File: WasmBBQJIT64.h

package info (click to toggle)
webkit2gtk 2.48.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 429,764 kB
  • sloc: cpp: 3,697,587; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,295; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (594 lines) | stat: -rw-r--r-- 28,295 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
/*
 * Copyright (C) 2019-2023 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#pragma once

#if ENABLE(WEBASSEMBLY_BBQJIT)
#if USE(JSVALUE64)

#include "WasmBBQJIT.h"
#include "WasmCallingConvention.h"
#include "WasmCompilationContext.h"
#include "WasmFunctionParser.h"
#include "WasmLimits.h"

namespace JSC { namespace Wasm { namespace BBQJITImpl {

template<typename Functor>
auto BBQJIT::emitCheckAndPrepareAndMaterializePointerApply(Value pointer, uint32_t uoffset, uint32_t sizeOfOperation, Functor&& functor) -> decltype(auto)
{
    uint64_t boundary = static_cast<uint64_t>(sizeOfOperation) + uoffset - 1;

    ScratchScope<1, 0> scratches(*this);
    Location pointerLocation;

    if (pointer.isConst()) {
        uint64_t constantPointer = static_cast<uint64_t>(static_cast<uint32_t>(pointer.asI32()));
        uint64_t finalOffset = constantPointer + uoffset;
        if (!(finalOffset > static_cast<uint64_t>(std::numeric_limits<int32_t>::max()) || !B3::Air::Arg::isValidAddrForm(B3::Air::Move, finalOffset, Width::Width128))) {
            switch (m_mode) {
            case MemoryMode::BoundsChecking: {
                m_jit.move(TrustedImmPtr(constantPointer + boundary), wasmScratchGPR);
                throwExceptionIf(ExceptionType::OutOfBoundsMemoryAccess, m_jit.branchPtr(RelationalCondition::AboveOrEqual, wasmScratchGPR, wasmBoundsCheckingSizeRegister));
                break;
            }
            case MemoryMode::Signaling: {
                if (uoffset >= Memory::fastMappedRedzoneBytes()) {
                    uint64_t maximum = m_info.memory.maximum() ? m_info.memory.maximum().bytes() : std::numeric_limits<uint32_t>::max();
                    if ((constantPointer + boundary) >= maximum)
                        throwExceptionIf(ExceptionType::OutOfBoundsMemoryAccess, m_jit.jump());
                }
                break;
            }
            }
            return functor(CCallHelpers::Address(wasmBaseMemoryPointer, static_cast<int32_t>(finalOffset)));
        }
        pointerLocation = Location::fromGPR(scratches.gpr(0));
        emitMoveConst(pointer, pointerLocation);
    } else
        pointerLocation = loadIfNecessary(pointer);
    ASSERT(pointerLocation.isGPR());

    switch (m_mode) {
    case MemoryMode::BoundsChecking: {
        // We're not using signal handling only when the memory is not shared.
        // Regardless of signaling, we must check that no memory access exceeds the current memory size.
        m_jit.zeroExtend32ToWord(pointerLocation.asGPR(), wasmScratchGPR);
        if (boundary)
            m_jit.addPtr(TrustedImmPtr(boundary), wasmScratchGPR);
        throwExceptionIf(ExceptionType::OutOfBoundsMemoryAccess, m_jit.branchPtr(RelationalCondition::AboveOrEqual, wasmScratchGPR, wasmBoundsCheckingSizeRegister));
        break;
    }

    case MemoryMode::Signaling: {
        // We've virtually mapped 4GiB+redzone for this memory. Only the user-allocated pages are addressable, contiguously in range [0, current],
        // and everything above is mapped PROT_NONE. We don't need to perform any explicit bounds check in the 4GiB range because WebAssembly register
        // memory accesses are 32-bit. However WebAssembly register + offset accesses perform the addition in 64-bit which can push an access above
        // the 32-bit limit (the offset is unsigned 32-bit). The redzone will catch most small offsets, and we'll explicitly bounds check any
        // register + large offset access. We don't think this will be generated frequently.
        //
        // We could check that register + large offset doesn't exceed 4GiB+redzone since that's technically the limit we need to avoid overflowing the
        // PROT_NONE region, but it's better if we use a smaller immediate because it can codegens better. We know that anything equal to or greater
        // than the declared 'maximum' will trap, so we can compare against that number. If there was no declared 'maximum' then we still know that
        // any access equal to or greater than 4GiB will trap, no need to add the redzone.
        if (uoffset >= Memory::fastMappedRedzoneBytes()) {
            uint64_t maximum = m_info.memory.maximum() ? m_info.memory.maximum().bytes() : std::numeric_limits<uint32_t>::max();
            m_jit.zeroExtend32ToWord(pointerLocation.asGPR(), wasmScratchGPR);
            if (boundary)
                m_jit.addPtr(TrustedImmPtr(boundary), wasmScratchGPR);
            throwExceptionIf(ExceptionType::OutOfBoundsMemoryAccess, m_jit.branchPtr(RelationalCondition::AboveOrEqual, wasmScratchGPR, TrustedImmPtr(static_cast<int64_t>(maximum))));
        }
        break;
    }
    }

