExportMacros.h"
#include "PropertyOffset.h"
#include "Structure.h"
#include "WriteBarrier.h"
#include <wtf/HashTable.h>
#include <wtf/MathExtras.h>
#include <wtf/StdLibExtras.h>
#include <wtf/Vector.h>
#include <wtf/text/AtomStringImpl.h>


#define DUMP_PROPERTYMAP_STATS 0
#define DUMP_PROPERTYMAP_COLLISIONS 0

#define PROPERTY_MAP_DELETED_ENTRY_KEY ((UniquedStringImpl*)1)

WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN

namespace JSC {

DECLARE_ALLOCATOR_WITH_HEAP_IDENTIFIER(PropertyTable);

#if DUMP_PROPERTYMAP_STATS

struct PropertyTableStats {
    std::atomic<unsigned> numFinds;
    std::atomic<unsigned> numCollisions;
    std::atomic<unsigned> numLookups;
    std::atomic<unsigned> numLookupProbing;
    std::atomic<unsigned> numAdds;
    std::atomic<unsigned> numRemoves;
    std::atomic<unsigned> numRehashes;
    std::atomic<unsigned> numReinserts;
};

JS_EXPORT_PRIVATE extern PropertyTableStats* propertyTableStats;

#endif

inline constexpr bool isPowerOf2(unsigned v)
{
    return hasOneBitSet(v);
}

inline constexpr unsigned nextPowerOf2(unsigned v)
{
    // Taken from http://www.cs.utk.edu/~vose/c-stuff/bithacks.html
    // Devised by Sean Anderson, Sepember 14, 2001

    v--;
    v |= v >> 1;
    v |= v >> 2;
    v |= v >> 4;
    v |= v >> 8;
    v |= v >> 16;
    v++;

    return v;
}

// compact <-> non-compact PropertyTable
// We need to maintain two things, one is PropertyOffset and one is unsigned index in index buffer of PropertyTable.
// But both are typically small. It is possible that we can get optimized table if both are fit in uint8_t, that's
// compact PropertyTable.
//
// PropertyOffset can be offseted with firstOutOfLineOffset since we can get out-of-line property easily, but this
// offset is small enough (64 currently), so that we can still assume that most of property offsets are < 256.
//
// 1. If property offset gets larger than 255, then we get non-compact PropertyTable. It requires at least 191 (255 - 64) properties.
//    In that case, PropertyTable size should be 256 since it is power-of-two.
// 2. If index gets larger than 255, then we get non-compact PropertyTable. But we are using 0 and 255 for markers. Thus, if we get 253
//    used counts, then we need to change the table.
//
// So, typical scenario is that, once 128th property is added, then we extend the table via rehashing. At that time, we change the
// table from compact to non-compact mode.
//
//  index-size  table-capacity    compact   v.s. non-compact
//     16             8              80              192
//     32            16             160              384
//     64            32             320              768
//    128            64             640             1536
//    256           128            1280             3072
//    512           256             N/A             6144     // After 512 size, compact PropertyTable does not work. All table gets non-compact.

class PropertyTable final : public JSCell {
public:
    using Base = JSCell;
    static constexpr unsigned StructureFlags = Base::StructureFlags | StructureIsImmortal;

    template<typename CellType, SubspaceAccess>
    static GCClient::IsoSubspace* subspaceFor(VM& vm)
    {
        return &vm.propertyTableSpace();
    }

    static constexpr DestructionMode needsDestruction = NeedsDestruction;
    static void destroy(JSCell*);
    DECLARE_VISIT_CHILDREN;

    DECLARE_EXPORT_INFO;

    inline static Structure* createStructure(VM&, JSGlobalObject*, JSValue);

    using KeyType = UniquedStringImpl*;
    using ValueType = PropertyTableEntry;

    // Constructor is passed an initial capacity, a PropertyTable to copy, or both.
    static PropertyTable* create(VM&, unsigned initialCapacity);
    static PropertyTable* clone(VM&, const PropertyTable&);
    static PropertyTable* clone(VM&, unsigned initialCapacity, const PropertyTable&);
    ~PropertyTable();

