1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
|
/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/skcms_public.h" // NO_G3_REWRITE
#include "src/skcms_internals.h" // NO_G3_REWRITE
#include "src/skcms_Transform.h" // NO_G3_REWRITE
#include <assert.h>
#include <float.h>
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#if defined(__ARM_NEON)
#include <arm_neon.h>
#elif defined(__SSE__)
#include <immintrin.h>
#if defined(__clang__)
// That #include <immintrin.h> is usually enough, but Clang's headers
// "helpfully" skip including the whole kitchen sink when _MSC_VER is
// defined, because lots of programs on Windows would include that and
// it'd be a lot slower. But we want all those headers included so we
// can use their features after runtime checks later.
#include <smmintrin.h>
#include <avxintrin.h>
#include <avx2intrin.h>
#include <avx512fintrin.h>
#include <avx512dqintrin.h>
#endif
#endif
using namespace skcms_private;
static bool sAllowRuntimeCPUDetection = true;
void skcms_DisableRuntimeCPUDetection() {
sAllowRuntimeCPUDetection = false;
}
static float log2f_(float x) {
// The first approximation of log2(x) is its exponent 'e', minus 127.
int32_t bits;
memcpy(&bits, &x, sizeof(bits));
float e = (float)bits * (1.0f / (1<<23));
// If we use the mantissa too we can refine the error signficantly.
int32_t m_bits = (bits & 0x007fffff) | 0x3f000000;
float m;
memcpy(&m, &m_bits, sizeof(m));
return (e - 124.225514990f
- 1.498030302f*m
- 1.725879990f/(0.3520887068f + m));
}
static float logf_(float x) {
const float ln2 = 0.69314718f;
return ln2*log2f_(x);
}
static float exp2f_(float x) {
if (x > 128.0f) {
return INFINITY_;
} else if (x < -127.0f) {
return 0.0f;
}
float fract = x - floorf_(x);
float fbits = (1.0f * (1<<23)) * (x + 121.274057500f
- 1.490129070f*fract
+ 27.728023300f/(4.84252568f - fract));
// Before we cast fbits to int32_t, check for out of range values to pacify UBSAN.
// INT_MAX is not exactly representable as a float, so exclude it as effectively infinite.
// Negative values are effectively underflow - we'll end up returning a (different) negative
// value, which makes no sense. So clamp to zero.
if (fbits >= (float)INT_MAX) {
return INFINITY_;
} else if (fbits < 0) {
return 0;
}
int32_t bits = (int32_t)fbits;
memcpy(&x, &bits, sizeof(x));
return x;
}
// Not static, as it's used by some test tools.
float powf_(float x, float y) {
if (x <= 0.f) {
return 0.f;
}
if (x == 1.f) {
return 1.f;
}
return exp2f_(log2f_(x) * y);
}
static float expf_(float x) {
const float log2_e = 1.4426950408889634074f;
return exp2f_(log2_e * x);
}
static float fmaxf_(float x, float y) { return x > y ? x : y; }
static float fminf_(float x, float y) { return x < y ? x : y; }
static bool isfinitef_(float x) { return 0 == x*0; }
static float minus_1_ulp(float x) {
int32_t bits;
memcpy(&bits, &x, sizeof(bits));
bits = bits - 1;
memcpy(&x, &bits, sizeof(bits));
return x;
}
// Most transfer functions we work with are sRGBish.
// For exotic HDR transfer functions, we encode them using a tf.g that makes no sense,
// and repurpose the other fields to hold the parameters of the HDR functions.
struct TF_PQish { float A,B,C,D,E,F; };
struct TF_HLGish { float R,G,a,b,c,K_minus_1; };
// We didn't originally support a scale factor K for HLG, and instead just stored 0 in
// the unused `f` field of skcms_TransferFunction for HLGish and HLGInvish transfer functions.
// By storing f=K-1, those old unusued f=0 values now mean K=1, a noop scale factor.
static float TFKind_marker(skcms_TFType kind) {
// We'd use different NaNs, but those aren't guaranteed to be preserved by WASM.
return -(float)kind;
}
static skcms_TFType classify(const skcms_TransferFunction& tf, TF_PQish* pq = nullptr
, TF_HLGish* hlg = nullptr) {
if (tf.g < 0) {
// Negative "g" is mapped to enum values; large negative are for sure invalid.
if (tf.g < -128) {
return skcms_TFType_Invalid;
}
int enum_g = -static_cast<int>(tf.g);
// Non-whole "g" values are invalid as well.
if (static_cast<float>(-enum_g) != tf.g) {
return skcms_TFType_Invalid;
}
// TODO: soundness checks for PQ/HLG like we do for sRGBish?
switch (enum_g) {
case skcms_TFType_PQish:
if (pq) {
memcpy(pq , &tf.a, sizeof(*pq ));
}
return skcms_TFType_PQish;
case skcms_TFType_HLGish:
if (hlg) {
memcpy(hlg, &tf.a, sizeof(*hlg));
}
return skcms_TFType_HLGish;
case skcms_TFType_HLGinvish:
if (hlg) {
memcpy(hlg, &tf.a, sizeof(*hlg));
}
return skcms_TFType_HLGinvish;
}
return skcms_TFType_Invalid;
}
// Basic soundness checks for sRGBish transfer functions.
if (isfinitef_(tf.a + tf.b + tf.c + tf.d + tf.e + tf.f + tf.g)
// a,c,d,g should be non-negative to make any sense.