#if CPU(ARM64)
    if (!(static_cast<uint64_t>(uoffset) > static_cast<uint64_t>(std::numeric_limits<int32_t>::max()) || !B3::Air::Arg::isValidAddrForm(B3::Air::Move, uoffset, Width::Width128)))
        return functor(CCallHelpers::BaseIndex(wasmBaseMemoryPointer, pointerLocation.asGPR(), CCallHelpers::TimesOne, static_cast<int32_t>(uoffset), CCallHelpers::Extend::ZExt32));

    m_jit.addZeroExtend64(wasmBaseMemoryPointer, pointerLocation.asGPR(), wasmScratchGPR);
#else
    m_jit.zeroExtend32ToWord(pointerLocation.asGPR(), wasmScratchGPR);
    m_jit.addPtr(wasmBaseMemoryPointer, wasmScratchGPR);
#endif

    if (static_cast<uint64_t>(uoffset) > static_cast<uint64_t>(std::numeric_limits<int32_t>::max()) || !B3::Air::Arg::isValidAddrForm(B3::Air::Move, uoffset, Width::Width128)) {
        m_jit.addPtr(TrustedImmPtr(static_cast<int64_t>(uoffset)), wasmScratchGPR);
        return functor(Address(wasmScratchGPR));
    }
    return functor(Address(wasmScratchGPR, static_cast<int32_t>(uoffset)));
}

#if CPU(X86_64)
static inline RegisterSet clobbersForDivX86()
{
    static RegisterSet x86DivClobbers;
    static std::once_flag flag;
    std::call_once(
        flag,
        []() {
            RegisterSetBuilder builder;
            builder.add(X86Registers::eax, IgnoreVectors);
            builder.add(X86Registers::edx, IgnoreVectors);
            x86DivClobbers = builder.buildAndValidate();
        });
    return x86DivClobbers;
}

#define PREPARE_FOR_MOD_OR_DIV \
do { \
    for (JSC::Reg reg : clobbersForDivX86()) \
        clobber(reg); \
} while (false); \
ScratchScope<0, 0> scratches(*this, clobbersForDivX86())
#else
#define PREPARE_FOR_MOD_OR_DIV
#endif

#if CPU(X86_64)
template<typename IntType, bool IsMod>
void BBQJIT::emitModOrDiv(Value& lhs, Location lhsLocation, Value& rhs, Location rhsLocation, Value&, Location resultLocation)
{
    // FIXME: We currently don't do nearly as sophisticated instruction selection on Intel as we do on other platforms,
    // but there's no good reason we can't. We should probably port over the isel in the future if it seems to yield
    // dividends.

    constexpr bool isSigned = std::is_signed<IntType>();
    constexpr bool is32 = sizeof(IntType) == 4;

    ASSERT(lhsLocation.isRegister() || rhsLocation.isRegister());
    if (lhs.isConst())
        emitMoveConst(lhs, lhsLocation = Location::fromGPR(wasmScratchGPR));
    else if (rhs.isConst())
        emitMoveConst(rhs, rhsLocation = Location::fromGPR(wasmScratchGPR));
    ASSERT(lhsLocation.isRegister() && rhsLocation.isRegister());

    ASSERT(resultLocation.isRegister());
    ASSERT(lhsLocation.asGPR() != X86Registers::eax && lhsLocation.asGPR() != X86Registers::edx);
    ASSERT(rhsLocation.asGPR() != X86Registers::eax && lhsLocation.asGPR() != X86Registers::edx);