    // Find a value in the table.
    std::tuple<PropertyOffset, unsigned> get(const KeyType&);
    // Add a value to the table
    std::tuple<PropertyOffset, unsigned, bool> WARN_UNUSED_RETURN add(VM&, const ValueType& entry);
    // Remove a value from the table.
    std::tuple<PropertyOffset, unsigned> take(VM&, const KeyType&);
    PropertyOffset updateAttributeIfExists(const KeyType&, unsigned attributes);

    PropertyOffset renumberPropertyOffsets(JSObject*, unsigned inlineCapacity, Vector<JSValue>&);

    struct FindResult {
        unsigned entryIndex;
        unsigned index;
        PropertyOffset offset;
        unsigned attributes;
    };

    FindResult find(const KeyType&);
    std::tuple<PropertyOffset, unsigned, bool> addAfterFind(VM&, const ValueType& entry, FindResult&&);

    void seal();
    void freeze();

    bool isSealed() const;
    bool isFrozen() const;

    // Returns the number of values in the hashtable.
    unsigned size() const;

    // Checks if there are any values in the hashtable.
    bool isEmpty() const;

    // Number of slots in the property storage array in use, included deletedOffsets.
    unsigned propertyStorageSize() const;

    // Used to maintain a list of unused entries in the property storage.
    void clearDeletedOffsets();
    bool hasDeletedOffset();
    PropertyOffset takeDeletedOffset();
    void addDeletedOffset(PropertyOffset);
    
    PropertyOffset nextOffset(PropertyOffset inlineCapacity);

    // Copy this PropertyTable, ensuring the copy has at least the capacity provided.
    PropertyTable* copy(VM&, unsigned newCapacity);

#ifndef NDEBUG
    size_t sizeInMemory();
    void checkConsistency();
#endif

    template<typename Functor>
    void forEachProperty(const Functor&) const;

    static constexpr unsigned EmptyEntryIndex = 0;

private:
    PropertyTable(VM&, unsigned initialCapacity);
    PropertyTable(VM&, const PropertyTable&);
    PropertyTable(VM&, unsigned initialCapacity, const PropertyTable&);

    PropertyTable(const PropertyTable&);

    void finishCreation(VM&);

    // Used to insert a value known not to be in the table, and where we know capacity to be available.
    template<typename Index, typename Entry>
    void reinsert(Index*, Entry*, const ValueType& entry);

    static bool canFitInCompact(const ValueType& entry) { return entry.offset() <= UINT8_MAX; }

    // Rehash the table. Used to grow, or to recover deleted slots.
    void rehash(VM&, unsigned newCapacity, bool canStayCompact);

    // The capacity of the table of values is half of the size of the index.
    unsigned tableCapacity() const;

    // We keep an extra deleted slot after the array to make iteration work,
    // and to use for deleted values. Index values into the array are 1-based,
    // so this is tableCapacity() + 1.
    // For example, if m_tableSize is 16, then tableCapacity() is 8 - but the
    // values array is actually 9 long (the 9th used for the deleted value/
    // iteration guard). The 8 valid entries are numbered 1..8, so the
    // deleted index is 9 (0 being reserved for empty).
    unsigned deletedEntryIndex() const;

    // Used in iterator creation/progression.
    template<typename T>
    static T* skipDeletedEntries(T* valuePtr, T* endValuePtr);

    // total number of  used entries in the values array - by either valid entries, or deleted ones.
    unsigned usedCount() const;

    // The size in bytes of data needed for by the table.
    size_t dataSize(bool isCompact);
    static size_t dataSize(bool isCompact, unsigned indexSize);

    // Calculates the appropriate table size (rounds up to a power of two).
    static unsigned sizeForCapacity(unsigned capacity);

    // Check if capacity is available.
    bool canInsert(const ValueType&);

    void remove(VM&, KeyType, unsigned entryIndex, unsigned index);

    template<typename Index, typename Entry>
    ALWAYS_INLINE FindResult findImpl(const Index*, const Entry*, const KeyType&);

    bool isCompact() const { return m_indexVector & isCompactFlag; }

    template<typename Functor>
    void forEachPropertyMutable(const Functor&);

