1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
|
/*
* Copyright (C) 2019-2024 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#if ENABLE(WEBASSEMBLY_BBQJIT)
#include "WasmCallingConvention.h"
#include "WasmCompilationContext.h"
#include "WasmFunctionParser.h"
#include "WasmLimits.h"
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
namespace JSC { namespace Wasm {
namespace BBQJITImpl {
class BBQJIT {
public:
using ErrorType = String;
using PartialResult = Expected<void, ErrorType>;
using Address = MacroAssembler::Address;
using BaseIndex = MacroAssembler::BaseIndex;
using Imm32 = MacroAssembler::Imm32;
using Imm64 = MacroAssembler::Imm64;
using TrustedImm32 = MacroAssembler::TrustedImm32;
using TrustedImm64 = MacroAssembler::TrustedImm64;
using TrustedImmPtr = MacroAssembler::TrustedImmPtr;
using RelationalCondition = MacroAssembler::RelationalCondition;
using ResultCondition = MacroAssembler::ResultCondition;
using DoubleCondition = MacroAssembler::DoubleCondition;
using StatusCondition = MacroAssembler::StatusCondition;
using Jump = MacroAssembler::Jump;
using JumpList = MacroAssembler::JumpList;
using DataLabelPtr = MacroAssembler::DataLabelPtr;
// Functions can have up to 1000000 instructions, so 32 bits is a sensible maximum number of stack items or locals.
using LocalOrTempIndex = uint32_t;
static constexpr unsigned LocalIndexBits = 21;
static_assert(maxFunctionLocals < 1 << LocalIndexBits);
static constexpr GPRReg wasmScratchGPR = GPRInfo::nonPreservedNonArgumentGPR0; // Scratch registers to hold temporaries in operations.
#if USE(JSVALUE32_64)
static constexpr GPRReg wasmScratchGPR2 = GPRInfo::nonPreservedNonArgumentGPR1;
#else
static constexpr GPRReg wasmScratchGPR2 = InvalidGPRReg;
#endif
static constexpr FPRReg wasmScratchFPR = FPRInfo::nonPreservedNonArgumentFPR0;
#if CPU(X86_64)
static constexpr GPRReg shiftRCX = X86Registers::ecx;
#else
static constexpr GPRReg shiftRCX = InvalidGPRReg;
#endif
#if USE(JSVALUE64)
static constexpr GPRReg wasmBaseMemoryPointer = GPRInfo::wasmBaseMemoryPointer;
static constexpr GPRReg wasmBoundsCheckingSizeRegister = GPRInfo::wasmBoundsCheckingSizeRegister;
#else
static constexpr GPRReg wasmBaseMemoryPointer = InvalidGPRReg;
static constexpr GPRReg wasmBoundsCheckingSizeRegister = InvalidGPRReg;
#endif
public:
struct Location {
enum Kind : uint8_t {
None = 0,
Stack = 1,
Gpr = 2,
Fpr = 3,
Global = 4,
StackArgument = 5,
Gpr2 = 6
};
Location()
: m_kind(None)
{ }
static Location none();
static Location fromStack(int32_t stackOffset);
static Location fromStackArgument(int32_t stackOffset);
static Location fromGPR(GPRReg gpr);
static Location fromGPR2(GPRReg hi, GPRReg lo);
static Location fromFPR(FPRReg fpr);
static Location fromGlobal(int32_t globalOffset);
static Location fromArgumentLocation(ArgumentLocation argLocation, TypeKind type);
bool isNone() const;
bool isGPR() const;
bool isGPR2() const;
bool isFPR() const;
bool isRegister() const;
bool isStack() const;
bool isStackArgument() const;
bool isGlobal() const;
bool isMemory() const;
int32_t asStackOffset() const;
Address asStackAddress() const;
int32_t asGlobalOffset() const;
Address asGlobalAddress() const;
int32_t asStackArgumentOffset() const;
Address asStackArgumentAddress() const;
Address asAddress() const;
GPRReg asGPR() const;
FPRReg asFPR() const;
GPRReg asGPRlo() const;
GPRReg asGPRhi() const;
void dump(PrintStream& out) const;
bool operator==(Location other) const;
Kind kind() const;
private:
union {
// It's useful to we be able to cram a location into a 4-byte space, so that
// we can store them efficiently in ControlData.
struct {
unsigned m_kind : 3;
int32_t m_offset : 29;
};
struct {
Kind m_padGpr;
GPRReg m_gpr;
};
struct {
Kind m_padFpr;
FPRReg m_fpr;
};
struct {
Kind m_padGpr2;
GPRReg m_gprhi, m_gprlo;
};
};
};
static_assert(sizeof(Location) == 4);
static bool isValidValueTypeKind(TypeKind kind);
static TypeKind pointerType();
static bool isFloatingPointType(TypeKind type);
static bool typeNeedsGPR2(TypeKind type);
public:
static uint32_t sizeOfType(TypeKind type);
static TypeKind toValueKind(TypeKind kind);
class Value {
public:
// Represents the location in which this value is stored.
enum Kind : uint8_t {
None = 0,
Const = 1,
Temp = 2,
Local = 3,
Pinned = 4 // Used if we need to represent a Location as a Value, mostly in operation calls
};
ALWAYS_INLINE bool isNone() const
{
return m_kind == None;
}
ALWAYS_INLINE bool isTemp() const
{
return m_kind == Temp;
}
ALWAYS_INLINE bool isLocal() const
{
return m_kind == Local;
}
ALWAYS_INLINE bool isPinned() const
{
return m_kind == Pinned;
}
ALWAYS_INLINE Kind kind() const
{
return m_kind;
}
ALWAYS_INLINE int32_t asI32() const
{
ASSERT(m_kind == Const);
return m_i32;
}
ALWAYS_INLINE int64_t asI64() const
{
ASSERT(m_kind == Const);
return m_i64;
}
ALWAYS_INLINE float asF32() const
{
ASSERT(m_kind == Const);
return m_f32;
}
ALWAYS_INLINE double asF64() const
{
ASSERT(m_kind == Const);
return m_f64;
}
ALWAYS_INLINE EncodedJSValue asRef() const
{
ASSERT(m_kind == Const);
return m_ref;
}
ALWAYS_INLINE LocalOrTempIndex asTemp() const
{
ASSERT(m_kind == Temp);
return m_index;
}
ALWAYS_INLINE LocalOrTempIndex asLocal() const
{
ASSERT(m_kind == Local);
return m_index;
}
ALWAYS_INLINE bool isConst() const
{
return m_kind == Const;
}
ALWAYS_INLINE Location asPinned() const
{
ASSERT(m_kind == Pinned);
return m_pinned;
}
ALWAYS_INLINE static Value fromI32(int32_t immediate)
{
Value val;
val.m_kind = Const;
val.m_type = TypeKind::I32;
val.m_i32 = immediate;
return val;
}
ALWAYS_INLINE static Value fromI64(int64_t immediate)
{
Value val;
val.m_kind = Const;
val.m_type = TypeKind::I64;
val.m_i64 = immediate;
return val;
}
ALWAYS_INLINE static Value fromF32(float immediate)
{
Value val;
val.m_kind = Const;
val.m_type = TypeKind::F32;
val.m_f32 = immediate;
return val;
}
ALWAYS_INLINE static Value fromF64(double immediate)
{
Value val;
val.m_kind = Const;
val.m_type = TypeKind::F64;
val.m_f64 = immediate;
return val;
}
ALWAYS_INLINE static Value fromRef(TypeKind refType, EncodedJSValue ref)
{
Value val;
val.m_kind = Const;
val.m_type = toValueKind(refType);
val.m_ref = ref;
return val;
}
ALWAYS_INLINE static Value fromTemp(TypeKind type, LocalOrTempIndex temp)
{
Value val;
val.m_kind = Temp;
val.m_type = toValueKind(type);
val.m_index = temp;
return val;
}
ALWAYS_INLINE static Value fromLocal(TypeKind type, LocalOrTempIndex local)
{
Value val;
val.m_kind = Local;
val.m_type = toValueKind(type);
val.m_index = local;
return val;
}
ALWAYS_INLINE static Value pinned(TypeKind type, Location location)
{
Value val;
val.m_kind = Pinned;
val.m_type = toValueKind(type);
val.m_pinned = location;
return val;
}
ALWAYS_INLINE static Value none()
{
Value val;
val.m_kind = None;
return val;
}
ALWAYS_INLINE uint32_t size() const
{
return sizeOfType(m_type);
}
ALWAYS_INLINE bool isFloat() const
{
return isFloatingPointType(m_type);
}
ALWAYS_INLINE TypeKind type() const
{
ASSERT(isValidValueTypeKind(m_type));
return m_type;
}
ALWAYS_INLINE Value()
: m_kind(None)
{ }
int32_t asI64hi() const;
int32_t asI64lo() const;
void dump(PrintStream& out) const;
private:
union {
int32_t m_i32;
struct {
int32_t lo, hi;
} m_i32_pair;
int64_t m_i64;
float m_f32;
double m_f64;
LocalOrTempIndex m_index;
Location m_pinned;
EncodedJSValue m_ref;
};
Kind m_kind;
TypeKind m_type;
};
public:
struct RegisterBinding {
enum Kind : uint8_t {
None = 0,
Local = 1,
Temp = 2,
Scratch = 3, // Denotes a register bound for use as a scratch, not as a local or temp's location.