&& tf.a >= 0
&& tf.c >= 0
&& tf.d >= 0
&& tf.g >= 0
// Raising a negative value to a fractional tf->g produces complex numbers.
&& tf.a * tf.d + tf.b >= 0) {
return skcms_TFType_sRGBish;
}
return skcms_TFType_Invalid;
}
skcms_TFType skcms_TransferFunction_getType(const skcms_TransferFunction* tf) {
return classify(*tf);
}
bool skcms_TransferFunction_isSRGBish(const skcms_TransferFunction* tf) {
return classify(*tf) == skcms_TFType_sRGBish;
}
bool skcms_TransferFunction_isPQish(const skcms_TransferFunction* tf) {
return classify(*tf) == skcms_TFType_PQish;
}
bool skcms_TransferFunction_isHLGish(const skcms_TransferFunction* tf) {
return classify(*tf) == skcms_TFType_HLGish;
}
bool skcms_TransferFunction_makePQish(skcms_TransferFunction* tf,
float A, float B, float C,
float D, float E, float F) {
*tf = { TFKind_marker(skcms_TFType_PQish), A,B,C,D,E,F };
assert(skcms_TransferFunction_isPQish(tf));
return true;
}
bool skcms_TransferFunction_makeScaledHLGish(skcms_TransferFunction* tf,
float K, float R, float G,
float a, float b, float c) {
*tf = { TFKind_marker(skcms_TFType_HLGish), R,G, a,b,c, K-1.0f };
assert(skcms_TransferFunction_isHLGish(tf));
return true;
}
float skcms_TransferFunction_eval(const skcms_TransferFunction* tf, float x) {
float sign = x < 0 ? -1.0f : 1.0f;
x *= sign;
TF_PQish pq;
TF_HLGish hlg;
switch (classify(*tf, &pq, &hlg)) {
case skcms_TFType_Invalid: break;
case skcms_TFType_HLGish: {
const float K = hlg.K_minus_1 + 1.0f;
return K * sign * (x*hlg.R <= 1 ? powf_(x*hlg.R, hlg.G)
: expf_((x-hlg.c)*hlg.a) + hlg.b);
}
// skcms_TransferFunction_invert() inverts R, G, and a for HLGinvish so this math is fast.
case skcms_TFType_HLGinvish: {
const float K = hlg.K_minus_1 + 1.0f;
x /= K;
return sign * (x <= 1 ? hlg.R * powf_(x, hlg.G)
: hlg.a * logf_(x - hlg.b) + hlg.c);
}
case skcms_TFType_sRGBish:
return sign * (x < tf->d ? tf->c * x + tf->f
: powf_(tf->a * x + tf->b, tf->g) + tf->e);
case skcms_TFType_PQish:
return sign *
powf_((pq.A + pq.B * powf_(x, pq.C)) / (pq.D + pq.E * powf_(x, pq.C)), pq.F);
}
return 0;
}
static float eval_curve(const skcms_Curve* curve, float x) {
if (curve->table_entries == 0) {
return skcms_TransferFunction_eval(&curve->parametric, x);
}
float ix = fmaxf_(0, fminf_(x, 1)) * static_cast<float>(curve->table_entries - 1);
int lo = (int) ix ,
hi = (int)(float)minus_1_ulp(ix + 1.0f);
float t = ix - (float)lo;
float l, h;
if (curve->table_8) {
l = curve->table_8[lo] * (1/255.0f);
h = curve->table_8[hi] * (1/255.0f);
} else {
uint16_t be_l, be_h;
memcpy(&be_l, curve->table_16 + 2*lo, 2);
memcpy(&be_h, curve->table_16 + 2*hi, 2);
uint16_t le_l = ((be_l << 8) | (be_l >> 8)) & 0xffff;
uint16_t le_h = ((be_h << 8) | (be_h >> 8)) & 0xffff;
l = le_l * (1/65535.0f);
h = le_h * (1/65535.0f);
}
return l + (h-l)*t;
}
float skcms_MaxRoundtripError(const skcms_Curve* curve, const skcms_TransferFunction* inv_tf) {
uint32_t N = curve->table_entries > 256 ? curve->table_entries : 256;
const float dx = 1.0f / static_cast<float>(N - 1);
float err = 0;
for (uint32_t i = 0; i < N; i++) {
float x = static_cast<float>(i) * dx,
y = eval_curve(curve, x);
err = fmaxf_(err, fabsf_(x - skcms_TransferFunction_eval(inv_tf, y)));
}
return err;
}
bool skcms_AreApproximateInverses(const skcms_Curve* curve, const skcms_TransferFunction* inv_tf) {
return skcms_MaxRoundtripError(curve, inv_tf) < (1/512.0f);
}