    ScratchScope<2, 0> scratches(*this, lhsLocation, rhsLocation, resultLocation);

    Jump toDiv, toEnd;

    Jump isZero = is32
        ? m_jit.branchTest32(ResultCondition::Zero, rhsLocation.asGPR())
        : m_jit.branchTest64(ResultCondition::Zero, rhsLocation.asGPR());
    throwExceptionIf(ExceptionType::DivisionByZero, isZero);
    if constexpr (isSigned) {
        if constexpr (is32)
            m_jit.compare32(RelationalCondition::Equal, rhsLocation.asGPR(), TrustedImm32(-1), scratches.gpr(0));
        else
            m_jit.compare64(RelationalCondition::Equal, rhsLocation.asGPR(), TrustedImm32(-1), scratches.gpr(0));
        if constexpr (is32)
            m_jit.compare32(RelationalCondition::Equal, lhsLocation.asGPR(), TrustedImm32(std::numeric_limits<int32_t>::min()), scratches.gpr(1));
        else {
            m_jit.move(TrustedImm64(std::numeric_limits<int64_t>::min()), scratches.gpr(1));
            m_jit.compare64(RelationalCondition::Equal, lhsLocation.asGPR(), scratches.gpr(1), scratches.gpr(1));
        }
        m_jit.and64(scratches.gpr(0), scratches.gpr(1));
        if constexpr (IsMod) {
            toDiv = m_jit.branchTest64(ResultCondition::Zero, scratches.gpr(1));
            // In this case, WASM doesn't want us to fault, but x86 will. So we set the result ourselves.
            if constexpr (is32)
                m_jit.xor32(resultLocation.asGPR(), resultLocation.asGPR());
            else
                m_jit.xor64(resultLocation.asGPR(), resultLocation.asGPR());
            toEnd = m_jit.jump();
        } else {
            Jump isNegativeOne = m_jit.branchTest64(ResultCondition::NonZero, scratches.gpr(1));
            throwExceptionIf(ExceptionType::IntegerOverflow, isNegativeOne);
        }
    }

    if (toDiv.isSet())
        toDiv.link(&m_jit);

    m_jit.move(lhsLocation.asGPR(), X86Registers::eax);

    if constexpr (is32 && isSigned) {
        m_jit.x86ConvertToDoubleWord32();
        m_jit.x86Div32(rhsLocation.asGPR());
    } else if constexpr (is32) {
        m_jit.xor32(X86Registers::edx, X86Registers::edx);
        m_jit.x86UDiv32(rhsLocation.asGPR());
    } else if constexpr (isSigned) {
        m_jit.x86ConvertToQuadWord64();
        m_jit.x86Div64(rhsLocation.asGPR());
    } else {
        m_jit.xor64(X86Registers::edx, X86Registers::edx);
        m_jit.x86UDiv64(rhsLocation.asGPR());
    }

    if constexpr (IsMod)
        m_jit.move(X86Registers::edx, resultLocation.asGPR());
    else
        m_jit.move(X86Registers::eax, resultLocation.asGPR());

    if (toEnd.isSet())
        toEnd.link(&m_jit);
}
#else
template<typename IntType, bool IsMod>
void BBQJIT::emitModOrDiv(Value& lhs, Location lhsLocation, Value& rhs, Location rhsLocation, Value&, Location resultLocation)
{
    constexpr bool isSigned = std::is_signed<IntType>();
    constexpr bool is32 = sizeof(IntType) == 4;

    ASSERT(lhsLocation.isRegister() || rhsLocation.isRegister());
    ASSERT(resultLocation.isRegister());

    bool checkedForZero = false, checkedForNegativeOne = false;
    if (rhs.isConst()) {
        int64_t divisor = is32 ? rhs.asI32() : rhs.asI64();
        if (!divisor) {
            emitThrowException(ExceptionType::DivisionByZero);
            return;
        }
        if (divisor == 1) {
            if constexpr (IsMod) {
                // N % 1 == 0
                if constexpr (is32)
                    m_jit.xor32(resultLocation.asGPR(), resultLocation.asGPR());
                else
                    m_jit.xor64(resultLocation.asGPR(), resultLocation.asGPR());
            } else
                m_jit.move(lhsLocation.asGPR(), resultLocation.asGPR());
            return;
        }
        if (divisor == -1) {
            // Check for INT_MIN / -1 case, and throw an IntegerOverflow exception if it occurs
            if (!IsMod && isSigned) {
                Jump jump = is32
                    ? m_jit.branch32(RelationalCondition::Equal, lhsLocation.asGPR(), TrustedImm32(std::numeric_limits<int32_t>::min()))
                    : m_jit.branch64(RelationalCondition::Equal, lhsLocation.asGPR(), TrustedImm64(std::numeric_limits<int64_t>::min()));
                throwExceptionIf(ExceptionType::IntegerOverflow, jump);
            }