};
union {
uint32_t m_uintValue;
struct {
TypeKind m_type;
unsigned m_kind : 3;
unsigned m_index : LocalIndexBits;
};
};
RegisterBinding()
: m_uintValue(0)
{ }
RegisterBinding(uint32_t uintValue)
: m_uintValue(uintValue)
{ }
static RegisterBinding fromValue(Value value);
static RegisterBinding none();
static RegisterBinding scratch();
Value toValue() const;
bool isNone() const;
bool isValid() const;
bool isScratch() const;
bool operator==(RegisterBinding other) const;
void dump(PrintStream& out) const;
unsigned hash() const;
uint32_t encode() const;
};
public:
struct ControlData {
static bool isIf(const ControlData& control) { return control.blockType() == BlockType::If; }
static bool isTry(const ControlData& control) { return control.blockType() == BlockType::Try; }
static bool isAnyCatch(const ControlData& control) { return control.blockType() == BlockType::Catch; }
static bool isCatch(const ControlData& control) { return isAnyCatch(control) && control.catchKind() == CatchKind::Catch; }
static bool isTopLevel(const ControlData& control) { return control.blockType() == BlockType::TopLevel; }
static bool isLoop(const ControlData& control) { return control.blockType() == BlockType::Loop; }
static bool isBlock(const ControlData& control) { return control.blockType() == BlockType::Block; }
ControlData()
: m_enclosedHeight(0)
{ }
ControlData(BBQJIT& generator, BlockType, BlockSignature, LocalOrTempIndex enclosedHeight, RegisterSet liveScratchGPRs, RegisterSet liveScratchFPRs);
// Re-use the argument layout of another block (eg. else will re-use the argument/result locations from if)
enum BranchCallingConventionReuseTag { UseBlockCallingConventionOfOtherBranch };
ControlData(BranchCallingConventionReuseTag, BlockType blockType, ControlData& otherBranch)
: m_signature(otherBranch.m_signature)
, m_blockType(blockType)
, m_argumentLocations(otherBranch.m_argumentLocations)
, m_resultLocations(otherBranch.m_resultLocations)
, m_enclosedHeight(otherBranch.m_enclosedHeight)
{
}
// This function is intentionally not using implicitSlots since arguments and results should not include implicit slot.
Location allocateArgumentOrResult(BBQJIT& generator, TypeKind type, unsigned i, RegisterSet& remainingGPRs, RegisterSet& remainingFPRs);
template<typename Stack>
void flushAtBlockBoundary(BBQJIT& generator, unsigned targetArity, Stack& expressionStack, bool endOfWasmBlock)
{
// First, we flush all locals that were allocated outside of their designated slots in this block.
for (unsigned i = 0; i < expressionStack.size(); ++i) {
if (expressionStack[i].value().isLocal())
m_touchedLocals.add(expressionStack[i].value().asLocal());
}
for (LocalOrTempIndex touchedLocal : m_touchedLocals) {
Value value = Value::fromLocal(generator.m_localTypes[touchedLocal], touchedLocal);
if (generator.locationOf(value).isRegister())
generator.flushValue(value);
}
// If we are a catch block, we need to flush the exception value, since it's not represented on the expression stack.
if (isAnyCatch(*this)) {
Value value = generator.exception(*this);
if (!endOfWasmBlock)
generator.flushValue(value);
else
generator.consume(value);
}
for (unsigned i = 0; i < expressionStack.size(); ++i) {
Value& value = expressionStack[i].value();
int resultIndex = static_cast<int>(i) - static_cast<int>(expressionStack.size() - targetArity);
// Next, we turn all constants into temporaries, so they can be given persistent slots on the stack.
// If this is the end of the enclosing wasm block, we know we won't need them again, so this can be skipped.
if (value.isConst() && (resultIndex < 0 || !endOfWasmBlock)) {
Value constant = value;
value = Value::fromTemp(value.type(), static_cast<LocalOrTempIndex>(enclosedHeight() + implicitSlots() + i));
Location slot = generator.locationOf(value);
generator.emitMoveConst(constant, slot);
}
// Next, we flush or consume all the temp values on the stack.
if (value.isTemp()) {
if (!endOfWasmBlock)
generator.flushValue(value);
else if (resultIndex < 0)
generator.consume(value);
}
}
}
template<typename Stack, size_t N>
bool addExit(BBQJIT& generator, const Vector<Location, N>& targetLocations, Stack& expressionStack)
{
unsigned targetArity = targetLocations.size();
if (!targetArity)
return false;
// We move all passed temporaries to the successor, in its argument slots.
unsigned offset = expressionStack.size() - targetArity;
Vector<Value, 8> resultValues;
Vector<Location, 8> resultLocations;
for (unsigned i = 0; i < targetArity; ++i) {
resultValues.append(expressionStack[i + offset].value());
resultLocations.append(targetLocations[i]);
}
generator.emitShuffle(resultValues, resultLocations);
return true;
}
template<typename Stack>
void finalizeBlock(BBQJIT& generator, unsigned targetArity, Stack& expressionStack, bool preserveArguments)
{
// Finally, as we are leaving the block, we convert any constants into temporaries on the stack, so we don't blindly assume they have
// the same constant values in the successor.
unsigned offset = expressionStack.size() - targetArity;
for (unsigned i = 0; i < targetArity; ++i) {
Value& value = expressionStack[i + offset].value();
if (value.isConst()) {
Value constant = value;
value = Value::fromTemp(value.type(), static_cast<LocalOrTempIndex>(enclosedHeight() + implicitSlots() + i + offset));
if (preserveArguments)
generator.emitMoveConst(constant, generator.canonicalSlot(value));
} else if (value.isTemp()) {
if (preserveArguments)
generator.flushValue(value);
else
generator.consume(value);
}
}
}
template<typename Stack>
void flushAndSingleExit(BBQJIT& generator, ControlData& target, Stack& expressionStack, bool isChildBlock, bool endOfWasmBlock, bool unreachable = false)
{
// Helper to simplify the common case where we don't need to handle multiple exits.
const auto& targetLocations = isChildBlock ? target.argumentLocations() : target.targetLocations();
flushAtBlockBoundary(generator, targetLocations.size(), expressionStack, endOfWasmBlock);
if (!unreachable)
addExit(generator, targetLocations, expressionStack);
finalizeBlock(generator, targetLocations.size(), expressionStack, false);
}
template<typename Stack>
void startBlock(BBQJIT& generator, Stack& expressionStack)
{
ASSERT(expressionStack.size() >= m_argumentLocations.size());
for (unsigned i = 0; i < m_argumentLocations.size(); ++i) {
ASSERT(!expressionStack[i + expressionStack.size() - m_argumentLocations.size()].value().isConst());
generator.bind(expressionStack[i].value(), m_argumentLocations[i]);
}
}
template<typename Stack>
void resumeBlock(BBQJIT& generator, const ControlData& predecessor, Stack& expressionStack)
{
ASSERT(expressionStack.size() >= predecessor.resultLocations().size());
for (unsigned i = 0; i < predecessor.resultLocations().size(); ++i) {
unsigned offset = expressionStack.size() - predecessor.resultLocations().size();
// Intentionally not using implicitSlots since results should not include implicit slot.
expressionStack[i + offset].value() = Value::fromTemp(expressionStack[i + offset].type().kind, predecessor.enclosedHeight() + i);
generator.bind(expressionStack[i + offset].value(), predecessor.resultLocations()[i]);
}
}
void convertIfToBlock();
void convertLoopToBlock();
void addBranch(Jump jump);
void addLabel(Box<CCallHelpers::Label>&& label);
void delegateJumpsTo(ControlData& delegateTarget);
void linkJumps(MacroAssembler::AbstractMacroAssemblerType* masm);
void linkJumpsTo(MacroAssembler::Label label, MacroAssembler::AbstractMacroAssemblerType* masm);
void linkIfBranch(MacroAssembler::AbstractMacroAssemblerType* masm);
void dump(PrintStream& out) const;
LocalOrTempIndex enclosedHeight() const;
unsigned implicitSlots() const;
const Vector<Location, 2>& targetLocations() const;
const Vector<Location, 2>& argumentLocations() const;
const Vector<Location, 2>& resultLocations() const;
BlockType blockType() const;
BlockSignature signature() const;
FunctionArgCount branchTargetArity() const;
Type branchTargetType(unsigned i) const;
Type argumentType(unsigned i) const;
CatchKind catchKind() const;
void setCatchKind(CatchKind catchKind);
unsigned tryStart() const;
unsigned tryEnd() const;
unsigned tryCatchDepth() const;
void setTryInfo(unsigned tryStart, unsigned tryEnd, unsigned tryCatchDepth);
struct TryTableTarget {
CatchKind type;
uint32_t tag;
const TypeDefinition* exceptionSignature;
ControlRef target;
};
using TargetList = Vector<TryTableTarget>;
void setTryTableTargets(TargetList&&);
void setIfBranch(MacroAssembler::Jump branch);
void setLoopLabel(MacroAssembler::Label label);
const MacroAssembler::Label& loopLabel() const;
void touch(LocalOrTempIndex local);
private:
friend class BBQJIT;
void fillLabels(CCallHelpers::Label label);
BlockSignature m_signature;
BlockType m_blockType;
CatchKind m_catchKind { CatchKind::Catch };
Vector<Location, 2> m_argumentLocations; // List of input locations to write values into when entering this block.
Vector<Location, 2> m_resultLocations; // List of result locations to write values into when exiting this block.
JumpList m_branchList; // List of branch control info for branches targeting the end of this block.
Vector<Box<CCallHelpers::Label>> m_labels; // List of labels filled.
MacroAssembler::Label m_loopLabel;
MacroAssembler::Jump m_ifBranch;
LocalOrTempIndex m_enclosedHeight; // Height of enclosed expression stack, used as the base for all temporary locations.