// Additional ICC signature values that are only used internally
enum {
// File signature
skcms_Signature_acsp = 0x61637370,
// Tag signatures
skcms_Signature_rTRC = 0x72545243,
skcms_Signature_gTRC = 0x67545243,
skcms_Signature_bTRC = 0x62545243,
skcms_Signature_kTRC = 0x6B545243,
skcms_Signature_rXYZ = 0x7258595A,
skcms_Signature_gXYZ = 0x6758595A,
skcms_Signature_bXYZ = 0x6258595A,
skcms_Signature_A2B0 = 0x41324230,
skcms_Signature_B2A0 = 0x42324130,
skcms_Signature_CHAD = 0x63686164,
skcms_Signature_WTPT = 0x77747074,
skcms_Signature_CICP = 0x63696370,
// Type signatures
skcms_Signature_curv = 0x63757276,
skcms_Signature_mft1 = 0x6D667431,
skcms_Signature_mft2 = 0x6D667432,
skcms_Signature_mAB = 0x6D414220,
skcms_Signature_mBA = 0x6D424120,
skcms_Signature_para = 0x70617261,
skcms_Signature_sf32 = 0x73663332,
// XYZ is also a PCS signature, so it's defined in skcms.h
// skcms_Signature_XYZ = 0x58595A20,
};
static uint16_t read_big_u16(const uint8_t* ptr) {
uint16_t be;
memcpy(&be, ptr, sizeof(be));
#if defined(_MSC_VER)
return _byteswap_ushort(be);
#else
return __builtin_bswap16(be);
#endif
}
static uint32_t read_big_u32(const uint8_t* ptr) {
uint32_t be;
memcpy(&be, ptr, sizeof(be));
#if defined(_MSC_VER)
return _byteswap_ulong(be);
#else
return __builtin_bswap32(be);
#endif
}
static int32_t read_big_i32(const uint8_t* ptr) {
return (int32_t)read_big_u32(ptr);
}
static float read_big_fixed(const uint8_t* ptr) {
return static_cast<float>(read_big_i32(ptr)) * (1.0f / 65536.0f);
}
// Maps to an in-memory profile so that fields line up to the locations specified
// in ICC.1:2010, section 7.2
typedef struct {
uint8_t size [ 4];
uint8_t cmm_type [ 4];
uint8_t version [ 4];
uint8_t profile_class [ 4];
uint8_t data_color_space [ 4];
uint8_t pcs [ 4];
uint8_t creation_date_time [12];
uint8_t signature [ 4];
uint8_t platform [ 4];
uint8_t flags [ 4];
uint8_t device_manufacturer [ 4];
uint8_t device_model [ 4];
uint8_t device_attributes [ 8];
uint8_t rendering_intent [ 4];
uint8_t illuminant_X [ 4];
uint8_t illuminant_Y [ 4];
uint8_t illuminant_Z [ 4];
uint8_t creator [ 4];
uint8_t profile_id [16];
uint8_t reserved [28];
uint8_t tag_count [ 4]; // Technically not part of header, but required
} header_Layout;
typedef struct {
uint8_t signature [4];
uint8_t offset [4];
uint8_t size [4];
} tag_Layout;
static const tag_Layout* get_tag_table(const skcms_ICCProfile* profile) {
return (const tag_Layout*)(profile->buffer + SAFE_SIZEOF(header_Layout));
}
// s15Fixed16ArrayType is technically variable sized, holding N values. However, the only valid
// use of the type is for the CHAD tag that stores exactly nine values.
typedef struct {
uint8_t type [ 4];
uint8_t reserved [ 4];
uint8_t values [36];
} sf32_Layout;
bool skcms_GetCHAD(const skcms_ICCProfile* profile, skcms_Matrix3x3* m) {
skcms_ICCTag tag;
if (!skcms_GetTagBySignature(profile, skcms_Signature_CHAD, &tag)) {
return false;
}
if (tag.type != skcms_Signature_sf32 || tag.size < SAFE_SIZEOF(sf32_Layout)) {
return false;
}
const sf32_Layout* sf32Tag = (const sf32_Layout*)tag.buf;
const uint8_t* values = sf32Tag->values;
for (int r = 0; r < 3; ++r)
for (int c = 0; c < 3; ++c, values += 4) {
m->vals[r][c] = read_big_fixed(values);
}
return true;
}
// XYZType is technically variable sized, holding N XYZ triples. However, the only valid uses of
// the type are for tags/data that store exactly one triple.
