1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
/*
* Copyright (C) 2024 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "ArgList.h"
#include <wtf/Int128.h>
#include <wtf/StdLibExtras.h>
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
namespace JSC {
static ALWAYS_INLINE bool coerceComparatorResultToBoolean(JSGlobalObject* globalObject, JSValue comparatorResult)
{
if (LIKELY(comparatorResult.isInt32()))
return comparatorResult.asInt32() < 0;
// See https://bugs.webkit.org/show_bug.cgi?id=47825 on boolean special-casing
if (comparatorResult.isBoolean())
return !comparatorResult.asBoolean();
return comparatorResult.toNumber(globalObject) < 0;
}
template<typename ElementType, typename Functor>
static ALWAYS_INLINE void arrayInsertionSort(VM& vm, std::span<ElementType> span, const Functor& comparator, size_t sortedHeader = 0)
{
auto scope = DECLARE_THROW_SCOPE(vm);
auto* array = span.data();
size_t length = span.size();
for (size_t i = sortedHeader + 1; i < length; ++i) {
auto value = array[i];
// [l, r)
size_t left = 0;
size_t right = i;
for (; left < right;) {
size_t m = left + (right - left) / 2;
auto target = array[m];
bool result = comparator(value, target);
RETURN_IF_EXCEPTION_WITH_TRAPS_DEFERRED(scope, void());
if (!result)
left = m + 1;
else
right = m;
}
ElementType t = value;
for (size_t j = left; j < i; ++j)
std::swap(array[j], t);
array[i] = t;
}
}
template<typename ElementType, typename Functor>
static ALWAYS_INLINE void mergePowersortRuns(VM& vm, std::span<ElementType> dst, std::span<const ElementType> src, size_t srcIndex1, size_t srcEnd1, size_t srcIndex2, size_t srcEnd2, const Functor& comparator)
{
auto scope = DECLARE_THROW_SCOPE(vm);
size_t left = srcIndex1;
size_t leftEnd = srcEnd1;
size_t right = srcIndex2;
size_t rightEnd = srcEnd2;
ASSERT(leftEnd <= right);
ASSERT(rightEnd <= src.size());
for (size_t dstIndex = left; dstIndex < rightEnd; ++dstIndex) {
if (right < rightEnd) {
if (left >= leftEnd) {
dst[dstIndex] = src[right++];
continue;
}
bool result = comparator(src[right], src[left]);
RETURN_IF_EXCEPTION_WITH_TRAPS_DEFERRED(scope, void());
if (result) {
dst[dstIndex] = src[right++];
continue;
}
}
dst[dstIndex] = src[left++];
}
}
// J. Ian Munro and Sebastian Wild. Nearly-Optimal Mergesorts: Fast, Practical Sorting Methods That
// Optimally Adapt to Existing Runs. In 26th Annual European Symposium on Algorithms (ESA 2018).
// Leibniz International Proceedings in Informatics (LIPIcs), Volume 112, pp. 63:1-63:16, Schloss
// Dagstuhl – Leibniz-Zentrum für Informatik (2018) https://doi.org/10.4230/LIPIcs.ESA.2018.63
struct SortedRun {
size_t m_begin;
size_t m_end;
};
template<typename ElementType, typename Functor, size_t forceRunLength = 64>
static ALWAYS_INLINE std::span<ElementType> arrayStableSort(VM& vm, std::span<ElementType> src, std::span<ElementType> dst, const Functor& comparator)
{
constexpr size_t extendRunCutoff = 8;
auto scope = DECLARE_THROW_SCOPE(vm);
const size_t numElements = src.size();
if (!numElements)
return src;
// If the array is small, Powersort probably isn't worth it. Just insertion sort.