BitVector m_touchedLocals; // Number of locals allocated to registers in this block.
unsigned m_tryStart { 0 };
unsigned m_tryEnd { 0 };
unsigned m_tryCatchDepth { 0 };
Vector<TryTableTarget, 8> m_tryTableTargets;
};
friend struct ControlData;
using ExpressionType = Value;
using ControlType = ControlData;
using CallType = CallLinkInfo::CallType;
using ResultList = Vector<ExpressionType, 8>;
using ArgumentList = Vector<ExpressionType, 8>;
using ControlEntry = typename FunctionParserTypes<ControlType, ExpressionType, CallType>::ControlEntry;
using TypedExpression = typename FunctionParserTypes<ControlType, ExpressionType, CallType>::TypedExpression;
using Stack = FunctionParser<BBQJIT>::Stack;
using ControlStack = FunctionParser<BBQJIT>::ControlStack;
using CatchHandler = FunctionParser<BBQJIT>::CatchHandler;
unsigned stackCheckSize() const { return alignedFrameSize(m_maxCalleeStackSize + m_frameSize); }
private:
unsigned m_loggingIndent = 0;
template<typename... Args>
void logInstructionData(bool first, const Value& value, const Location& location, const Args&... args)
{
if (!first)
dataLog(", ");
dataLog(value);
if (location.kind() != Location::None)
dataLog(":", location);
logInstructionData(false, args...);
}
template<typename... Args>
void logInstructionData(bool first, const Value& value, const Args&... args)
{
if (!first)
dataLog(", ");
dataLog(value);
if (!value.isConst() && !value.isPinned())
dataLog(":", locationOf(value));
logInstructionData(false, args...);
}
template<size_t N, typename OverflowHandler, typename... Args>
void logInstructionData(bool first, const Vector<TypedExpression, N, OverflowHandler>& expressions, const Args&... args)
{
for (const TypedExpression& expression : expressions) {
if (!first)
dataLog(", ");
const Value& value = expression.value();
dataLog(value);
if (!value.isConst() && !value.isPinned())
dataLog(":", locationOf(value));
first = false;
}
logInstructionData(false, args...);
}
template<size_t N, typename OverflowHandler, typename... Args>
void logInstructionData(bool first, const Vector<Value, N, OverflowHandler>& values, const Args&... args)
{
for (const Value& value : values) {
if (!first)
dataLog(", ");
dataLog(value);
if (!value.isConst() && !value.isPinned())
dataLog(":", locationOf(value));
first = false;
}
logInstructionData(false, args...);
}
template<size_t N, typename OverflowHandler, typename... Args>
void logInstructionData(bool first, const Vector<Location, N, OverflowHandler>& values, const Args&... args)
{
for (const Location& value : values) {
if (!first)
dataLog(", ");
dataLog(value);
first = false;
}
logInstructionData(false, args...);
}
inline void logInstructionData(bool)
{
dataLogLn();
}
template<typename... Data>
ALWAYS_INLINE void logInstruction(const char* opcode, SIMDLaneOperation op, const Data&... data)
{
dataLog("BBQ\t");
for (unsigned i = 0; i < m_loggingIndent; i ++)
dataLog(" ");
dataLog(opcode, SIMDLaneOperationDump(op), " ");
logInstructionData(true, data...);
}
template<typename... Data>
ALWAYS_INLINE void logInstruction(const char* opcode, const Data&... data)
{
dataLog("BBQ\t");
for (unsigned i = 0; i < m_loggingIndent; i ++)
dataLog(" ");
dataLog(opcode, " ");
logInstructionData(true, data...);
}
template<typename T>
struct Result {
T value;
Result(const T& value_in)
: value(value_in)
{ }
};
template<typename... Args>
void logInstructionData(bool first, const char* const& literal, const Args&... args)
{
if (!first)
dataLog(" ");
dataLog(literal);
if (!std::strcmp(literal, "=> "))
logInstructionData(true, args...);
else
logInstructionData(false, args...);
}
template<typename T, typename... Args>
void logInstructionData(bool first, const Result<T>& result, const Args&... args)
{
if (!first)
dataLog(" ");
dataLog("=> ");
logInstructionData(true, result.value, args...);
}
template<typename T, typename... Args>
void logInstructionData(bool first, const T& t, const Args&... args)
{
if (!first)
dataLog(", ");
dataLog(t);
logInstructionData(false, args...);
}
#define RESULT(...) Result { __VA_ARGS__ }
#define LOG_INSTRUCTION(...) do { if (UNLIKELY(Options::verboseBBQJITInstructions())) { logInstruction(__VA_ARGS__); } } while (false)
#define LOG_INDENT() do { if (UNLIKELY(Options::verboseBBQJITInstructions())) { m_loggingIndent += 2; } } while (false);
#define LOG_DEDENT() do { if (UNLIKELY(Options::verboseBBQJITInstructions())) { m_loggingIndent -= 2; } } while (false);
public:
// FIXME: Support fused branch compare on 32-bit platforms.
static constexpr bool shouldFuseBranchCompare = is64Bit();
static constexpr bool tierSupportsSIMD = true;
static constexpr bool validateFunctionBodySize = true;
BBQJIT(CCallHelpers& jit, const TypeDefinition& signature, BBQCallee& callee, const FunctionData& function, FunctionCodeIndex functionIndex, const ModuleInformation& info, Vector<UnlinkedWasmToWasmCall>& unlinkedWasmToWasmCalls, MemoryMode mode, InternalFunction* compilation, std::optional<bool> hasExceptionHandlers, unsigned loopIndexForOSREntry);
ALWAYS_INLINE static Value emptyExpression()
{
return Value::none();
}
void setParser(FunctionParser<BBQJIT>* parser);
bool addArguments(const TypeDefinition& signature);
Value addConstant(Type type, uint64_t value);
PartialResult addDrop(Value value);
PartialResult addLocal(Type type, uint32_t numberOfLocals);
Value instanceValue();
// Tables
PartialResult WARN_UNUSED_RETURN addTableGet(unsigned tableIndex, Value index, Value& result);
PartialResult WARN_UNUSED_RETURN addTableSet(unsigned tableIndex, Value index, Value value);
PartialResult WARN_UNUSED_RETURN addTableInit(unsigned elementIndex, unsigned tableIndex, ExpressionType dstOffset, ExpressionType srcOffset, ExpressionType length);
PartialResult WARN_UNUSED_RETURN addElemDrop(unsigned elementIndex);
PartialResult WARN_UNUSED_RETURN addTableSize(unsigned tableIndex, Value& result);
PartialResult WARN_UNUSED_RETURN addTableGrow(unsigned tableIndex, Value fill, Value delta, Value& result);
PartialResult WARN_UNUSED_RETURN addTableFill(unsigned tableIndex, Value offset, Value fill, Value count);
PartialResult WARN_UNUSED_RETURN addTableCopy(unsigned dstTableIndex, unsigned srcTableIndex, Value dstOffset, Value srcOffset, Value length);
// Locals
PartialResult WARN_UNUSED_RETURN getLocal(uint32_t localIndex, Value& result);
PartialResult WARN_UNUSED_RETURN setLocal(uint32_t localIndex, Value value);
PartialResult WARN_UNUSED_RETURN teeLocal(uint32_t localIndex, Value, Value& result);
// Globals
Value topValue(TypeKind type);
Value exception(const ControlData& control);
PartialResult WARN_UNUSED_RETURN getGlobal(uint32_t index, Value& result);
void emitWriteBarrier(GPRReg cellGPR);
PartialResult WARN_UNUSED_RETURN setGlobal(uint32_t index, Value value);
// Memory
inline Location emitCheckAndPreparePointer(Value pointer, uint32_t uoffset, uint32_t sizeOfOperation)
{
ScratchScope<1, 0> scratches(*this);
Location pointerLocation;
if (pointer.isConst()) {
pointerLocation = Location::fromGPR(scratches.gpr(0));
emitMoveConst(pointer, pointerLocation);
} else
pointerLocation = loadIfNecessary(pointer);
ASSERT(pointerLocation.isGPR());
#if USE(JSVALUE32_64)
ScratchScope<2, 0> globals(*this);
GPRReg wasmBaseMemoryPointer = globals.gpr(0);
GPRReg wasmBoundsCheckingSizeRegister = globals.gpr(1);
loadWebAssemblyGlobalState(wasmBaseMemoryPointer, wasmBoundsCheckingSizeRegister);
#endif
uint64_t boundary = static_cast<uint64_t>(sizeOfOperation) + uoffset - 1;
switch (m_mode) {
case MemoryMode::BoundsChecking: {
// We're not using signal handling only when the memory is not shared.
// Regardless of signaling, we must check that no memory access exceeds the current memory size.
m_jit.zeroExtend32ToWord(pointerLocation.asGPR(), wasmScratchGPR);
if (boundary)
m_jit.addPtr(TrustedImmPtr(boundary), wasmScratchGPR);
throwExceptionIf(ExceptionType::OutOfBoundsMemoryAccess, m_jit.branchPtr(RelationalCondition::AboveOrEqual, wasmScratchGPR, wasmBoundsCheckingSizeRegister));
break;
}
case MemoryMode::Signaling: {
// We've virtually mapped 4GiB+redzone for this memory. Only the user-allocated pages are addressable, contiguously in range [0, current],
// and everything above is mapped PROT_NONE. We don't need to perform any explicit bounds check in the 4GiB range because WebAssembly register
// memory accesses are 32-bit. However WebAssembly register + offset accesses perform the addition in 64-bit which can push an access above
// the 32-bit limit (the offset is unsigned 32-bit). The redzone will catch most small offsets, and we'll explicitly bounds check any
// register + large offset access. We don't think this will be generated frequently.
//
// We could check that register + large offset doesn't exceed 4GiB+redzone since that's technically the limit we need to avoid overflowing the
// PROT_NONE region, but it's better if we use a smaller immediate because it can codegens better. We know that anything equal to or greater
// than the declared 'maximum' will trap, so we can compare against that number. If there was no declared 'maximum' then we still know that
// any access equal to or greater than 4GiB will trap, no need to add the redzone.