typedef struct {
uint8_t type [4];
uint8_t reserved [4];
uint8_t X [4];
uint8_t Y [4];
uint8_t Z [4];
} XYZ_Layout;
static bool read_tag_xyz(const skcms_ICCTag* tag, float* x, float* y, float* z) {
if (tag->type != skcms_Signature_XYZ || tag->size < SAFE_SIZEOF(XYZ_Layout)) {
return false;
}
const XYZ_Layout* xyzTag = (const XYZ_Layout*)tag->buf;
*x = read_big_fixed(xyzTag->X);
*y = read_big_fixed(xyzTag->Y);
*z = read_big_fixed(xyzTag->Z);
return true;
}
bool skcms_GetWTPT(const skcms_ICCProfile* profile, float xyz[3]) {
skcms_ICCTag tag;
return skcms_GetTagBySignature(profile, skcms_Signature_WTPT, &tag) &&
read_tag_xyz(&tag, &xyz[0], &xyz[1], &xyz[2]);
}
static int data_color_space_channel_count(uint32_t data_color_space) {
switch (data_color_space) {
case skcms_Signature_CMYK: return 4;
case skcms_Signature_Gray: return 1;
case skcms_Signature_RGB: return 3;
case skcms_Signature_Lab: return 3;
case skcms_Signature_XYZ: return 3;
case skcms_Signature_CIELUV: return 3;
case skcms_Signature_YCbCr: return 3;
case skcms_Signature_CIEYxy: return 3;
case skcms_Signature_HSV: return 3;
case skcms_Signature_HLS: return 3;
case skcms_Signature_CMY: return 3;
case skcms_Signature_2CLR: return 2;
case skcms_Signature_3CLR: return 3;
case skcms_Signature_4CLR: return 4;
case skcms_Signature_5CLR: return 5;
case skcms_Signature_6CLR: return 6;
case skcms_Signature_7CLR: return 7;
case skcms_Signature_8CLR: return 8;
case skcms_Signature_9CLR: return 9;
case skcms_Signature_10CLR: return 10;
case skcms_Signature_11CLR: return 11;
case skcms_Signature_12CLR: return 12;
case skcms_Signature_13CLR: return 13;
case skcms_Signature_14CLR: return 14;
case skcms_Signature_15CLR: return 15;
default: return -1;
}
}
int skcms_GetInputChannelCount(const skcms_ICCProfile* profile) {
int a2b_count = 0;
if (profile->has_A2B) {
a2b_count = profile->A2B.input_channels != 0
? static_cast<int>(profile->A2B.input_channels)
: 3;
}
skcms_ICCTag tag;
int trc_count = 0;
if (skcms_GetTagBySignature(profile, skcms_Signature_kTRC, &tag)) {
trc_count = 1;
} else if (profile->has_trc) {
trc_count = 3;
}
int dcs_count = data_color_space_channel_count(profile->data_color_space);
if (dcs_count < 0) {
return -1;
}
if (a2b_count > 0 && a2b_count != dcs_count) {
return -1;
}
if (trc_count > 0 && trc_count != dcs_count) {
return -1;
}
return dcs_count;
}
static bool read_to_XYZD50(const skcms_ICCTag* rXYZ, const skcms_ICCTag* gXYZ,
const skcms_ICCTag* bXYZ, skcms_Matrix3x3* toXYZ) {
return read_tag_xyz(rXYZ, &toXYZ->vals[0][0], &toXYZ->vals[1][0], &toXYZ->vals[2][0]) &&
read_tag_xyz(gXYZ, &toXYZ->vals[0][1], &toXYZ->vals[1][1], &toXYZ->vals[2][1]) &&
read_tag_xyz(bXYZ, &toXYZ->vals[0][2], &toXYZ->vals[1][2], &toXYZ->vals[2][2]);
}
typedef struct {
uint8_t type [4];
uint8_t reserved_a [4];
uint8_t function_type [2];
uint8_t reserved_b [2];
uint8_t variable [1/*variable*/]; // 1, 3, 4, 5, or 7 s15.16, depending on function_type
} para_Layout;
static bool read_curve_para(const uint8_t* buf, uint32_t size,
skcms_Curve* curve, uint32_t* curve_size) {
if (size < SAFE_FIXED_SIZE(para_Layout)) {
return false;
}
const para_Layout* paraTag = (const para_Layout*)buf;
enum { kG = 0, kGAB = 1, kGABC = 2, kGABCD = 3, kGABCDEF = 4 };
uint16_t function_type = read_big_u16(paraTag->function_type);
if (function_type > kGABCDEF) {
return false;
}
static const uint32_t curve_bytes[] = { 4, 12, 16, 20, 28 };
if (size < SAFE_FIXED_SIZE(para_Layout) + curve_bytes[function_type]) {
return false;
}
if (curve_size) {
*curve_size = SAFE_FIXED_SIZE(para_Layout) + curve_bytes[function_type];
}
curve->table_entries = 0;
curve->parametric.a = 1.0f;
curve->parametric.b = 0.0f;
curve->parametric.c = 0.0f;
curve->parametric.d = 0.0f;
curve->parametric.e = 0.0f;
curve->parametric.f = 0.0f;
curve->parametric.g = read_big_fixed(paraTag->variable);
switch (function_type) {
case kGAB:
curve->parametric.a = read_big_fixed(paraTag->variable + 4);
curve->parametric.b = read_big_fixed(paraTag->variable + 8);
if (curve->parametric.a == 0) {
return false;
}
curve->parametric.d = -curve->parametric.b / curve->parametric.a;
break;
case kGABC:
curve->parametric.a = read_big_fixed(paraTag->variable + 4);
curve->parametric.b = read_big_fixed(paraTag->variable + 8);
curve->parametric.e = read_big_fixed(paraTag->variable + 12);
if (curve->parametric.a == 0) {
return false;
}
curve->parametric.d = -curve->parametric.b / curve->parametric.a;
curve->parametric.f = curve->parametric.e;
break;
case kGABCD:
curve->parametric.a = read_big_fixed(paraTag->variable + 4);