            if constexpr (isSigned) {
                if constexpr (IsMod) {
                    // N % 1 == 0
                    if constexpr (is32)
                        m_jit.xor32(resultLocation.asGPR(), resultLocation.asGPR());
                    else
                        m_jit.xor64(resultLocation.asGPR(), resultLocation.asGPR());
                    return;
                }
                if constexpr (is32)
                    m_jit.neg32(lhsLocation.asGPR(), resultLocation.asGPR());
                else
                    m_jit.neg64(lhsLocation.asGPR(), resultLocation.asGPR());
                return;
            }

            // Fall through to general case.
        } else if (isPowerOfTwo(divisor)) {
            if constexpr (IsMod) {
                if constexpr (isSigned) {
                    // This constructs an extra operand with log2(divisor) bits equal to the sign bit of the dividend. If the dividend
                    // is positive, this is zero and adding it achieves nothing; but if the dividend is negative, this is equal to the
                    // divisor minus one, which is the exact amount of bias we need to get the correct result. Computing this for both
                    // positive and negative dividends lets us elide branching, but more importantly allows us to save a register by
                    // not needing an extra multiplySub at the end.
                    if constexpr (is32) {
                        m_jit.rshift32(lhsLocation.asGPR(), TrustedImm32(31), wasmScratchGPR);
                        m_jit.urshift32(wasmScratchGPR, TrustedImm32(32 - WTF::fastLog2(static_cast<unsigned>(divisor))), wasmScratchGPR);
                        m_jit.add32(wasmScratchGPR, lhsLocation.asGPR(), resultLocation.asGPR());
                    } else {
                        m_jit.rshift64(lhsLocation.asGPR(), TrustedImm32(63), wasmScratchGPR);
                        m_jit.urshift64(wasmScratchGPR, TrustedImm32(64 - WTF::fastLog2(static_cast<uint64_t>(divisor))), wasmScratchGPR);
                        m_jit.add64(wasmScratchGPR, lhsLocation.asGPR(), resultLocation.asGPR());
                    }

                    lhsLocation = resultLocation;
                }

                if constexpr (is32)
                    m_jit.and32(Imm32(static_cast<uint32_t>(divisor) - 1), lhsLocation.asGPR(), resultLocation.asGPR());
                else
                    m_jit.and64(TrustedImm64(static_cast<uint64_t>(divisor) - 1), lhsLocation.asGPR(), resultLocation.asGPR());

                if constexpr (isSigned) {
                    // The extra operand we computed is still in wasmScratchGPR - now we can subtract it from the result to get the
                    // correct answer.
                    if constexpr (is32)
                        m_jit.sub32(resultLocation.asGPR(), wasmScratchGPR, resultLocation.asGPR());
                    else
                        m_jit.sub64(resultLocation.asGPR(), wasmScratchGPR, resultLocation.asGPR());
                }
                return;
            }

            if constexpr (isSigned) {
                // If we are doing signed division, we need to bias the dividend for negative numbers.
                if constexpr (is32)
                    m_jit.add32(TrustedImm32(static_cast<int32_t>(divisor) - 1), lhsLocation.asGPR(), wasmScratchGPR);
                else
                    m_jit.add64(TrustedImm64(divisor - 1), lhsLocation.asGPR(), wasmScratchGPR);

                // moveConditionally seems to be faster than a branch here, even if it's well predicted.
                if (is32)
                    m_jit.moveConditionally32(RelationalCondition::GreaterThanOrEqual, lhsLocation.asGPR(), TrustedImm32(0), lhsLocation.asGPR(), wasmScratchGPR, wasmScratchGPR);
                else
                    m_jit.moveConditionally64(RelationalCondition::GreaterThanOrEqual, lhsLocation.asGPR(), TrustedImm32(0), lhsLocation.asGPR(), wasmScratchGPR, wasmScratchGPR);
                lhsLocation = Location::fromGPR(wasmScratchGPR);
            }