if (uoffset >= Memory::fastMappedRedzoneBytes()) {
uint64_t maximum = m_info.memory.maximum() ? m_info.memory.maximum().bytes() : std::numeric_limits<uint32_t>::max();
m_jit.zeroExtend32ToWord(pointerLocation.asGPR(), wasmScratchGPR);
if (boundary)
m_jit.addPtr(TrustedImmPtr(boundary), wasmScratchGPR);
throwExceptionIf(ExceptionType::OutOfBoundsMemoryAccess, m_jit.branchPtr(RelationalCondition::AboveOrEqual, wasmScratchGPR, TrustedImmPtr(static_cast<int64_t>(maximum))));
}
break;
}
}
#if CPU(ARM64)
m_jit.addZeroExtend64(wasmBaseMemoryPointer, pointerLocation.asGPR(), wasmScratchGPR);
#else
m_jit.zeroExtend32ToWord(pointerLocation.asGPR(), wasmScratchGPR);
m_jit.addPtr(wasmBaseMemoryPointer, wasmScratchGPR);
#endif
consume(pointer);
return Location::fromGPR(wasmScratchGPR);
}
template<typename Functor>
auto emitCheckAndPrepareAndMaterializePointerApply(Value pointer, uint32_t uoffset, uint32_t sizeOfOperation, Functor&& functor) -> decltype(auto);
static inline uint32_t sizeOfLoadOp(LoadOpType op)
{
switch (op) {
case LoadOpType::I32Load8S:
case LoadOpType::I32Load8U:
case LoadOpType::I64Load8S:
case LoadOpType::I64Load8U:
return 1;
case LoadOpType::I32Load16S:
case LoadOpType::I64Load16S:
case LoadOpType::I32Load16U:
case LoadOpType::I64Load16U:
return 2;
case LoadOpType::I32Load:
case LoadOpType::I64Load32S:
case LoadOpType::I64Load32U:
case LoadOpType::F32Load:
return 4;
case LoadOpType::I64Load:
case LoadOpType::F64Load:
return 8;
}
RELEASE_ASSERT_NOT_REACHED();
}
static inline TypeKind typeOfLoadOp(LoadOpType op)
{
switch (op) {
case LoadOpType::I32Load8S:
case LoadOpType::I32Load8U:
case LoadOpType::I32Load16S:
case LoadOpType::I32Load16U:
case LoadOpType::I32Load:
return TypeKind::I32;
case LoadOpType::I64Load8S:
case LoadOpType::I64Load8U:
case LoadOpType::I64Load16S:
case LoadOpType::I64Load16U:
case LoadOpType::I64Load32S:
case LoadOpType::I64Load32U:
case LoadOpType::I64Load:
return TypeKind::I64;
case LoadOpType::F32Load:
return TypeKind::F32;
case LoadOpType::F64Load:
return TypeKind::F64;
}
RELEASE_ASSERT_NOT_REACHED();
}
Address materializePointer(Location pointerLocation, uint32_t uoffset);
constexpr static const char* LOAD_OP_NAMES[14] = {
"I32Load", "I64Load", "F32Load", "F64Load",
"I32Load8S", "I32Load8U", "I32Load16S", "I32Load16U",
"I64Load8S", "I64Load8U", "I64Load16S", "I64Load16U", "I64Load32S", "I64Load32U"
};
PartialResult WARN_UNUSED_RETURN load(LoadOpType loadOp, Value pointer, Value& result, uint32_t uoffset);
inline uint32_t sizeOfStoreOp(StoreOpType op)
{
switch (op) {
case StoreOpType::I32Store8:
case StoreOpType::I64Store8:
return 1;
case StoreOpType::I32Store16:
case StoreOpType::I64Store16:
return 2;
case StoreOpType::I32Store:
case StoreOpType::I64Store32:
case StoreOpType::F32Store:
return 4;
case StoreOpType::I64Store:
case StoreOpType::F64Store:
return 8;
}
RELEASE_ASSERT_NOT_REACHED();
}
constexpr static const char* STORE_OP_NAMES[9] = {
"I32Store", "I64Store", "F32Store", "F64Store",
"I32Store8", "I32Store16",
"I64Store8", "I64Store16", "I64Store32",
};
PartialResult WARN_UNUSED_RETURN store(StoreOpType storeOp, Value pointer, Value value, uint32_t uoffset);
PartialResult WARN_UNUSED_RETURN addGrowMemory(Value delta, Value& result);
PartialResult WARN_UNUSED_RETURN addCurrentMemory(Value& result);
PartialResult WARN_UNUSED_RETURN addMemoryFill(Value dstAddress, Value targetValue, Value count);
PartialResult WARN_UNUSED_RETURN addMemoryCopy(Value dstAddress, Value srcAddress, Value count);
PartialResult WARN_UNUSED_RETURN addMemoryInit(unsigned dataSegmentIndex, Value dstAddress, Value srcAddress, Value length);
PartialResult WARN_UNUSED_RETURN addDataDrop(unsigned dataSegmentIndex);
// Atomics
static inline Width accessWidth(ExtAtomicOpType op)
{
return static_cast<Width>(memoryLog2Alignment(op));
}
static inline uint32_t sizeOfAtomicOpMemoryAccess(ExtAtomicOpType op)
{
return bytesForWidth(accessWidth(op));
}
void emitSanitizeAtomicResult(ExtAtomicOpType op, TypeKind resultType, GPRReg source, GPRReg dest);
void emitSanitizeAtomicResult(ExtAtomicOpType op, TypeKind resultType, GPRReg result);
void emitSanitizeAtomicResult(ExtAtomicOpType op, TypeKind resultType, Location source, Location dest);
void emitSanitizeAtomicOperand(ExtAtomicOpType op, TypeKind operandType, Location source, Location dest);
Location emitMaterializeAtomicOperand(Value value);
template<typename Functor>
void emitAtomicOpGeneric(ExtAtomicOpType op, Address address, GPRReg oldGPR, GPRReg scratchGPR, const Functor& functor);
template<typename Functor>
void emitAtomicOpGeneric(ExtAtomicOpType op, Address address, Location old, Location cur, const Functor& functor);
Value WARN_UNUSED_RETURN emitAtomicLoadOp(ExtAtomicOpType loadOp, Type valueType, Location pointer, uint32_t uoffset);
PartialResult WARN_UNUSED_RETURN atomicLoad(ExtAtomicOpType loadOp, Type valueType, ExpressionType pointer, ExpressionType& result, uint32_t uoffset);
void emitAtomicStoreOp(ExtAtomicOpType storeOp, Type, Location pointer, Value value, uint32_t uoffset);
PartialResult WARN_UNUSED_RETURN atomicStore(ExtAtomicOpType storeOp, Type valueType, ExpressionType pointer, ExpressionType value, uint32_t uoffset);
Value emitAtomicBinaryRMWOp(ExtAtomicOpType op, Type valueType, Location pointer, Value value, uint32_t uoffset);
PartialResult WARN_UNUSED_RETURN atomicBinaryRMW(ExtAtomicOpType op, Type valueType, ExpressionType pointer, ExpressionType value, ExpressionType& result, uint32_t uoffset);
Value WARN_UNUSED_RETURN emitAtomicCompareExchange(ExtAtomicOpType op, Type, Location pointer, Value expected, Value value, uint32_t uoffset);
PartialResult WARN_UNUSED_RETURN atomicCompareExchange(ExtAtomicOpType op, Type valueType, ExpressionType pointer, ExpressionType expected, ExpressionType value, ExpressionType& result, uint32_t uoffset);
PartialResult WARN_UNUSED_RETURN atomicWait(ExtAtomicOpType op, ExpressionType pointer, ExpressionType value, ExpressionType timeout, ExpressionType& result, uint32_t uoffset);
PartialResult WARN_UNUSED_RETURN atomicNotify(ExtAtomicOpType op, ExpressionType pointer, ExpressionType count, ExpressionType& result, uint32_t uoffset);
PartialResult WARN_UNUSED_RETURN atomicFence(ExtAtomicOpType, uint8_t);
// Saturated truncation.
struct FloatingPointRange {
Value min, max;
bool closedLowerEndpoint;
};
enum class TruncationKind {
I32TruncF32S,
I32TruncF32U,
I64TruncF32S,
I64TruncF32U,
I32TruncF64S,
I32TruncF64U,
I64TruncF64S,
I64TruncF64U
};
TruncationKind truncationKind(OpType truncationOp);
TruncationKind truncationKind(Ext1OpType truncationOp);
FloatingPointRange lookupTruncationRange(TruncationKind truncationKind);
void truncInBounds(TruncationKind truncationKind, Location operandLocation, Location resultLocation, FPRReg scratch1FPR, FPRReg scratch2FPR);
void truncInBounds(TruncationKind truncationKind, Location operandLocation, Value& result, Location resultLocation);
PartialResult WARN_UNUSED_RETURN truncTrapping(OpType truncationOp, Value operand, Value& result, Type returnType, Type operandType);
PartialResult WARN_UNUSED_RETURN truncSaturated(Ext1OpType truncationOp, Value operand, Value& result, Type returnType, Type operandType);
// GC
PartialResult WARN_UNUSED_RETURN addRefI31(ExpressionType value, ExpressionType& result);
PartialResult WARN_UNUSED_RETURN addI31GetS(ExpressionType value, ExpressionType& result);
PartialResult WARN_UNUSED_RETURN addI31GetU(ExpressionType value, ExpressionType& result);
const Ref<TypeDefinition> getTypeDefinition(uint32_t typeIndex);
// Given a type index, verify that it's an array type and return its expansion
const ArrayType* getArrayTypeDefinition(uint32_t typeIndex);
// Given a type index for an array signature, look it up, expand it and
// return the element type
StorageType getArrayElementType(uint32_t typeIndex);
// This will replace the existing value with a new value. Note that if this is an F32 then the top bits may be garbage but that's ok for our current usage.