curve->parametric.b = read_big_fixed(paraTag->variable + 8);
curve->parametric.c = read_big_fixed(paraTag->variable + 12);
curve->parametric.d = read_big_fixed(paraTag->variable + 16);
break;
case kGABCDEF:
curve->parametric.a = read_big_fixed(paraTag->variable + 4);
curve->parametric.b = read_big_fixed(paraTag->variable + 8);
curve->parametric.c = read_big_fixed(paraTag->variable + 12);
curve->parametric.d = read_big_fixed(paraTag->variable + 16);
curve->parametric.e = read_big_fixed(paraTag->variable + 20);
curve->parametric.f = read_big_fixed(paraTag->variable + 24);
break;
}
return skcms_TransferFunction_isSRGBish(&curve->parametric);
}
typedef struct {
uint8_t type [4];
uint8_t reserved [4];
uint8_t value_count [4];
uint8_t variable [1/*variable*/]; // value_count, 8.8 if 1, uint16 (n*65535) if > 1
} curv_Layout;
static bool read_curve_curv(const uint8_t* buf, uint32_t size,
skcms_Curve* curve, uint32_t* curve_size) {
if (size < SAFE_FIXED_SIZE(curv_Layout)) {
return false;
}
const curv_Layout* curvTag = (const curv_Layout*)buf;
uint32_t value_count = read_big_u32(curvTag->value_count);
if (size < SAFE_FIXED_SIZE(curv_Layout) + value_count * SAFE_SIZEOF(uint16_t)) {
return false;
}
if (curve_size) {
*curve_size = SAFE_FIXED_SIZE(curv_Layout) + value_count * SAFE_SIZEOF(uint16_t);
}
if (value_count < 2) {
curve->table_entries = 0;
curve->parametric.a = 1.0f;
curve->parametric.b = 0.0f;
curve->parametric.c = 0.0f;
curve->parametric.d = 0.0f;
curve->parametric.e = 0.0f;
curve->parametric.f = 0.0f;
if (value_count == 0) {
// Empty tables are a shorthand for an identity curve
curve->parametric.g = 1.0f;
} else {
// Single entry tables are a shorthand for simple gamma
curve->parametric.g = read_big_u16(curvTag->variable) * (1.0f / 256.0f);
}
} else {
curve->table_8 = nullptr;
curve->table_16 = curvTag->variable;
curve->table_entries = value_count;
}
return true;
}
// Parses both curveType and parametricCurveType data. Ensures that at most 'size' bytes are read.
// If curve_size is not nullptr, writes the number of bytes used by the curve in (*curve_size).
static bool read_curve(const uint8_t* buf, uint32_t size,
skcms_Curve* curve, uint32_t* curve_size) {
if (!buf || size < 4 || !curve) {
return false;
}
uint32_t type = read_big_u32(buf);
if (type == skcms_Signature_para) {
return read_curve_para(buf, size, curve, curve_size);
} else if (type == skcms_Signature_curv) {
return read_curve_curv(buf, size, curve, curve_size);
}
return false;
}
// mft1 and mft2 share a large chunk of data
typedef struct {
uint8_t type [ 4];
uint8_t reserved_a [ 4];
uint8_t input_channels [ 1];
uint8_t output_channels [ 1];
uint8_t grid_points [ 1];
uint8_t reserved_b [ 1];
uint8_t matrix [36];
} mft_CommonLayout;
typedef struct {
mft_CommonLayout common [1];
uint8_t variable [1/*variable*/];
} mft1_Layout;
typedef struct {
mft_CommonLayout common [1];
uint8_t input_table_entries [2];
uint8_t output_table_entries [2];
uint8_t variable [1/*variable*/];
} mft2_Layout;
static bool read_mft_common(const mft_CommonLayout* mftTag, skcms_A2B* a2b) {
// MFT matrices are applied before the first set of curves, but must be identity unless the
// input is PCSXYZ. We don't support PCSXYZ profiles, so we ignore this matrix. Note that the
// matrix in skcms_A2B is applied later in the pipe, so supporting this would require another
// field/flag.
a2b->matrix_channels = 0;
a2b-> input_channels = mftTag-> input_channels[0];
a2b->output_channels = mftTag->output_channels[0];
// We require exactly three (ie XYZ/Lab/RGB) output channels
if (a2b->output_channels != ARRAY_COUNT(a2b->output_curves)) {
return false;
}
// We require at least one, and no more than four (ie CMYK) input channels
if (a2b->input_channels < 1 || a2b->input_channels > ARRAY_COUNT(a2b->input_curves)) {
return false;
}
for (uint32_t i = 0; i < a2b->input_channels; ++i) {
a2b->grid_points[i] = mftTag->grid_points[0];
}
// The grid only makes sense with at least two points along each axis
if (a2b->grid_points[0] < 2) {
return false;
}
return true;
}
// All as the A2B version above, except where noted.
static bool read_mft_common(const mft_CommonLayout* mftTag, skcms_B2A* b2a) {
// Same as A2B.
b2a->matrix_channels = 0;
b2a-> input_channels = mftTag-> input_channels[0];
b2a->output_channels = mftTag->output_channels[0];
// For B2A, exactly 3 input channels (XYZ) and 3 (RGB) or 4 (CMYK) output channels.
if (b2a->input_channels != ARRAY_COUNT(b2a->input_curves)) {
return false;
}
if (b2a->output_channels < 3 || b2a->output_channels > ARRAY_COUNT(b2a->output_curves)) {
return false;
}
// Same as A2B.