    // The table of values lies after the hash index.
    static CompactPropertyTableEntry* tableFromIndexVector(uint8_t* index, unsigned indexSize)
    {
        return std::bit_cast<CompactPropertyTableEntry*>(index + indexSize);
    }
    static const CompactPropertyTableEntry* tableFromIndexVector(const uint8_t* index, unsigned indexSize)
    {
        return std::bit_cast<const CompactPropertyTableEntry*>(index + indexSize);
    }
    static PropertyTableEntry* tableFromIndexVector(uint32_t* index, unsigned indexSize)
    {
        return std::bit_cast<PropertyTableEntry*>(index + indexSize);
    }
    static const PropertyTableEntry* tableFromIndexVector(const uint32_t* index, unsigned indexSize)
    {
        return std::bit_cast<const PropertyTableEntry*>(index + indexSize);
    }

    CompactPropertyTableEntry* tableFromIndexVector(uint8_t* index) { return tableFromIndexVector(index, m_indexSize); }
    const CompactPropertyTableEntry* tableFromIndexVector(const uint8_t* index) const { return tableFromIndexVector(index, m_indexSize); }
    PropertyTableEntry* tableFromIndexVector(uint32_t* index) { return tableFromIndexVector(index, m_indexSize); }
    const PropertyTableEntry* tableFromIndexVector(const uint32_t* index) const { return tableFromIndexVector(index, m_indexSize); }

    CompactPropertyTableEntry* tableEndFromIndexVector(uint8_t* index)
    {
        return tableFromIndexVector(index) + usedCount();
    }
    const CompactPropertyTableEntry* tableEndFromIndexVector(const uint8_t* index) const
    {
        return tableFromIndexVector(index) + usedCount();
    }
    PropertyTableEntry* tableEndFromIndexVector(uint32_t* index)
    {
        return tableFromIndexVector(index) + usedCount();
    }
    const PropertyTableEntry* tableEndFromIndexVector(const uint32_t* index) const
    {
        return tableFromIndexVector(index) + usedCount();
    }

    static uintptr_t allocateIndexVector(bool isCompact, unsigned indexSize);
    static uintptr_t allocateZeroedIndexVector(bool isCompact, unsigned indexSize);
    static void destroyIndexVector(uintptr_t indexVector);

    template<typename Func>
    static ALWAYS_INLINE auto withIndexVector(uintptr_t indexVector, Func&& function) -> decltype(auto)
    {
        if (indexVector & isCompactFlag)
            return function(std::bit_cast<uint8_t*>(indexVector & indexVectorMask));
        return function(std::bit_cast<uint32_t*>(indexVector & indexVectorMask));
    }

    template<typename Func>
    ALWAYS_INLINE auto withIndexVector(Func&& function) const -> decltype(auto)
    {
        return withIndexVector(m_indexVector, std::forward<Func>(function));
    }

    static constexpr uintptr_t isCompactFlag = 0x1;
    static constexpr uintptr_t indexVectorMask = ~isCompactFlag;

    unsigned m_indexSize;
    unsigned m_indexMask;
    uintptr_t m_indexVector;
    unsigned m_keyCount;
    unsigned m_deletedCount;
    std::unique_ptr<Vector<PropertyOffset>> m_deletedOffsets;

    static constexpr unsigned MinimumTableSize = 16;
    static_assert(MinimumTableSize >= 16, "compact index is uint8_t and we should keep 16 byte aligned entries after this array");
};

template<typename Index, typename Entry>
PropertyTable::FindResult PropertyTable::findImpl(const Index* indexVector, const Entry* table, const KeyType& key)
{
    unsigned hash = IdentifierRepHash::hash(key);
    unsigned indexMask = m_indexMask;
    unsigned probeCount = 0;
    unsigned index = hash & indexMask;

#if DUMP_PROPERTYMAP_STATS
    ++propertyTableStats->numFinds;
#endif

    while (true) {
        unsigned entryIndex = indexVector[index];
        if (entryIndex == EmptyEntryIndex)
            return FindResult { entryIndex, index, invalidOffset, 0 };
        const auto& entry = table[entryIndex - 1];
        if (key == entry.key()) {
            ASSERT(!m_deletedOffsets || !m_deletedOffsets->contains(entry.offset()));
            return FindResult { entryIndex, index, entry.offset(), entry.attributes() };
        }