Value marshallToI64(Value value);
PartialResult WARN_UNUSED_RETURN addArrayNew(uint32_t typeIndex, ExpressionType size, ExpressionType initValue, ExpressionType& result);
PartialResult WARN_UNUSED_RETURN addArrayNewDefault(uint32_t typeIndex, ExpressionType size, ExpressionType& result);
using ArraySegmentOperation = EncodedJSValue SYSV_ABI (&)(JSC::JSWebAssemblyInstance*, uint32_t, uint32_t, uint32_t, uint32_t);
void pushArrayNewFromSegment(ArraySegmentOperation operation, uint32_t typeIndex, uint32_t segmentIndex, ExpressionType arraySize, ExpressionType offset, ExceptionType exceptionType, ExpressionType& result);
PartialResult WARN_UNUSED_RETURN addArrayNewData(uint32_t typeIndex, uint32_t dataIndex, ExpressionType arraySize, ExpressionType offset, ExpressionType& result);
PartialResult WARN_UNUSED_RETURN addArrayNewElem(uint32_t typeIndex, uint32_t elemSegmentIndex, ExpressionType arraySize, ExpressionType offset, ExpressionType& result);
void emitArraySetUnchecked(uint32_t typeIndex, Value arrayref, Value index, Value value);
PartialResult WARN_UNUSED_RETURN addArrayNewFixed(uint32_t typeIndex, ArgumentList& args, ExpressionType& result);
PartialResult WARN_UNUSED_RETURN addArrayGet(ExtGCOpType arrayGetKind, uint32_t typeIndex, ExpressionType arrayref, ExpressionType index, ExpressionType& result);
PartialResult WARN_UNUSED_RETURN addArraySet(uint32_t typeIndex, ExpressionType arrayref, ExpressionType index, ExpressionType value);
PartialResult WARN_UNUSED_RETURN addArrayLen(ExpressionType arrayref, ExpressionType& result);
PartialResult WARN_UNUSED_RETURN addArrayFill(uint32_t typeIndex, ExpressionType arrayref, ExpressionType offset, ExpressionType value, ExpressionType size);
PartialResult WARN_UNUSED_RETURN addArrayCopy(uint32_t dstTypeIndex, ExpressionType dst, ExpressionType dstOffset, uint32_t srcTypeIndex, ExpressionType src, ExpressionType srcOffset, ExpressionType size);
PartialResult WARN_UNUSED_RETURN addArrayInitElem(uint32_t dstTypeIndex, ExpressionType dst, ExpressionType dstOffset, uint32_t srcElementIndex, ExpressionType srcOffset, ExpressionType size);
PartialResult WARN_UNUSED_RETURN addArrayInitData(uint32_t dstTypeIndex, ExpressionType dst, ExpressionType dstOffset, uint32_t srcDataIndex, ExpressionType srcOffset, ExpressionType size);
void emitStructSet(GPRReg structGPR, const StructType& structType, uint32_t fieldIndex, Value value);
void emitStructPayloadSet(GPRReg payloadGPR, const StructType& structType, uint32_t fieldIndex, Value value);
PartialResult WARN_UNUSED_RETURN addStructNewDefault(uint32_t typeIndex, ExpressionType& result);
PartialResult WARN_UNUSED_RETURN addStructNew(uint32_t typeIndex, ArgumentList& args, Value& result);
PartialResult WARN_UNUSED_RETURN addStructGet(ExtGCOpType structGetKind, Value structValue, const StructType& structType, uint32_t fieldIndex, Value& result);
PartialResult WARN_UNUSED_RETURN addStructSet(Value structValue, const StructType& structType, uint32_t fieldIndex, Value value);
PartialResult WARN_UNUSED_RETURN addRefTest(ExpressionType reference, bool allowNull, int32_t heapType, bool shouldNegate, ExpressionType& result);
PartialResult WARN_UNUSED_RETURN addRefCast(ExpressionType reference, bool allowNull, int32_t heapType, ExpressionType& result);
PartialResult WARN_UNUSED_RETURN addAnyConvertExtern(ExpressionType reference, ExpressionType& result);
PartialResult WARN_UNUSED_RETURN addExternConvertAny(ExpressionType reference, ExpressionType& result);
// Basic operators
PartialResult WARN_UNUSED_RETURN addSelect(Value condition, Value lhs, Value rhs, Value& result);
template<typename Fold, typename RegReg, typename RegImm>
inline PartialResult binary(const char* opcode, TypeKind resultType, Value& lhs, Value& rhs, Value& result, Fold fold, RegReg regReg, RegImm regImm)
{
if (lhs.isConst() && rhs.isConst()) {
result = fold(lhs, rhs);
LOG_INSTRUCTION(opcode, lhs, rhs, RESULT(result));
return { };
}
Location lhsLocation = Location::none(), rhsLocation = Location::none();
// Ensure all non-constant parameters are loaded into registers.
if (!lhs.isConst())
lhsLocation = loadIfNecessary(lhs);
if (!rhs.isConst())
rhsLocation = loadIfNecessary(rhs);
ASSERT(lhs.isConst() || lhsLocation.isRegister());
ASSERT(rhs.isConst() || rhsLocation.isRegister());
consume(lhs); // If either of our operands are temps, consume them and liberate any bound
consume(rhs); // registers. This lets us reuse one of the registers for the output.
Location toReuse = lhs.isConst() ? rhsLocation : lhsLocation; // Select the location to reuse, preferring lhs.
result = topValue(resultType); // Result will be the new top of the stack.
Location resultLocation = allocateWithHint(result, toReuse);
ASSERT(resultLocation.isRegister());
LOG_INSTRUCTION(opcode, lhs, lhsLocation, rhs, rhsLocation, RESULT(result));
if (lhs.isConst() || rhs.isConst())
regImm(lhs, lhsLocation, rhs, rhsLocation, resultLocation);
else
regReg(lhs, lhsLocation, rhs, rhsLocation, resultLocation);
return { };
}
template<typename Fold, typename Reg>
inline PartialResult unary(const char* opcode, TypeKind resultType, Value& operand, Value& result, Fold fold, Reg reg)
{
if (operand.isConst()) {
result = fold(operand);
LOG_INSTRUCTION(opcode, operand, RESULT(result));
return { };
}
Location operandLocation = loadIfNecessary(operand);
ASSERT(operandLocation.isRegister());
consume(operand); // If our operand is a temp, consume it and liberate its register if it has one.
result = topValue(resultType); // Result will be the new top of the stack.
Location resultLocation = allocateWithHint(result, operandLocation); // Try to reuse the operand location.
ASSERT(resultLocation.isRegister());
LOG_INSTRUCTION(opcode, operand, operandLocation, RESULT(result));
reg(operand, operandLocation, resultLocation);
return { };
}
struct ImmHelpers {
ALWAYS_INLINE static Value& imm(Value& lhs, Value& rhs)
{
return lhs.isConst() ? lhs : rhs;
}
ALWAYS_INLINE static Location& immLocation(Location& lhsLocation, Location& rhsLocation)
{
return lhsLocation.isRegister() ? rhsLocation : lhsLocation;
}
ALWAYS_INLINE static Value& reg(Value& lhs, Value& rhs)
{
return lhs.isConst() ? rhs : lhs;
}
ALWAYS_INLINE static Location& regLocation(Location& lhsLocation, Location& rhsLocation)
{
return lhsLocation.isRegister() ? lhsLocation : rhsLocation;
}
};
#define BLOCK(...) __VA_ARGS__
#define EMIT_BINARY(opcode, resultType, foldExpr, regRegStatement, regImmStatement) \
return binary(opcode, resultType, lhs, rhs, result, \
[&](Value& lhs, Value& rhs) -> Value { \
UNUSED_PARAM(lhs); \
UNUSED_PARAM(rhs); \
return foldExpr; /* Lambda to be called for constant folding, i.e. when both operands are constants. */ \
}, \
[&](Value& lhs, Location lhsLocation, Value& rhs, Location rhsLocation, Location resultLocation) -> void { \
UNUSED_PARAM(lhs); \
UNUSED_PARAM(rhs); \
UNUSED_PARAM(lhsLocation); \
UNUSED_PARAM(rhsLocation); \
UNUSED_PARAM(resultLocation); \
regRegStatement /* Lambda to be called when both operands are registers. */ \
}, \
[&](Value& lhs, Location lhsLocation, Value& rhs, Location rhsLocation, Location resultLocation) -> void { \
UNUSED_PARAM(lhs); \
UNUSED_PARAM(rhs); \
UNUSED_PARAM(lhsLocation); \
UNUSED_PARAM(rhsLocation); \
UNUSED_PARAM(resultLocation); \
regImmStatement /* Lambda to be when one operand is a register and the other is a constant. */ \
});
#define EMIT_UNARY(opcode, resultType, foldExpr, regStatement) \
return unary(opcode, resultType, operand, result, \
[&](Value& operand) -> Value { \
UNUSED_PARAM(operand); \
return foldExpr; /* Lambda to be called for constant folding, i.e. when both operands are constants. */ \
}, \
[&](Value& operand, Location operandLocation, Location resultLocation) -> void { \
UNUSED_PARAM(operand); \
UNUSED_PARAM(operandLocation); \
UNUSED_PARAM(resultLocation); \
regStatement /* Lambda to be called when both operands are registers. */ \
});
PartialResult WARN_UNUSED_RETURN addI32Add(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI64Add(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addF32Add(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addF64Add(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI32Sub(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI64Sub(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addF32Sub(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addF64Sub(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI32Mul(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI64Mul(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addF32Mul(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addF64Mul(Value lhs, Value rhs, Value& result);
template<typename Func>
void addLatePath(Func func);
void emitThrowException(ExceptionType type);
void throwExceptionIf(ExceptionType type, Jump jump);
void emitThrowOnNullReference(ExceptionType type, Location ref);
template<typename IntType, bool IsMod>
void emitModOrDiv(Value& lhs, Location lhsLocation, Value& rhs, Location rhsLocation, Value& result, Location resultLocation);
template<typename IntType>
Value checkConstantDivision(const Value& lhs, const Value& rhs);
PartialResult WARN_UNUSED_RETURN addI32DivS(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI64DivS(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI32DivU(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI64DivU(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI32RemS(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI64RemS(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI32RemU(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI64RemU(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addF32Div(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addF64Div(Value lhs, Value rhs, Value& result);
enum class MinOrMax { Min, Max };
template<MinOrMax IsMinOrMax, typename FloatType>
void emitFloatingPointMinOrMax(FPRReg left, FPRReg right, FPRReg result);
template<MinOrMax IsMinOrMax, typename FloatType>
constexpr FloatType computeFloatingPointMinOrMax(FloatType left, FloatType right)
{
if (std::isnan(left))
return left;
if (std::isnan(right))
return right;
if constexpr (IsMinOrMax == MinOrMax::Min)
return std::min<FloatType>(left, right);
else
return std::max<FloatType>(left, right);
}
PartialResult WARN_UNUSED_RETURN addF32Min(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addF64Min(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addF32Max(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addF64Max(Value lhs, Value rhs, Value& result);
inline float floatCopySign(float lhs, float rhs)
{
uint32_t lhsAsInt32 = std::bit_cast<uint32_t>(lhs);
uint32_t rhsAsInt32 = std::bit_cast<uint32_t>(rhs);
lhsAsInt32 &= 0x7fffffffu;
rhsAsInt32 &= 0x80000000u;
lhsAsInt32 |= rhsAsInt32;
return std::bit_cast<float>(lhsAsInt32);
}
inline double doubleCopySign(double lhs, double rhs)
{
uint64_t lhsAsInt64 = std::bit_cast<uint64_t>(lhs);
uint64_t rhsAsInt64 = std::bit_cast<uint64_t>(rhs);
lhsAsInt64 &= 0x7fffffffffffffffu;
rhsAsInt64 &= 0x8000000000000000u;
lhsAsInt64 |= rhsAsInt64;
return std::bit_cast<double>(lhsAsInt64);
}
PartialResult WARN_UNUSED_RETURN addI32And(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI64And(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI32Xor(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI64Xor(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI32Or(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI64Or(Value lhs, Value rhs, Value& result);
void moveShiftAmountIfNecessary(Location& rhsLocation);
