1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkPoint3_DEFINED
#define SkPoint3_DEFINED
#include "include/core/SkScalar.h"
#include "include/private/base/SkAPI.h"
#include "include/private/base/SkFloatingPoint.h"
struct SK_API SkPoint3 {
SkScalar fX, fY, fZ;
static SkPoint3 Make(SkScalar x, SkScalar y, SkScalar z) {
SkPoint3 pt;
pt.set(x, y, z);
return pt;
}
SkScalar x() const { return fX; }
SkScalar y() const { return fY; }
SkScalar z() const { return fZ; }
void set(SkScalar x, SkScalar y, SkScalar z) { fX = x; fY = y; fZ = z; }
friend bool operator==(const SkPoint3& a, const SkPoint3& b) {
return a.fX == b.fX && a.fY == b.fY && a.fZ == b.fZ;
}
friend bool operator!=(const SkPoint3& a, const SkPoint3& b) {
return !(a == b);
}
/** Returns the Euclidian distance from (0,0,0) to (x,y,z)
*/
static SkScalar Length(SkScalar x, SkScalar y, SkScalar z);
/** Return the Euclidian distance from (0,0,0) to the point
*/
SkScalar length() const { return SkPoint3::Length(fX, fY, fZ); }
/** Set the point (vector) to be unit-length in the same direction as it
already points. If the point has a degenerate length (i.e., nearly 0)
then set it to (0,0,0) and return false; otherwise return true.
*/
bool normalize();
/** Return a new point whose X, Y and Z coordinates are scaled.
*/
SkPoint3 makeScale(SkScalar scale) const {
SkPoint3 p;
p.set(scale * fX, scale * fY, scale * fZ);
return p;
}
/** Scale the point's coordinates by scale.
*/
void scale(SkScalar value) {
fX *= value;
fY *= value;
fZ *= value;
}
/** Return a new point whose X, Y and Z coordinates are the negative of the
original point's
*/
SkPoint3 operator-() const {
SkPoint3 neg;
neg.fX = -fX;
neg.fY = -fY;
neg.fZ = -fZ;
return neg;
}
/** Returns a new point whose coordinates are the difference between
a and b (i.e., a - b)
*/
friend SkPoint3 operator-(const SkPoint3& a, const SkPoint3& b) {
return { a.fX - b.fX, a.fY - b.fY, a.fZ - b.fZ };
}
/** Returns a new point whose coordinates are the sum of a and b (a + b)
*/
friend SkPoint3 operator+(const SkPoint3& a, const SkPoint3& b) {
return { a.fX + b.fX, a.fY + b.fY, a.fZ + b.fZ };
}
/** Add v's coordinates to the point's
*/
void operator+=(const SkPoint3& v) {
fX += v.fX;
fY += v.fY;
fZ += v.fZ;
}
/** Subtract v's coordinates from the point's
*/
void operator-=(const SkPoint3& v) {
fX -= v.fX;
fY -= v.fY;
fZ -= v.fZ;
}
friend SkPoint3 operator*(SkScalar t, SkPoint3 p) {
return { t * p.fX, t * p.fY, t * p.fZ };
}
/** Returns true if fX, fY, and fZ are measurable values.
@return true for values other than infinities and NaN
*/
bool isFinite() const {
return SkIsFinite(fX, fY, fZ);
}
/** Returns the dot product of a and b, treating them as 3D vectors
*/
static SkScalar DotProduct(const SkPoint3& a, const SkPoint3& b) {
return a.fX * b.fX + a.fY * b.fY + a.fZ * b.fZ;
}
SkScalar dot(const SkPoint3& vec) const {
return DotProduct(*this, vec);
}
/** Returns the cross product of a and b, treating them as 3D vectors
*/
static SkPoint3 CrossProduct(const SkPoint3& a, const SkPoint3& b) {
SkPoint3 result;
result.fX = a.fY*b.fZ - a.fZ*b.fY;
result.fY = a.fZ*b.fX - a.fX*b.fZ;
result.fZ = a.fX*b.fY - a.fY*b.fX;
return result;
}
SkPoint3 cross(const SkPoint3& vec) const {
return CrossProduct(*this, vec);
}
};
typedef SkPoint3 SkVector3;
typedef SkPoint3 SkColor3f;
#endif
|