for (uint32_t i = 0; i < b2a->input_channels; ++i) {
b2a->grid_points[i] = mftTag->grid_points[0];
}
if (b2a->grid_points[0] < 2) {
return false;
}
return true;
}
template <typename A2B_or_B2A>
static bool init_tables(const uint8_t* table_base, uint64_t max_tables_len, uint32_t byte_width,
uint32_t input_table_entries, uint32_t output_table_entries,
A2B_or_B2A* out) {
// byte_width is 1 or 2, [input|output]_table_entries are in [2, 4096], so no overflow
uint32_t byte_len_per_input_table = input_table_entries * byte_width;
uint32_t byte_len_per_output_table = output_table_entries * byte_width;
// [input|output]_channels are <= 4, so still no overflow
uint32_t byte_len_all_input_tables = out->input_channels * byte_len_per_input_table;
uint32_t byte_len_all_output_tables = out->output_channels * byte_len_per_output_table;
uint64_t grid_size = out->output_channels * byte_width;
for (uint32_t axis = 0; axis < out->input_channels; ++axis) {
grid_size *= out->grid_points[axis];
}
if (max_tables_len < byte_len_all_input_tables + grid_size + byte_len_all_output_tables) {
return false;
}
for (uint32_t i = 0; i < out->input_channels; ++i) {
out->input_curves[i].table_entries = input_table_entries;
if (byte_width == 1) {
out->input_curves[i].table_8 = table_base + i * byte_len_per_input_table;
out->input_curves[i].table_16 = nullptr;
} else {
out->input_curves[i].table_8 = nullptr;
out->input_curves[i].table_16 = table_base + i * byte_len_per_input_table;
}
}
if (byte_width == 1) {
out->grid_8 = table_base + byte_len_all_input_tables;
out->grid_16 = nullptr;
} else {
out->grid_8 = nullptr;
out->grid_16 = table_base + byte_len_all_input_tables;
}
const uint8_t* output_table_base = table_base + byte_len_all_input_tables + grid_size;
for (uint32_t i = 0; i < out->output_channels; ++i) {
out->output_curves[i].table_entries = output_table_entries;
if (byte_width == 1) {
out->output_curves[i].table_8 = output_table_base + i * byte_len_per_output_table;
out->output_curves[i].table_16 = nullptr;
} else {
out->output_curves[i].table_8 = nullptr;
out->output_curves[i].table_16 = output_table_base + i * byte_len_per_output_table;
}
}
return true;
}
template <typename A2B_or_B2A>
static bool read_tag_mft1(const skcms_ICCTag* tag, A2B_or_B2A* out) {
if (tag->size < SAFE_FIXED_SIZE(mft1_Layout)) {
return false;
}
const mft1_Layout* mftTag = (const mft1_Layout*)tag->buf;
if (!read_mft_common(mftTag->common, out)) {
return false;
}
uint32_t input_table_entries = 256;
uint32_t output_table_entries = 256;
return init_tables(mftTag->variable, tag->size - SAFE_FIXED_SIZE(mft1_Layout), 1,
input_table_entries, output_table_entries, out);
}
template <typename A2B_or_B2A>
static bool read_tag_mft2(const skcms_ICCTag* tag, A2B_or_B2A* out) {
if (tag->size < SAFE_FIXED_SIZE(mft2_Layout)) {
return false;
}
const mft2_Layout* mftTag = (const mft2_Layout*)tag->buf;
if (!read_mft_common(mftTag->common, out)) {
return false;
}
uint32_t input_table_entries = read_big_u16(mftTag->input_table_entries);
uint32_t output_table_entries = read_big_u16(mftTag->output_table_entries);
// ICC spec mandates that 2 <= table_entries <= 4096
if (input_table_entries < 2 || input_table_entries > 4096 ||
output_table_entries < 2 || output_table_entries > 4096) {
return false;
}
return init_tables(mftTag->variable, tag->size - SAFE_FIXED_SIZE(mft2_Layout), 2,
input_table_entries, output_table_entries, out);
}
static bool read_curves(const uint8_t* buf, uint32_t size, uint32_t curve_offset,
uint32_t num_curves, skcms_Curve* curves) {
for (uint32_t i = 0; i < num_curves; ++i) {
if (curve_offset > size) {
return false;
}
uint32_t curve_bytes;
if (!read_curve(buf + curve_offset, size - curve_offset, &curves[i], &curve_bytes)) {
return false;
}
if (curve_bytes > UINT32_MAX - 3) {
return false;
}
curve_bytes = (curve_bytes + 3) & ~3U;
uint64_t new_offset_64 = (uint64_t)curve_offset + curve_bytes;
curve_offset = (uint32_t)new_offset_64;
if (new_offset_64 != curve_offset) {
return false;
}
}
return true;
}
// mAB and mBA tags use the same encoding, including color lookup tables.