PartialResult WARN_UNUSED_RETURN addI32Shl(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI64Shl(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI32ShrS(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI64ShrS(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI32ShrU(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI64ShrU(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI32Rotl(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI64Rotl(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI32Rotr(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI64Rotr(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI32Clz(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addI64Clz(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addI32Ctz(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addI64Ctz(Value operand, Value& result);
PartialResult emitCompareI32(const char* opcode, Value& lhs, Value& rhs, Value& result, RelationalCondition condition, bool (*comparator)(int32_t lhs, int32_t rhs));
PartialResult emitCompareI64(const char* opcode, Value& lhs, Value& rhs, Value& result, RelationalCondition condition, bool (*comparator)(int64_t lhs, int64_t rhs));
PartialResult WARN_UNUSED_RETURN addI32Eq(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI64Eq(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI32Ne(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI64Ne(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI32LtS(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI64LtS(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI32LeS(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI64LeS(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI32GtS(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI64GtS(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI32GeS(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI64GeS(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI32LtU(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI64LtU(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI32LeU(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI64LeU(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI32GtU(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI64GtU(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI32GeU(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addI64GeU(Value lhs, Value rhs, Value& result);
PartialResult emitCompareF32(const char* opcode, Value& lhs, Value& rhs, Value& result, DoubleCondition condition, bool (*comparator)(float lhs, float rhs));
PartialResult emitCompareF64(const char* opcode, Value& lhs, Value& rhs, Value& result, DoubleCondition condition, bool (*comparator)(double lhs, double rhs));
PartialResult WARN_UNUSED_RETURN addF32Eq(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addF64Eq(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addF32Ne(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addF64Ne(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addF32Lt(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addF64Lt(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addF32Le(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addF64Le(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addF32Gt(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addF64Gt(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addF32Ge(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addF64Ge(Value lhs, Value rhs, Value& result);
PartialResult addI32WrapI64(Value operand, Value& result);
PartialResult addI32Extend8S(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addI32Extend16S(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addI64Extend8S(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addI64Extend16S(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addI64Extend32S(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addI64ExtendSI32(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addI64ExtendUI32(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addI32Eqz(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addI64Eqz(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addI32Popcnt(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addI64Popcnt(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addI32ReinterpretF32(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addI64ReinterpretF64(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addF32ReinterpretI32(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addF64ReinterpretI64(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addF32DemoteF64(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addF64PromoteF32(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addF32ConvertSI32(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addF32ConvertUI32(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addF32ConvertSI64(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addF32ConvertUI64(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addF64ConvertSI32(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addF64ConvertUI32(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addF64ConvertSI64(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addF64ConvertUI64(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addF32Copysign(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addF64Copysign(Value lhs, Value rhs, Value& result);
PartialResult WARN_UNUSED_RETURN addF32Floor(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addF64Floor(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addF32Ceil(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addF64Ceil(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addF32Abs(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addF64Abs(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addF32Sqrt(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addF64Sqrt(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addF32Neg(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addF64Neg(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addF32Nearest(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addF64Nearest(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addF32Trunc(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addF64Trunc(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addI32TruncSF32(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addI32TruncSF64(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addI32TruncUF32(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addI32TruncUF64(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addI64TruncSF32(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addI64TruncSF64(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addI64TruncUF32(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addI64TruncUF64(Value operand, Value& result);
// References
PartialResult WARN_UNUSED_RETURN addRefIsNull(Value operand, Value& result);
PartialResult WARN_UNUSED_RETURN addRefAsNonNull(Value value, Value& result);
PartialResult WARN_UNUSED_RETURN addRefEq(Value ref0, Value ref1, Value& result);
PartialResult WARN_UNUSED_RETURN addRefFunc(FunctionSpaceIndex index, Value& result);
void emitEntryTierUpCheck();
// Control flow
ControlData WARN_UNUSED_RETURN addTopLevel(BlockSignature signature);
bool hasLoops() const;
MacroAssembler::Label addLoopOSREntrypoint();
PartialResult WARN_UNUSED_RETURN addBlock(BlockSignature signature, Stack& enclosingStack, ControlType& result, Stack& newStack);
B3::Type toB3Type(Type type);
B3::Type toB3Type(TypeKind kind);
B3::ValueRep toB3Rep(Location location);
StackMap makeStackMap(const ControlData& data, Stack& enclosingStack);
void emitLoopTierUpCheckAndOSREntryData(const ControlData&, Stack& enclosingStack, unsigned loopIndex);
PartialResult WARN_UNUSED_RETURN addLoop(BlockSignature signature, Stack& enclosingStack, ControlType& result, Stack& newStack, uint32_t loopIndex);
PartialResult WARN_UNUSED_RETURN addIf(Value condition, BlockSignature signature, Stack& enclosingStack, ControlData& result, Stack& newStack);
PartialResult WARN_UNUSED_RETURN addElse(ControlData& data, Stack& expressionStack);
PartialResult WARN_UNUSED_RETURN addElseToUnreachable(ControlData& data);
PartialResult WARN_UNUSED_RETURN addTry(BlockSignature signature, Stack& enclosingStack, ControlType& result, Stack& newStack);
PartialResult WARN_UNUSED_RETURN addTryTable(BlockSignature, Stack& enclosingStack, const Vector<CatchHandler>& targets, ControlType& result, Stack& newStack);
void emitCatchPrologue();
void emitCatchAllImpl(ControlData& dataCatch);
void emitCatchImpl(ControlData& dataCatch, const TypeDefinition& exceptionSignature, ResultList& results);
void emitCatchTableImpl(ControlData& entryData, ControlType::TryTableTarget&);
PartialResult WARN_UNUSED_RETURN addCatch(unsigned exceptionIndex, const TypeDefinition& exceptionSignature, Stack& expressionStack, ControlType& data, ResultList& results);
PartialResult WARN_UNUSED_RETURN addCatchToUnreachable(unsigned exceptionIndex, const TypeDefinition& exceptionSignature, ControlType& data, ResultList& results);
PartialResult WARN_UNUSED_RETURN addCatchAll(Stack& expressionStack, ControlType& data);
PartialResult WARN_UNUSED_RETURN addCatchAllToUnreachable(ControlType& data);
PartialResult WARN_UNUSED_RETURN addDelegate(ControlType& target, ControlType& data);
PartialResult WARN_UNUSED_RETURN addDelegateToUnreachable(ControlType& target, ControlType& data);
PartialResult WARN_UNUSED_RETURN addThrow(unsigned exceptionIndex, ArgumentList& arguments, Stack&);
PartialResult WARN_UNUSED_RETURN addRethrow(unsigned, ControlType& data);
PartialResult WARN_UNUSED_RETURN addThrowRef(ExpressionType exception, Stack&);
void prepareForExceptions();
PartialResult WARN_UNUSED_RETURN addReturn(const ControlData& data, const Stack& returnValues);
PartialResult WARN_UNUSED_RETURN addBranch(ControlData& target, Value condition, Stack& results);
PartialResult WARN_UNUSED_RETURN addBranchNull(ControlData& data, ExpressionType reference, Stack& returnValues, bool shouldNegate, ExpressionType& result);
PartialResult WARN_UNUSED_RETURN addBranchCast(ControlData& data, ExpressionType reference, Stack& returnValues, bool allowNull, int32_t heapType, bool shouldNegate);
PartialResult WARN_UNUSED_RETURN addSwitch(Value condition, const Vector<ControlData*>& targets, ControlData& defaultTarget, Stack& results);
PartialResult WARN_UNUSED_RETURN endBlock(ControlEntry& entry, Stack& stack);
PartialResult WARN_UNUSED_RETURN addEndToUnreachable(ControlEntry& entry, Stack& stack, bool unreachable = true);
int alignedFrameSize(int frameSize) const;
PartialResult WARN_UNUSED_RETURN endTopLevel(BlockSignature, const Stack&);
enum BranchFoldResult {
BranchAlwaysTaken,
BranchNeverTaken,
BranchNotFolded
};
BranchFoldResult WARN_UNUSED_RETURN tryFoldFusedBranchCompare(OpType, ExpressionType);
Jump WARN_UNUSED_RETURN emitFusedBranchCompareBranch(OpType, ExpressionType, Location);
BranchFoldResult WARN_UNUSED_RETURN tryFoldFusedBranchCompare(OpType, ExpressionType, ExpressionType);
Jump WARN_UNUSED_RETURN emitFusedBranchCompareBranch(OpType, ExpressionType, Location, ExpressionType, Location);
PartialResult WARN_UNUSED_RETURN addFusedBranchCompare(OpType, ControlType& target, ExpressionType, Stack&);
PartialResult WARN_UNUSED_RETURN addFusedBranchCompare(OpType, ControlType& target, ExpressionType, ExpressionType, Stack&);
PartialResult WARN_UNUSED_RETURN addFusedIfCompare(OpType, ExpressionType, BlockSignature, Stack&, ControlType&, Stack&);
PartialResult WARN_UNUSED_RETURN addFusedIfCompare(OpType, ExpressionType, ExpressionType, BlockSignature, Stack&, ControlType&, Stack&);
// Flush a value to its canonical slot.