#if DUMP_PROPERTYMAP_STATS
        ++propertyTableStats->numCollisions;
#endif

#if DUMP_PROPERTYMAP_COLLISIONS
        dataLog("PropertyTable collision for ", key, " (", hash, ")\n");
        dataLog("Collided with ", entry.key(), "(", IdentifierRepHash::hash(entry.key()), ")\n");
#endif

        ++probeCount;
        index = (index + probeCount) & indexMask;
    }
}

inline PropertyTable::FindResult PropertyTable::find(const KeyType& key)
{
    ASSERT(key);
    ASSERT(key->isAtom() || key->isSymbol());
    return withIndexVector([&](auto* vector) {
        return findImpl(vector, tableFromIndexVector(vector), key);
    });
}

inline std::tuple<PropertyOffset, unsigned> PropertyTable::get(const KeyType& key)
{
    ASSERT(key);
    ASSERT(key->isAtom() || key->isSymbol());
    ASSERT(key != PROPERTY_MAP_DELETED_ENTRY_KEY);

    if (!m_keyCount)
        return std::tuple { invalidOffset, 0 };

    FindResult result = find(key);
    return std::tuple { result.offset, result.attributes };
}

inline std::tuple<PropertyOffset, unsigned, bool> WARN_UNUSED_RETURN PropertyTable::add(VM& vm, const ValueType& entry)
{
    ASSERT(!m_deletedOffsets || !m_deletedOffsets->contains(entry.offset()));

    // Look for a value with a matching key already in the array.
    FindResult result = find(entry.key());
    if (result.offset != invalidOffset)
        return std::tuple { result.offset, result.attributes, false };
    return addAfterFind(vm, entry, WTFMove(result));
}

ALWAYS_INLINE std::tuple<PropertyOffset, unsigned, bool> PropertyTable::addAfterFind(VM& vm, const ValueType& entry, FindResult&& result)
{
#if DUMP_PROPERTYMAP_STATS
    ++propertyTableStats->numAdds;
#endif

    // Ref the key
    entry.key()->ref();

    // ensure capacity is available.
    if (!canInsert(entry)) {
        rehash(vm, m_keyCount + 1, canFitInCompact(entry));
        result = find(entry.key());
        ASSERT(result.offset == invalidOffset);
        ASSERT(result.entryIndex == EmptyEntryIndex);
    }

    // Allocate a slot in the hashtable, and set the index to reference this.
    ASSERT(!isCompact() || usedCount() < UINT8_MAX);
    unsigned index = result.index;
    unsigned entryIndex = usedCount() + 1;
    withIndexVector([&](auto* vector) {
        vector[index] = entryIndex;
        tableFromIndexVector(vector)[entryIndex - 1] = entry;
    });

    ++m_keyCount;

    return std::tuple { entry.offset(), entry.attributes(), true };
}

inline void PropertyTable::remove(VM& vm, KeyType key, unsigned entryIndex, unsigned index)
{
#if DUMP_PROPERTYMAP_STATS
    ++propertyTableStats->numRemoves;
#endif

    // Replace this one element with the deleted sentinel. Also clear out
    // the entry so we can iterate all the entries as needed.
    withIndexVector([&](auto* vector) {
        vector[index] = deletedEntryIndex();
        tableFromIndexVector(vector)[entryIndex - 1].setKey(PROPERTY_MAP_DELETED_ENTRY_KEY);
    });
    key->deref();

    ASSERT(m_keyCount >= 1);
    --m_keyCount;
    ++m_deletedCount;

    if (m_deletedCount * 4 >= m_indexSize)
        rehash(vm, m_keyCount, true);
}

inline std::tuple<PropertyOffset, unsigned> PropertyTable::take(VM& vm, const KeyType& key)
{
    FindResult result = find(key);
    if (result.offset != invalidOffset)
        remove(vm, key, result.entryIndex, result.index);
    return std::tuple { result.offset, result.attributes };
}

inline PropertyOffset PropertyTable::updateAttributeIfExists(const KeyType& key, unsigned attributes)
{
    return withIndexVector([&](auto* vector) -> PropertyOffset {
        auto* table = tableFromIndexVector(vector);
        FindResult result = findImpl(vector, table, key);
        if (result.offset == invalidOffset)
            return invalidOffset;
        table[result.entryIndex - 1].setAttributes(attributes);
        return result.offset;
    });
}