            // Emit the actual division instruction: arithmetic shift if signed,
            // logical shift if unsigned
            if constexpr (isSigned) {
                if constexpr (is32)
                    m_jit.rshift32(lhsLocation.asGPR(), m_jit.trustedImm32ForShift(Imm32(WTF::fastLog2(static_cast<unsigned>(divisor)))), resultLocation.asGPR());
                else
                    m_jit.rshift64(lhsLocation.asGPR(), TrustedImm32(WTF::fastLog2(static_cast<uint64_t>(divisor))), resultLocation.asGPR());
            } else {
                if constexpr (is32)
                    m_jit.urshift32(lhsLocation.asGPR(), m_jit.trustedImm32ForShift(Imm32(WTF::fastLog2(static_cast<unsigned>(divisor)))), resultLocation.asGPR());
                else
                    m_jit.urshift64(lhsLocation.asGPR(), TrustedImm32(WTF::fastLog2(static_cast<uint64_t>(divisor))), resultLocation.asGPR());
            }

            return;
        }
        // TODO: try generating integer reciprocal instead.
        checkedForNegativeOne = true;
        checkedForZero = true;
        rhsLocation = Location::fromGPR(wasmScratchGPR);
        emitMoveConst(rhs, rhsLocation);
        // Fall through to register/register div.
    } else if (lhs.isConst()) {
        int64_t dividend = is32 ? lhs.asI32() : lhs.asI64();

        Jump isZero = is32
            ? m_jit.branchTest32(ResultCondition::Zero, rhsLocation.asGPR())
            : m_jit.branchTest64(ResultCondition::Zero, rhsLocation.asGPR());
        throwExceptionIf(ExceptionType::DivisionByZero, isZero);
        checkedForZero = true;

        if (!dividend) {
            if constexpr (is32)
                m_jit.xor32(resultLocation.asGPR(), resultLocation.asGPR());
            else
                m_jit.xor64(resultLocation.asGPR(), resultLocation.asGPR());
            return;
        }
        if (isSigned && !IsMod && dividend == std::numeric_limits<IntType>::min()) {
            Jump isNegativeOne = is32
                ? m_jit.branch32(RelationalCondition::Equal, rhsLocation.asGPR(), TrustedImm32(-1))
                : m_jit.branch64(RelationalCondition::Equal, rhsLocation.asGPR(), TrustedImm64(-1));
            throwExceptionIf(ExceptionType::IntegerOverflow, isNegativeOne);
        }
        checkedForNegativeOne = true;

        lhsLocation = Location::fromGPR(wasmScratchGPR);
        emitMoveConst(lhs, lhsLocation);
        // Fall through to register/register div.
    }

    if (!checkedForZero) {
        Jump isZero = is32
            ? m_jit.branchTest32(ResultCondition::Zero, rhsLocation.asGPR())
            : m_jit.branchTest64(ResultCondition::Zero, rhsLocation.asGPR());
        throwExceptionIf(ExceptionType::DivisionByZero, isZero);
    }

    ScratchScope<1, 0> scratches(*this, lhsLocation, rhsLocation, resultLocation);
    if (isSigned && !IsMod && !checkedForNegativeOne) {
        // The following code freely clobbers wasmScratchGPR. This would be a bug if either of our operands were
        // stored in wasmScratchGPR, which is the case if one of our operands is a constant - but in that case,
        // we should be able to rule out this check based on the value of that constant above.
        ASSERT(!lhs.isConst());
        ASSERT(!rhs.isConst());
        ASSERT(lhsLocation.asGPR() != wasmScratchGPR);
        ASSERT(rhsLocation.asGPR() != wasmScratchGPR);

        if constexpr (is32)
            m_jit.compare32(RelationalCondition::Equal, rhsLocation.asGPR(), TrustedImm32(-1), wasmScratchGPR);
        else
            m_jit.compare64(RelationalCondition::Equal, rhsLocation.asGPR(), TrustedImm32(-1), wasmScratchGPR);
        if constexpr (is32)
            m_jit.compare32(RelationalCondition::Equal, lhsLocation.asGPR(), TrustedImm32(std::numeric_limits<int32_t>::min()), scratches.gpr(0));
        else {
            m_jit.move(TrustedImm64(std::numeric_limits<int64_t>::min()), scratches.gpr(0));
            m_jit.compare64(RelationalCondition::Equal, lhsLocation.asGPR(), scratches.gpr(0), scratches.gpr(0));
        }
        m_jit.and64(wasmScratchGPR, scratches.gpr(0), wasmScratchGPR);
        Jump isNegativeOne = m_jit.branchTest64(ResultCondition::NonZero, wasmScratchGPR);
        throwExceptionIf(ExceptionType::IntegerOverflow, isNegativeOne);
    }