void flushValue(Value value);
void restoreWebAssemblyContextInstance();
void restoreWebAssemblyGlobalState();
void loadWebAssemblyGlobalState(GPRReg wasmBaseMemoryPointer, GPRReg wasmBoundsCheckingSizeRegister);
void restoreWebAssemblyGlobalStateAfterWasmCall();
void flushRegistersForException();
void flushRegisters();
template<size_t N>
void saveValuesAcrossCallAndPassArguments(const Vector<Value, N>& arguments, const CallInformation& callInfo, const TypeDefinition& signature);
void restoreValuesAfterCall(const CallInformation& callInfo);
template<size_t N>
void returnValuesFromCall(Vector<Value, N>& results, const FunctionSignature& functionType, const CallInformation& callInfo);
template<typename Func, size_t N>
void emitCCall(Func function, const Vector<Value, N>& arguments);
template<typename Func, size_t N>
void emitCCall(Func function, const Vector<Value, N>& arguments, Value& result);
void emitTailCall(FunctionSpaceIndex functionIndex, const TypeDefinition& signature, ArgumentList& arguments);
PartialResult WARN_UNUSED_RETURN addCall(FunctionSpaceIndex functionIndex, const TypeDefinition& signature, ArgumentList& arguments, ResultList& results, CallType = CallType::Call);
void emitIndirectCall(const char* opcode, const Value& callee, GPRReg calleeInstance, GPRReg calleeCode, const TypeDefinition& signature, ArgumentList& arguments, ResultList& results);
void emitIndirectTailCall(const char* opcode, const Value& callee, GPRReg calleeInstance, GPRReg calleeCode, const TypeDefinition& signature, ArgumentList& arguments);
void addRTTSlowPathJump(TypeIndex, GPRReg);
void emitSlowPathRTTCheck(MacroAssembler::Label, TypeIndex, GPRReg);
PartialResult WARN_UNUSED_RETURN addCallIndirect(unsigned tableIndex, const TypeDefinition& originalSignature, ArgumentList& args, ResultList& results, CallType = CallType::Call);
PartialResult WARN_UNUSED_RETURN addCallRef(const TypeDefinition& originalSignature, ArgumentList& args, ResultList& results, CallType = CallType::Call);
PartialResult WARN_UNUSED_RETURN addUnreachable();
PartialResult WARN_UNUSED_RETURN addCrash();
ALWAYS_INLINE void willParseOpcode();
ALWAYS_INLINE void willParseExtendedOpcode();
ALWAYS_INLINE void didParseOpcode();
// SIMD
bool usesSIMD();
void notifyFunctionUsesSIMD();
PartialResult addSIMDLoad(ExpressionType, uint32_t, ExpressionType&);
PartialResult addSIMDStore(ExpressionType, ExpressionType, uint32_t);
PartialResult addSIMDSplat(SIMDLane, ExpressionType, ExpressionType&);
PartialResult addSIMDShuffle(v128_t, ExpressionType, ExpressionType, ExpressionType&);
PartialResult addSIMDShift(SIMDLaneOperation, SIMDInfo, ExpressionType, ExpressionType, ExpressionType&);
PartialResult addSIMDExtmul(SIMDLaneOperation, SIMDInfo, ExpressionType, ExpressionType, ExpressionType&);
PartialResult addSIMDLoadSplat(SIMDLaneOperation, ExpressionType, uint32_t, ExpressionType&);
PartialResult addSIMDLoadLane(SIMDLaneOperation, ExpressionType, ExpressionType, uint32_t, uint8_t, ExpressionType&);
PartialResult addSIMDStoreLane(SIMDLaneOperation, ExpressionType, ExpressionType, uint32_t, uint8_t);
PartialResult addSIMDLoadExtend(SIMDLaneOperation, ExpressionType, uint32_t, ExpressionType&);
PartialResult addSIMDLoadPad(SIMDLaneOperation, ExpressionType, uint32_t, ExpressionType&);
void materializeVectorConstant(v128_t, Location);
ExpressionType addConstant(v128_t);
PartialResult addExtractLane(SIMDInfo, uint8_t, Value, Value&);
PartialResult addReplaceLane(SIMDInfo, uint8_t, ExpressionType, ExpressionType, ExpressionType&);
PartialResult addSIMDI_V(SIMDLaneOperation, SIMDInfo, ExpressionType, ExpressionType&);
PartialResult addSIMDV_V(SIMDLaneOperation, SIMDInfo, ExpressionType, ExpressionType&);
PartialResult addSIMDBitwiseSelect(ExpressionType, ExpressionType, ExpressionType, ExpressionType&);
PartialResult addSIMDRelOp(SIMDLaneOperation, SIMDInfo, ExpressionType, ExpressionType, B3::Air::Arg, ExpressionType&);
void emitVectorMul(SIMDInfo info, Location left, Location right, Location result);
PartialResult WARN_UNUSED_RETURN fixupOutOfBoundsIndicesForSwizzle(Location a, Location b, Location result);
PartialResult addSIMDV_VV(SIMDLaneOperation, SIMDInfo, ExpressionType, ExpressionType, ExpressionType&);
PartialResult addSIMDRelaxedFMA(SIMDLaneOperation, SIMDInfo, ExpressionType, ExpressionType, ExpressionType, ExpressionType&);
void dump(const ControlStack&, const Stack*);
void didFinishParsingLocals();
void didPopValueFromStack(ExpressionType, ASCIILiteral);
void finalize();
Vector<UnlinkedHandlerInfo>&& takeExceptionHandlers();
FixedBitVector&& takeDirectCallees();
Vector<CCallHelpers::Label>&& takeCatchEntrypoints();
Box<PCToCodeOriginMapBuilder> takePCToCodeOriginMapBuilder();
std::unique_ptr<BBQDisassembler> takeDisassembler();
private:
static bool isScratch(Location loc);
void emitStoreConst(Value constant, Location loc);
void emitMoveConst(Value constant, Location loc);
void emitStore(TypeKind type, Location src, Location dst);
void emitStore(Value src, Location dst);
void emitMoveMemory(TypeKind type, Location src, Location dst);
void emitMoveMemory(Value src, Location dst);
void emitMoveRegister(TypeKind type, Location src, Location dst);
void emitMoveRegister(Value src, Location dst);
void emitLoad(TypeKind type, Location src, Location dst);
void emitLoad(Value src, Location dst);
void emitMove(TypeKind type, Location src, Location dst);
void emitMove(Value src, Location dst);
enum class ShuffleStatus {
ToMove,
BeingMoved,
Moved
};
template<size_t N, typename OverflowHandler>
void emitShuffleMove(Vector<Value, N, OverflowHandler>& srcVector, Vector<Location, N, OverflowHandler>& dstVector, Vector<ShuffleStatus, N, OverflowHandler>& statusVector, unsigned index);
template<size_t N, typename OverflowHandler>
void emitShuffle(Vector<Value, N, OverflowHandler>& srcVector, Vector<Location, N, OverflowHandler>& dstVector);
ControlData& currentControlData();
void setLRUKey(Location location, LocalOrTempIndex key);
void increaseKey(Location location);
Location bind(Value value);
Location allocate(Value value);
Location allocateWithHint(Value value, Location hint);
Location locationOfWithoutBinding(Value value);
Location locationOf(Value value);
Location loadIfNecessary(Value value);
void consume(Value value);
Location allocateRegister(TypeKind type);
Location allocateRegisterPair();
Location allocateRegister(Value value);
Location bind(Value value, Location loc);
void unbind(Value value, Location loc);
void unbindAllRegisters();
template<typename Register>
static Register fromJSCReg(Reg reg)
{
// This pattern avoids an explicit template specialization in class scope, which GCC does not support.
if constexpr (std::is_same_v<Register, GPRReg>) {
ASSERT(reg.isGPR());
return reg.gpr();
} else if constexpr (std::is_same_v<Register, FPRReg>) {
ASSERT(reg.isFPR());
return reg.fpr();
}
ASSERT_NOT_REACHED();
}
template<typename Register>
class LRU {
public:
ALWAYS_INLINE LRU(uint32_t numRegisters)
: m_keys(numRegisters, -1) // We use -1 to signify registers that can never be allocated or used.
{ }
void add(RegisterSet registers)
{
registers.forEach([&] (JSC::Reg r) {
m_keys[fromJSCReg<Register>(r)] = 0;
});
}
Register findMin()
{
int32_t minIndex = -1;
int32_t minKey = -1;
for (unsigned i = 0; i < m_keys.size(); i ++) {
Register reg = static_cast<Register>(i);
if (m_locked.contains(reg, conservativeWidth(reg)))
continue;
if (m_keys[i] < 0)
continue;
if (minKey < 0 || m_keys[i] < minKey) {
minKey = m_keys[i];
minIndex = i;
}
}
ASSERT(minIndex >= 0, "No allocatable registers in LRU");
return static_cast<Register>(minIndex);
}
void increaseKey(Register reg, uint32_t newKey)
{
if (m_keys[reg] >= 0) // Leave untracked registers alone.
m_keys[reg] = newKey;
}
void lock(Register reg)
{
m_locked.add(reg, conservativeWidth(reg));
}
void unlock(Register reg)
{
m_locked.remove(reg);
}
private:
Vector<int32_t, 32> m_keys;
RegisterSet m_locked;
};
GPRReg nextGPR();
FPRReg nextFPR();
GPRReg evictGPR();
FPRReg evictFPR();
// We use this to free up specific registers that might get clobbered by an instruction.
void clobber(GPRReg gpr);
void clobber(FPRReg fpr);
void clobber(JSC::Reg reg);
template<int GPRs, int FPRs>
class ScratchScope {
WTF_MAKE_NONCOPYABLE(ScratchScope);
public:
template<typename... Args>
ScratchScope(BBQJIT& generator, Args... locationsToPreserve)
: m_generator(generator)
{
initializedPreservedSet(locationsToPreserve...);
for (JSC::Reg reg : m_preserved) {
if (reg.isGPR())
bindGPRToScratch(reg.gpr());
else
bindFPRToScratch(reg.fpr());
}
for (int i = 0; i < GPRs; i ++)
m_tempGPRs[i] = bindGPRToScratch(m_generator.allocateRegister(is64Bit() ? TypeKind::I64 : TypeKind::I32).asGPR());
for (int i = 0; i < FPRs; i ++)
m_tempFPRs[i] = bindFPRToScratch(m_generator.allocateRegister(TypeKind::F64).asFPR());
}
~ScratchScope()
{
unbindEarly();
}
void unbindEarly()
{
unbindScratches();
unbindPreserved();
}
void unbindScratches()
{
if (m_unboundScratches)
return;
m_unboundScratches = true;
for (int i = 0; i < GPRs; i ++)
unbindGPRFromScratch(m_tempGPRs[i]);
for (int i = 0; i < FPRs; i ++)
unbindFPRFromScratch(m_tempFPRs[i]);
}
void unbindPreserved()
{
if (m_unboundPreserved)
return;
m_unboundPreserved = true;
for (JSC::Reg reg : m_preserved) {
if (reg.isGPR())
unbindGPRFromScratch(reg.gpr());
else
unbindFPRFromScratch(reg.fpr());
}
}
inline GPRReg gpr(unsigned i) const
{
ASSERT(i < GPRs);
ASSERT(!m_unboundScratches);
return m_tempGPRs[i];
}
inline FPRReg fpr(unsigned i) const
{
ASSERT(i < FPRs);
ASSERT(!m_unboundScratches);
return m_tempFPRs[i];
}
private:
GPRReg bindGPRToScratch(GPRReg reg)
{
if (!m_generator.m_validGPRs.contains(reg, IgnoreVectors))
return reg;
RegisterBinding& binding = m_generator.m_gprBindings[reg];
m_generator.m_gprLRU.lock(reg);
if (m_preserved.contains(reg, IgnoreVectors) && !binding.isNone()) {
if (UNLIKELY(Options::verboseBBQJITAllocation()))
dataLogLn("BBQ\tPreserving GPR ", MacroAssembler::gprName(reg), " currently bound to ", binding);
return reg; // If the register is already bound, we don't need to preserve it ourselves.