// returns the number of values in the hashtable.
inline unsigned PropertyTable::size() const
{
    return m_keyCount;
}

inline bool PropertyTable::isEmpty() const
{
    return !m_keyCount;
}

inline unsigned PropertyTable::propertyStorageSize() const
{
    return size() + (m_deletedOffsets ? m_deletedOffsets->size() : 0);
}

inline void PropertyTable::clearDeletedOffsets()
{
    m_deletedOffsets = nullptr;
}

inline bool PropertyTable::hasDeletedOffset()
{
    return m_deletedOffsets && !m_deletedOffsets->isEmpty();
}

inline PropertyOffset PropertyTable::takeDeletedOffset()
{
    return m_deletedOffsets->takeLast();
}

inline void PropertyTable::addDeletedOffset(PropertyOffset offset)
{
    if (!m_deletedOffsets)
        m_deletedOffsets = makeUnique<Vector<PropertyOffset>>();
    ASSERT(!m_deletedOffsets->contains(offset));
    m_deletedOffsets->append(offset);
}

inline PropertyOffset PropertyTable::nextOffset(PropertyOffset inlineCapacity)
{
    if (hasDeletedOffset())
        return takeDeletedOffset();

    return offsetForPropertyNumber(size(), inlineCapacity);
}

inline PropertyTable* PropertyTable::copy(VM& vm, unsigned newCapacity)
{
    ASSERT(newCapacity >= m_keyCount);

    // Fast case; if the new table will be the same m_indexSize as this one, we can memcpy it,
    // save rehashing all keys.
    if (sizeForCapacity(newCapacity) == m_indexSize)
        return PropertyTable::clone(vm, *this);
    return PropertyTable::clone(vm, newCapacity, *this);
}

#ifndef NDEBUG
inline size_t PropertyTable::sizeInMemory()
{
    size_t result = sizeof(PropertyTable) + dataSize(isCompact());
    if (m_deletedOffsets)
        result += (m_deletedOffsets->capacity() * sizeof(PropertyOffset));
    return result;
}
#endif

template<typename Index, typename Entry>
inline void PropertyTable::reinsert(Index* indexVector, Entry* table, const ValueType& entry)
{
#if DUMP_PROPERTYMAP_STATS
    ++propertyTableStats->numReinserts;
#endif

    // Used to insert a value known not to be in the table, and where
    // we know capacity to be available.
    ASSERT(canInsert(entry));

    unsigned hash = IdentifierRepHash::hash(entry.key());
    unsigned indexMask = m_indexMask;
    unsigned probeCount = 0;
    unsigned index = hash & indexMask;

    // Reinsert must not conflict with the keys since all entries are existing ones.
    // Plus, there is no deleted entries too. We should just check emptyness, that's it.
    while (true) {
        unsigned entryIndex = indexVector[index];
        if (entryIndex == EmptyEntryIndex)
            break;
        ASSERT(table[entryIndex - 1].key() != entry.key());
        ++probeCount;
        index = (index + probeCount) & indexMask;
    }

    ASSERT(!isCompact() || usedCount() < UINT8_MAX);
    unsigned entryIndex = usedCount() + 1;
    indexVector[index] = entryIndex;
    table[entryIndex - 1] = entry;

    ++m_keyCount;
}

inline void PropertyTable::rehash(VM& vm, unsigned newCapacity, bool canStayCompact)
{
#if DUMP_PROPERTYMAP_STATS
    ++propertyTableStats->numRehashes;
#endif

    uintptr_t oldIndexVector = m_indexVector;
    bool oldIsCompact = oldIndexVector & isCompactFlag;
    unsigned oldIndexSize = m_indexSize;
    unsigned oldUsedCount = usedCount();
    size_t oldDataSize = dataSize(oldIsCompact, oldIndexSize);

    m_indexSize = sizeForCapacity(newCapacity);
    m_indexMask = m_indexSize - 1;
    m_keyCount = 0;
    m_deletedCount = 0;