typedef struct {
uint8_t type [ 4];
uint8_t reserved_a [ 4];
uint8_t input_channels [ 1];
uint8_t output_channels [ 1];
uint8_t reserved_b [ 2];
uint8_t b_curve_offset [ 4];
uint8_t matrix_offset [ 4];
uint8_t m_curve_offset [ 4];
uint8_t clut_offset [ 4];
uint8_t a_curve_offset [ 4];
} mAB_or_mBA_Layout;
typedef struct {
uint8_t grid_points [16];
uint8_t grid_byte_width [ 1];
uint8_t reserved [ 3];
uint8_t variable [1/*variable*/];
} CLUT_Layout;
static bool read_tag_mab(const skcms_ICCTag* tag, skcms_A2B* a2b, bool pcs_is_xyz) {
if (tag->size < SAFE_SIZEOF(mAB_or_mBA_Layout)) {
return false;
}
const mAB_or_mBA_Layout* mABTag = (const mAB_or_mBA_Layout*)tag->buf;
a2b->input_channels = mABTag->input_channels[0];
a2b->output_channels = mABTag->output_channels[0];
// We require exactly three (ie XYZ/Lab/RGB) output channels
if (a2b->output_channels != ARRAY_COUNT(a2b->output_curves)) {
return false;
}
// We require no more than four (ie CMYK) input channels
if (a2b->input_channels > ARRAY_COUNT(a2b->input_curves)) {
return false;
}
uint32_t b_curve_offset = read_big_u32(mABTag->b_curve_offset);
uint32_t matrix_offset = read_big_u32(mABTag->matrix_offset);
uint32_t m_curve_offset = read_big_u32(mABTag->m_curve_offset);
uint32_t clut_offset = read_big_u32(mABTag->clut_offset);
uint32_t a_curve_offset = read_big_u32(mABTag->a_curve_offset);
// "B" curves must be present
if (0 == b_curve_offset) {
return false;
}
if (!read_curves(tag->buf, tag->size, b_curve_offset, a2b->output_channels,
a2b->output_curves)) {
return false;
}
// "M" curves and Matrix must be used together
if (0 != m_curve_offset) {
if (0 == matrix_offset) {
return false;
}
a2b->matrix_channels = a2b->output_channels;
if (!read_curves(tag->buf, tag->size, m_curve_offset, a2b->matrix_channels,
a2b->matrix_curves)) {
return false;
}
// Read matrix, which is stored as a row-major 3x3, followed by the fourth column
if (tag->size < matrix_offset + 12 * SAFE_SIZEOF(uint32_t)) {
return false;
}
float encoding_factor = pcs_is_xyz ? (65535 / 32768.0f) : 1.0f;
const uint8_t* mtx_buf = tag->buf + matrix_offset;
a2b->matrix.vals[0][0] = encoding_factor * read_big_fixed(mtx_buf + 0);
a2b->matrix.vals[0][1] = encoding_factor * read_big_fixed(mtx_buf + 4);
a2b->matrix.vals[0][2] = encoding_factor * read_big_fixed(mtx_buf + 8);
a2b->matrix.vals[1][0] = encoding_factor * read_big_fixed(mtx_buf + 12);
a2b->matrix.vals[1][1] = encoding_factor * read_big_fixed(mtx_buf + 16);
a2b->matrix.vals[1][2] = encoding_factor * read_big_fixed(mtx_buf + 20);
a2b->matrix.vals[2][0] = encoding_factor * read_big_fixed(mtx_buf + 24);
a2b->matrix.vals[2][1] = encoding_factor * read_big_fixed(mtx_buf + 28);
a2b->matrix.vals[2][2] = encoding_factor * read_big_fixed(mtx_buf + 32);
a2b->matrix.vals[0][3] = encoding_factor * read_big_fixed(mtx_buf + 36);
a2b->matrix.vals[1][3] = encoding_factor * read_big_fixed(mtx_buf + 40);
a2b->matrix.vals[2][3] = encoding_factor * read_big_fixed(mtx_buf + 44);
} else {
if (0 != matrix_offset) {
return false;
}
a2b->matrix_channels = 0;
}
// "A" curves and CLUT must be used together
if (0 != a_curve_offset) {
if (0 == clut_offset) {
return false;
}
if (!read_curves(tag->buf, tag->size, a_curve_offset, a2b->input_channels,
a2b->input_curves)) {
return false;
}
if (tag->size < clut_offset + SAFE_FIXED_SIZE(CLUT_Layout)) {
return false;
}
const CLUT_Layout* clut = (const CLUT_Layout*)(tag->buf + clut_offset);
if (clut->grid_byte_width[0] == 1) {
a2b->grid_8 = clut->variable;
a2b->grid_16 = nullptr;
} else if (clut->grid_byte_width[0] == 2) {
a2b->grid_8 = nullptr;
a2b->grid_16 = clut->variable;
} else {
return false;
}
uint64_t grid_size = a2b->output_channels * clut->grid_byte_width[0]; // the payload
for (uint32_t i = 0; i < a2b->input_channels; ++i) {
a2b->grid_points[i] = clut->grid_points[i];
// The grid only makes sense with at least two points along each axis
if (a2b->grid_points[i] < 2) {
return false;
}
grid_size *= a2b->grid_points[i];
}
if (tag->size < clut_offset + SAFE_FIXED_SIZE(CLUT_Layout) + grid_size) {
return false;
}
} else {
if (0 != clut_offset) {
return false;
}
// If there is no CLUT, the number of input and output channels must match
if (a2b->input_channels != a2b->output_channels) {
return false;
}
// Zero out the number of input channels to signal that we're skipping this stage
a2b->input_channels = 0;
}
return true;
}
// Exactly the same as read_tag_mab(), except where there are comments.