}
ASSERT(binding.isNone());
binding = RegisterBinding::scratch();
m_generator.m_gprSet.remove(reg);
if (UNLIKELY(Options::verboseBBQJITAllocation()))
dataLogLn("BBQ\tReserving scratch GPR ", MacroAssembler::gprName(reg));
return reg;
}
FPRReg bindFPRToScratch(FPRReg reg)
{
if (!m_generator.m_validFPRs.contains(reg, Width::Width128))
return reg;
RegisterBinding& binding = m_generator.m_fprBindings[reg];
m_generator.m_fprLRU.lock(reg);
if (m_preserved.contains(reg, Width::Width128) && !binding.isNone()) {
if (UNLIKELY(Options::verboseBBQJITAllocation()))
dataLogLn("BBQ\tPreserving FPR ", MacroAssembler::fprName(reg), " currently bound to ", binding);
return reg; // If the register is already bound, we don't need to preserve it ourselves.
}
ASSERT(binding.isNone());
binding = RegisterBinding::scratch();
m_generator.m_fprSet.remove(reg);
if (UNLIKELY(Options::verboseBBQJITAllocation()))
dataLogLn("BBQ\tReserving scratch FPR ", MacroAssembler::fprName(reg));
return reg;
}
void unbindGPRFromScratch(GPRReg reg)
{
if (!m_generator.m_validGPRs.contains(reg, IgnoreVectors))
return;
RegisterBinding& binding = m_generator.m_gprBindings[reg];
m_generator.m_gprLRU.unlock(reg);
if (UNLIKELY(Options::verboseBBQJITAllocation()))
dataLogLn("BBQ\tReleasing GPR ", MacroAssembler::gprName(reg), " preserved? ", m_preserved.contains(reg, IgnoreVectors), " binding: ", binding);
if (m_preserved.contains(reg, IgnoreVectors) && !binding.isScratch())
return; // It's okay if the register isn't bound to a scratch if we meant to preserve it - maybe it was just already bound to something.
ASSERT(binding.isScratch());
binding = RegisterBinding::none();
m_generator.m_gprSet.add(reg, IgnoreVectors);
}
void unbindFPRFromScratch(FPRReg reg)
{
if (!m_generator.m_validFPRs.contains(reg, Width::Width128))
return;
RegisterBinding& binding = m_generator.m_fprBindings[reg];
m_generator.m_fprLRU.unlock(reg);
if (UNLIKELY(Options::verboseBBQJITAllocation()))
dataLogLn("BBQ\tReleasing FPR ", MacroAssembler::fprName(reg), " preserved? ", m_preserved.contains(reg, Width::Width128), " binding: ", binding);
if (m_preserved.contains(reg, Width::Width128) && !binding.isScratch())
return; // It's okay if the register isn't bound to a scratch if we meant to preserve it - maybe it was just already bound to something.
ASSERT(binding.isScratch());
binding = RegisterBinding::none();
m_generator.m_fprSet.add(reg, Width::Width128);
}
template<typename... Args>
void initializedPreservedSet(Location location, Args... args)
{
if (location.isGPR())
m_preserved.add(location.asGPR(), IgnoreVectors);
else if (location.isFPR())
m_preserved.add(location.asFPR(), Width::Width128);
else if (location.isGPR2()) {
m_preserved.add(location.asGPRlo(), IgnoreVectors);
m_preserved.add(location.asGPRhi(), IgnoreVectors);
}
initializedPreservedSet(args...);
}
template<typename... Args>
void initializedPreservedSet(RegisterSet registers, Args... args)
{
for (JSC::Reg reg : registers)
initializedPreservedSet(reg);
initializedPreservedSet(args...);
}
template<typename... Args>
void initializedPreservedSet(JSC::Reg reg, Args... args)
{
if (reg.isGPR())
m_preserved.add(reg.gpr(), IgnoreVectors);
else
m_preserved.add(reg.fpr(), Width::Width128);
initializedPreservedSet(args...);
}
inline void initializedPreservedSet() { }
BBQJIT& m_generator;
GPRReg m_tempGPRs[GPRs];
FPRReg m_tempFPRs[FPRs];
RegisterSet m_preserved;
bool m_unboundScratches { false };
bool m_unboundPreserved { false };
};
Location canonicalSlot(Value value);
Location allocateStack(Value value);
constexpr static int tempSlotSize = 16; // Size of the stack slot for a stack temporary. Currently the size of the largest possible temporary (a v128).
enum class ShiftI64HelperOp { Lshift, Urshift, Rshift };
void shiftI64Helper(ShiftI64HelperOp op, Location lhsLocation, Location rhsLocation, Location resultLocation);
enum class RotI64HelperOp { Left, Right };
void rotI64Helper(RotI64HelperOp op, Location lhsLocation, Location rhsLocation, Location resultLocation);
void compareI64Helper(RelationalCondition condition, Location lhsLocation, Location rhsLocation, Location resultLocation);
void F64CopysignHelper(Location lhsLocation, Location rhsLocation, Location resultLocation);
bool canTierUpToOMG() const;
CCallHelpers& m_jit;
BBQCallee& m_callee;
const FunctionData& m_function;
const FunctionSignature* m_functionSignature;
FunctionCodeIndex m_functionIndex;
const ModuleInformation& m_info;
MemoryMode m_mode;
Vector<UnlinkedWasmToWasmCall>& m_unlinkedWasmToWasmCalls;
FixedBitVector m_directCallees;
std::optional<bool> m_hasExceptionHandlers;
FunctionParser<BBQJIT>* m_parser;
Vector<uint32_t, 4> m_arguments;
ControlData m_topLevel;
unsigned m_loopIndexForOSREntry;
Vector<unsigned> m_outerLoops;
unsigned m_osrEntryScratchBufferSize { 1 };
Vector<RegisterBinding, 32> m_gprBindings; // Tables mapping from each register to the current value bound to it.
Vector<RegisterBinding, 32> m_fprBindings;
RegisterSet m_gprSet, m_fprSet; // Sets tracking whether registers are bound or free.
RegisterSet m_validGPRs, m_validFPRs; // These contain the original register sets used in m_gprSet and m_fprSet.
Vector<Location, 8> m_locals; // Vectors mapping local and temp indices to binding indices.
Vector<Location, 8> m_temps;
Vector<Location, 8> m_localSlots; // Persistent stack slots for local variables.
Vector<TypeKind, 8> m_localTypes; // Types of all non-argument locals in this function.
LRU<GPRReg> m_gprLRU; // LRU cache tracking when general-purpose registers were last used.
LRU<FPRReg> m_fprLRU; // LRU cache tracking when floating-point registers were last used.
uint32_t m_lastUseTimestamp; // Monotonically increasing integer incrementing with each register use.
Vector<RefPtr<SharedTask<void(BBQJIT&, CCallHelpers&)>>, 8> m_latePaths; // Late paths to emit after the rest of the function body.
// FIXME: All uses of this are to restore sp, so we should emit these as a patchable sub instruction rather than move.
Vector<DataLabelPtr, 1> m_frameSizeLabels;
int m_frameSize { 0 };
int m_maxCalleeStackSize { 0 };
int m_localStorage { 0 }; // Stack offset pointing to the local with the lowest address.
bool m_usesSIMD { false }; // Whether the function we are compiling uses SIMD instructions or not.
bool m_usesExceptions { false };
Checked<unsigned> m_tryCatchDepth { 0 };
Checked<unsigned> m_callSiteIndex { 0 };
RegisterSet m_callerSaveGPRs;
RegisterSet m_callerSaveFPRs;
RegisterSet m_callerSaves;
InternalFunction* m_compilation;
std::array<JumpList, numberOfExceptionTypes> m_exceptions { };
Vector<UnlinkedHandlerInfo> m_exceptionHandlers;
Vector<CCallHelpers::Label> m_catchEntrypoints;
Vector<std::tuple<Jump, MacroAssembler::Label, TypeIndex, GPRReg>> m_rttSlowPathJumps;
PCToCodeOriginMapBuilder m_pcToCodeOriginMapBuilder;
std::unique_ptr<BBQDisassembler> m_disassembler;
#if ASSERT_ENABLED
Vector<Value, 8> m_justPoppedStack;
OpType m_prevOpcode;
#endif
};
using LocalOrTempIndex = BBQJIT::LocalOrTempIndex;
using Location = BBQJIT::Location;
using Value = BBQJIT::Value;
using ExpressionType = BBQJIT::Value;
using RegisterBinding = BBQJIT::RegisterBinding;
using ControlData = BBQJIT::ControlData;
using PartialResult = BBQJIT::PartialResult;
using Address = BBQJIT::Address;
using TruncationKind = BBQJIT::TruncationKind;
using FloatingPointRange = BBQJIT::FloatingPointRange;
using MinOrMax = BBQJIT::MinOrMax;
} // namespace JSC::Wasm::BBQJITImpl
class BBQCallee;
using BBQJIT = BBQJITImpl::BBQJIT;
Expected<std::unique_ptr<InternalFunction>, String> parseAndCompileBBQ(CompilationContext&, BBQCallee&, const FunctionData&, const TypeDefinition&, Vector<UnlinkedWasmToWasmCall>&, const ModuleInformation&, MemoryMode, FunctionCodeIndex functionIndex, std::optional<bool> hasExceptionHandlers, unsigned);
} } // namespace JSC::Wasm
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
#endif // ENABLE(WEBASSEMBLY_BBQJIT)
|