    GPRReg divResult = IsMod ? scratches.gpr(0) : resultLocation.asGPR();
    if (is32 && isSigned)
        m_jit.div32(lhsLocation.asGPR(), rhsLocation.asGPR(), divResult);
    else if (is32)
        m_jit.uDiv32(lhsLocation.asGPR(), rhsLocation.asGPR(), divResult);
    else if (isSigned)
        m_jit.div64(lhsLocation.asGPR(), rhsLocation.asGPR(), divResult);
    else
        m_jit.uDiv64(lhsLocation.asGPR(), rhsLocation.asGPR(), divResult);

    if (IsMod) {
        if (is32)
            m_jit.multiplySub32(divResult, rhsLocation.asGPR(), lhsLocation.asGPR(), resultLocation.asGPR());
        else
            m_jit.multiplySub64(divResult, rhsLocation.asGPR(), lhsLocation.asGPR(), resultLocation.asGPR());
    }
}
#endif

#if CPU(X86_64)
#define PREPARE_FOR_SHIFT \
    do { \
        clobber(shiftRCX); \
    } while (false); \
    ScratchScope<0, 0> scratches(*this, Location::fromGPR(shiftRCX))
#else
#define PREPARE_FOR_SHIFT
#endif

template<size_t N, typename OverflowHandler>
void BBQJIT::emitShuffleMove(Vector<Value, N, OverflowHandler>& srcVector, Vector<Location, N, OverflowHandler>& dstVector, Vector<ShuffleStatus, N, OverflowHandler>& statusVector, unsigned index)
{
    Location srcLocation = locationOf(srcVector[index]);
    Location dst = dstVector[index];
    if (srcLocation == dst)
        return; // Easily eliminate redundant moves here.

    statusVector[index] = ShuffleStatus::BeingMoved;
    for (unsigned i = 0; i < srcVector.size(); i ++) {
        // This check should handle constants too - constants always have location None, and no
        // dst should ever be a constant. But we assume that's asserted in the caller.
        if (locationOf(srcVector[i]) == dst) {
            switch (statusVector[i]) {
            case ShuffleStatus::ToMove:
                emitShuffleMove(srcVector, dstVector, statusVector, i);
                break;
            case ShuffleStatus::BeingMoved: {
                Location temp = srcVector[i].isFloat() ? Location::fromFPR(wasmScratchFPR) : Location::fromGPR(wasmScratchGPR);
                emitMove(srcVector[i], temp);
                srcVector[i] = Value::pinned(srcVector[i].type(), temp);
                break;
            }
            case ShuffleStatus::Moved:
                break;
            }
        }
    }
    emitMove(srcVector[index], dst);
    statusVector[index] = ShuffleStatus::Moved;
}

template<typename Func, size_t N>
void BBQJIT::emitCCall(Func function, const Vector<Value, N>& arguments)
{
    // Currently, we assume the Wasm calling convention is the same as the C calling convention
    Vector<Type, 16> resultTypes;
    auto argumentTypes = WTF::map<16>(arguments, [](auto& value) {
        return Type { value.type(), 0u };
    });
    RefPtr<TypeDefinition> functionType = TypeInformation::typeDefinitionForFunction(resultTypes, argumentTypes);
    CallInformation callInfo = wasmCallingConvention().callInformationFor(*functionType, CallRole::Caller);
    Checked<int32_t> calleeStackSize = WTF::roundUpToMultipleOf<stackAlignmentBytes()>(callInfo.headerAndArgumentStackSizeInBytes);
    m_maxCalleeStackSize = std::max<int>(calleeStackSize, m_maxCalleeStackSize);

    // Prepare wasm operation calls.
    m_jit.prepareWasmCallOperation(GPRInfo::wasmContextInstancePointer);