if (numElements < extendRunCutoff) {
scope.release();
arrayInsertionSort(vm, src.subspan(0, src.size()), comparator);
return src;
}
// power takes in [left, middle-1] and [middle, right]
auto power = [](size_t left, size_t middle, size_t right, size_t n) -> unsigned {
UInt128 n1 = middle - left;
UInt128 n2 = right - middle + 1;
// a and b are 2*midpoints of the two ranges, so always within [0, 2n)
UInt128 a = left * 2 + n1;
UInt128 b = middle * 2 + n2;
// n <= 2^64, so n << 62 <= 2^126
// n << 62 must be <= 2^126, so a << 62 must be < 2^127. thus, we don't end up with overflow
a <<= 62;
b <<= 62;
// a is within [0, 2n), so a << 62 is within [0, 2^63 n). Thus, (when we calculate a / n, it must be within [0, 2^63)
UInt128 differingBits = (a / n) ^ (b / n);
ASSERT(!(differingBits >> 64));
return clz(static_cast<uint64_t>(differingBits));
};
auto to = dst;
auto from = src;
WTF::copyElements(to, spanConstCast<const ElementType>(from));
struct PowersortStackEntry {
SortedRun run;
unsigned power;
};
WTF::Vector<PowersortStackEntry, 64> powerstack;
// floor(lg(n)) + 1
powerstack.reserveCapacity(8 * sizeof(numElements) - WTF::clz(numElements));
SortedRun run1 { 0, 0 };
// ExtendRunRight(run1.start, n)
while (run1.m_end + 1 < numElements) {
bool result = comparator(from[run1.m_end + 1], from[run1.m_end]);
RETURN_IF_EXCEPTION_WITH_TRAPS_DEFERRED(scope, src);
if (result)
break;
++run1.m_end;
}
if (run1.m_end - run1.m_begin < extendRunCutoff) {
// If the run is too short, insertion sort a bit
auto size = std::min(forceRunLength, numElements - run1.m_begin);
arrayInsertionSort(vm, from.subspan(run1.m_begin, size), comparator, run1.m_end - run1.m_begin);
RETURN_IF_EXCEPTION_WITH_TRAPS_DEFERRED(scope, src);
run1.m_end = run1.m_begin + size - 1;
}
// See if we can extend the run any more.
while (run1.m_end + 1 < numElements) {
bool result = comparator(from[run1.m_end + 1], from[run1.m_end]);
RETURN_IF_EXCEPTION_WITH_TRAPS_DEFERRED(scope, src);
if (result)
break;
++run1.m_end;
}
while (run1.m_end + 1 < numElements) {
SortedRun run2 { run1.m_end + 1, run1.m_end + 1 };
// ExtendRunRight(run2.start, n)
while (run2.m_end + 1 < numElements) {
bool result = comparator(from[run2.m_end + 1], from[run2.m_end]);
RETURN_IF_EXCEPTION_WITH_TRAPS_DEFERRED(scope, src);
if (result)
break;
++run2.m_end;
}
if (run2.m_end - run2.m_begin < extendRunCutoff) {
// If the run is too short, insertion sort a bit
auto size = std::min(forceRunLength, numElements - run2.m_begin);
arrayInsertionSort(vm, from.subspan(run2.m_begin, size), comparator, run2.m_end - run2.m_begin);
RETURN_IF_EXCEPTION_WITH_TRAPS_DEFERRED(scope, src);
run2.m_end = run2.m_begin + size - 1;
}
// See if we can extend the run any more.
while (run2.m_end + 1 < numElements) {
bool result = comparator(from[run2.m_end + 1], from[run2.m_end]);
RETURN_IF_EXCEPTION_WITH_TRAPS_DEFERRED(scope, src);
if (result)
break;
++run2.m_end;
}
unsigned p = power(run1.m_begin, run2.m_begin, run2.m_end, numElements);
while (!powerstack.isEmpty() && powerstack.last().power > p) {
auto rangeToMerge = powerstack.takeLast().run;
ASSERT(rangeToMerge.m_end == run1.m_begin - 1);
mergePowersortRuns(vm, to, spanConstCast<const ElementType>(from), rangeToMerge.m_begin, rangeToMerge.m_end + 1, run1.m_begin, run1.m_end + 1, comparator);
RETURN_IF_EXCEPTION_WITH_TRAPS_DEFERRED(scope, src);
WTF::copyElements(from.subspan(rangeToMerge.m_begin, run1.m_end + 1 - rangeToMerge.m_begin), spanConstCast<const ElementType>(to).subspan(rangeToMerge.m_begin, run1.m_end + 1 - rangeToMerge.m_begin));
run1.m_begin = rangeToMerge.m_begin;
}
powerstack.append({ run1, p });
run1 = run2;
}
while (!powerstack.isEmpty()) {
auto rangeToMerge = powerstack.takeLast().run;
ASSERT(rangeToMerge.m_end == run1.m_begin - 1);
mergePowersortRuns(vm, to, spanConstCast<const ElementType>(from), rangeToMerge.m_begin, rangeToMerge.m_end + 1, run1.m_begin, run1.m_end + 1, comparator);
RETURN_IF_EXCEPTION_WITH_TRAPS_DEFERRED(scope, src);
WTF::copyElements(from.subspan(rangeToMerge.m_begin, run1.m_end + 1 - rangeToMerge.m_begin), spanConstCast<const ElementType>(to).subspan(rangeToMerge.m_begin, run1.m_end + 1 - rangeToMerge.m_begin));
run1.m_begin = rangeToMerge.m_begin;
}
return from.data() == src.data() ? src : dst;
}
} // namespace JSC
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
|