    // Once table gets non-compact, we do not change it back to compact again.
    // This is because some of property offset can be larger than UINT8_MAX already.
    bool isCompact = canStayCompact && oldIsCompact && tableCapacity() < UINT8_MAX;
    m_indexVector = allocateZeroedIndexVector(isCompact, m_indexSize);
    withIndexVector([&](auto* vector) {
        auto* table = tableFromIndexVector(vector);
        withIndexVector(oldIndexVector, [&](const auto* oldVector) {
            const auto* oldCursor = tableFromIndexVector(oldVector, oldIndexSize);
            const auto* oldEnd = oldCursor + oldUsedCount;
            for (; oldCursor != oldEnd; ++oldCursor) {
                if (oldCursor->key() == PROPERTY_MAP_DELETED_ENTRY_KEY)
                    continue;
                ASSERT(canInsert(*oldCursor));
                reinsert(vector, table, *oldCursor);
            }
        });
    });
    destroyIndexVector(oldIndexVector);

    size_t newDataSize = dataSize(this->isCompact());
    if (oldDataSize < newDataSize)
        vm.heap.reportExtraMemoryAllocated(this, newDataSize - oldDataSize);
}

inline unsigned PropertyTable::tableCapacity() const { return m_indexSize >> 1; }

inline unsigned PropertyTable::deletedEntryIndex() const { return tableCapacity() + 1; }

template<typename T>
inline T* PropertyTable::skipDeletedEntries(T* valuePtr, T* endValuePtr)
{
    while (valuePtr < endValuePtr && valuePtr->key() == PROPERTY_MAP_DELETED_ENTRY_KEY)
        ++valuePtr;
    return valuePtr;
}

inline unsigned PropertyTable::usedCount() const
{
    // Total number of  used entries in the values array - by either valid entries, or deleted ones.
    return m_keyCount + m_deletedCount;
}

inline size_t PropertyTable::dataSize(bool isCompact, unsigned indexSize)
{
    if (isCompact)
        return indexSize * sizeof(uint8_t) + ((indexSize >> 1) + 1) * sizeof(CompactPropertyTableEntry);
    return indexSize * sizeof(uint32_t) + ((indexSize >> 1) + 1) * sizeof(PropertyTableEntry);
}

inline size_t PropertyTable::dataSize(bool isCompact)
{
    // The size in bytes of data needed for by the table.
    // Ensure that this function can be called concurrently.
    return dataSize(isCompact, m_indexSize);
}

ALWAYS_INLINE uintptr_t PropertyTable::allocateIndexVector(bool isCompact, unsigned indexSize)
{
    return std::bit_cast<uintptr_t>(PropertyTableMalloc::malloc(PropertyTable::dataSize(isCompact, indexSize))) | (isCompact ? isCompactFlag : 0);
}

ALWAYS_INLINE uintptr_t PropertyTable::allocateZeroedIndexVector(bool isCompact, unsigned indexSize)
{
    return std::bit_cast<uintptr_t>(PropertyTableMalloc::zeroedMalloc(PropertyTable::dataSize(isCompact, indexSize))) | (isCompact ? isCompactFlag : 0);
}

ALWAYS_INLINE void PropertyTable::destroyIndexVector(uintptr_t indexVector)
{
    PropertyTableMalloc::free(std::bit_cast<void*>(indexVector & indexVectorMask));
}

inline unsigned PropertyTable::sizeForCapacity(unsigned capacity)
{
    if (capacity < MinimumTableSize / 2)
        return MinimumTableSize;
    return nextPowerOf2(capacity + 1) * 2;
}

inline bool PropertyTable::canInsert(const ValueType& entry)
{
    if (usedCount() >= tableCapacity())
        return false;
    if (!isCompact())
        return true;
    return canFitInCompact(entry);
}

template<typename Functor>
inline void PropertyTable::forEachProperty(const Functor& functor) const
{
    withIndexVector([&](const auto* vector) {
        const auto* cursor = tableFromIndexVector(vector);
        const auto* end = tableEndFromIndexVector(vector);
        for (; cursor != end; ++cursor) {
            if (cursor->key() == PROPERTY_MAP_DELETED_ENTRY_KEY)
                continue;
            if (functor(*cursor) == IterationStatus::Done)
                return;
        }
    });
}

} // namespace JSC

WTF_ALLOW_UNSAFE_BUFFER_USAGE_END