    // Preserve caller-saved registers and other info
    prepareForExceptions();
    saveValuesAcrossCallAndPassArguments(arguments, callInfo, *functionType);

    // Materialize address of native function and call register
    void* taggedFunctionPtr = tagCFunctionPtr<void*, OperationPtrTag>(function);
    m_jit.move(TrustedImmPtr(std::bit_cast<uintptr_t>(taggedFunctionPtr)), wasmScratchGPR);
    m_jit.call(wasmScratchGPR, OperationPtrTag);
}

template<typename Func, size_t N>
void BBQJIT::emitCCall(Func function, const Vector<Value, N>& arguments, Value& result)
{
    ASSERT(result.isTemp());

    // Currently, we assume the Wasm calling convention is the same as the C calling convention
    Vector<Type, 16> resultTypes = { Type { result.type(), 0u } };
    auto argumentTypes = WTF::map<16>(arguments, [](auto& value) {
        return Type { value.type(), 0u };
    });

    RefPtr<TypeDefinition> functionType = TypeInformation::typeDefinitionForFunction(resultTypes, argumentTypes);
    CallInformation callInfo = wasmCallingConvention().callInformationFor(*functionType, CallRole::Caller);
    Checked<int32_t> calleeStackSize = WTF::roundUpToMultipleOf<stackAlignmentBytes()>(callInfo.headerAndArgumentStackSizeInBytes);
    m_maxCalleeStackSize = std::max<int>(calleeStackSize, m_maxCalleeStackSize);

    // Prepare wasm operation calls.
    m_jit.prepareWasmCallOperation(GPRInfo::wasmContextInstancePointer);

    // Preserve caller-saved registers and other info
    prepareForExceptions();
    saveValuesAcrossCallAndPassArguments(arguments, callInfo, *functionType);

    // Materialize address of native function and call register
    void* taggedFunctionPtr = tagCFunctionPtr<void*, OperationPtrTag>(function);
    m_jit.move(TrustedImmPtr(std::bit_cast<uintptr_t>(taggedFunctionPtr)), wasmScratchGPR);
    m_jit.call(wasmScratchGPR, OperationPtrTag);

    Location resultLocation;
    switch (result.type()) {
    case TypeKind::I32:
    case TypeKind::I31ref:
    case TypeKind::I64:
    case TypeKind::Ref:
    case TypeKind::RefNull:
    case TypeKind::Arrayref:
    case TypeKind::Structref:
    case TypeKind::Funcref:
    case TypeKind::Exn:
    case TypeKind::Externref:
    case TypeKind::Eqref:
    case TypeKind::Anyref:
    case TypeKind::Nullexn:
    case TypeKind::Nullref:
    case TypeKind::Nullfuncref:
    case TypeKind::Nullexternref:
    case TypeKind::Rec:
    case TypeKind::Sub:
    case TypeKind::Subfinal:
    case TypeKind::Array:
    case TypeKind::Struct:
    case TypeKind::Func: {
        resultLocation = Location::fromGPR(GPRInfo::returnValueGPR);
        ASSERT(m_validGPRs.contains(GPRInfo::returnValueGPR, IgnoreVectors));
        break;
    }
    case TypeKind::F32:
    case TypeKind::F64: {
        resultLocation = Location::fromFPR(FPRInfo::returnValueFPR);
        ASSERT(m_validFPRs.contains(FPRInfo::returnValueFPR, Width::Width128));
        break;
    }
    case TypeKind::V128: {
        resultLocation = Location::fromFPR(FPRInfo::returnValueFPR);
        ASSERT(m_validFPRs.contains(FPRInfo::returnValueFPR, Width::Width128));
        break;
    }
    case TypeKind::Void:
        RELEASE_ASSERT_NOT_REACHED();
        break;
    }

    RegisterBinding currentBinding;
    if (resultLocation.isGPR())
        currentBinding = m_gprBindings[resultLocation.asGPR()];
    else if (resultLocation.isFPR())
        currentBinding = m_fprBindings[resultLocation.asFPR()];
    RELEASE_ASSERT(!currentBinding.isScratch());

    bind(result, resultLocation);
}

} } } // namespace JSC::Wasm::BBQJITImpl

#endif // USE(JSVALUE64)
#endif // ENABLE(WEBASSEMBLY_BBQJIT)