// TODO: refactor the two to eliminate common code?
static bool read_tag_mba(const skcms_ICCTag* tag, skcms_B2A* b2a, bool pcs_is_xyz) {
if (tag->size < SAFE_SIZEOF(mAB_or_mBA_Layout)) {
return false;
}
const mAB_or_mBA_Layout* mBATag = (const mAB_or_mBA_Layout*)tag->buf;
b2a->input_channels = mBATag->input_channels[0];
b2a->output_channels = mBATag->output_channels[0];
// Require exactly 3 inputs (XYZ) and 3 (RGB) or 4 (CMYK) outputs.
if (b2a->input_channels != ARRAY_COUNT(b2a->input_curves)) {
return false;
}
if (b2a->output_channels < 3 || b2a->output_channels > ARRAY_COUNT(b2a->output_curves)) {
return false;
}
uint32_t b_curve_offset = read_big_u32(mBATag->b_curve_offset);
uint32_t matrix_offset = read_big_u32(mBATag->matrix_offset);
uint32_t m_curve_offset = read_big_u32(mBATag->m_curve_offset);
uint32_t clut_offset = read_big_u32(mBATag->clut_offset);
uint32_t a_curve_offset = read_big_u32(mBATag->a_curve_offset);
if (0 == b_curve_offset) {
return false;
}
// "B" curves are our inputs, not outputs.
if (!read_curves(tag->buf, tag->size, b_curve_offset, b2a->input_channels,
b2a->input_curves)) {
return false;
}
if (0 != m_curve_offset) {
if (0 == matrix_offset) {
return false;
}
// Matrix channels is tied to input_channels (3), not output_channels.
b2a->matrix_channels = b2a->input_channels;
if (!read_curves(tag->buf, tag->size, m_curve_offset, b2a->matrix_channels,
b2a->matrix_curves)) {
return false;
}
if (tag->size < matrix_offset + 12 * SAFE_SIZEOF(uint32_t)) {
return false;
}
float encoding_factor = pcs_is_xyz ? (32768 / 65535.0f) : 1.0f; // TODO: understand
const uint8_t* mtx_buf = tag->buf + matrix_offset;
b2a->matrix.vals[0][0] = encoding_factor * read_big_fixed(mtx_buf + 0);
b2a->matrix.vals[0][1] = encoding_factor * read_big_fixed(mtx_buf + 4);
b2a->matrix.vals[0][2] = encoding_factor * read_big_fixed(mtx_buf + 8);
b2a->matrix.vals[1][0] = encoding_factor * read_big_fixed(mtx_buf + 12);
b2a->matrix.vals[1][1] = encoding_factor * read_big_fixed(mtx_buf + 16);
b2a->matrix.vals[1][2] = encoding_factor * read_big_fixed(mtx_buf + 20);
b2a->matrix.vals[2][0] = encoding_factor * read_big_fixed(mtx_buf + 24);
b2a->matrix.vals[2][1] = encoding_factor * read_big_fixed(mtx_buf + 28);
b2a->matrix.vals[2][2] = encoding_factor * read_big_fixed(mtx_buf + 32);
b2a->matrix.vals[0][3] = encoding_factor * read_big_fixed(mtx_buf + 36);
b2a->matrix.vals[1][3] = encoding_factor * read_big_fixed(mtx_buf + 40);
b2a->matrix.vals[2][3] = encoding_factor * read_big_fixed(mtx_buf + 44);
} else {
if (0 != matrix_offset) {
return false;
}
b2a->matrix_channels = 0;
}
if (0 != a_curve_offset) {
if (0 == clut_offset) {
return false;
}
// "A" curves are our output, not input.
if (!read_curves(tag->buf, tag->size, a_curve_offset, b2a->output_channels,
b2a->output_curves)) {
return false;
}
if (tag->size < clut_offset + SAFE_FIXED_SIZE(CLUT_Layout)) {
return false;
}
const CLUT_Layout* clut = (const CLUT_Layout*)(tag->buf + clut_offset);
if (clut->grid_byte_width[0] == 1) {
b2a->grid_8 = clut->variable;
b2a->grid_16 = nullptr;
} else if (clut->grid_byte_width[0] == 2) {
b2a->grid_8 = nullptr;
b2a->grid_16 = clut->variable;
} else {
return false;
}
uint64_t grid_size = b2a->output_channels * clut->grid_byte_width[0];
for (uint32_t i = 0; i < b2a->input_channels; ++i) {
b2a->grid_points[i] = clut->grid_points[i];
if (b2a->grid_points[i] < 2) {
return false;
}
grid_size *= b2a->grid_points[i];
}
if (tag->size < clut_offset + SAFE_FIXED_SIZE(CLUT_Layout) + grid_size) {
return false;
}
} else {
if (0 != clut_offset) {
return false;
}
if (b2a->input_channels != b2a->output_channels) {
return false;
}
// Zero out *output* channels to skip this stage.
b2a->output_channels = 0;
}
return true;
}
// If you pass f, we'll fit a possibly-non-zero value for *f.
// If you pass nullptr, we'll assume you want *f to be treated as zero.
static int fit_linear(const skcms_Curve* curve, int N, float tol,
float* c, float* d, float* f = nullptr) {
assert(N > 1);
// We iteratively fit the first points to the TF's linear piece.
// We want the cx + f line to pass through the first and last points we fit exactly.
//
// As we walk along the points we find the minimum and maximum slope of the line before the
// error would exceed our tolerance. We stop when the range [slope_min, slope_max] becomes
// emtpy, when we definitely can't add any more points.
//
// Some points' error intervals may intersect the running interval but not lie fully
// within it. So we keep track of the last point we saw that is a valid end point candidate,
// and once the search is done, back up to build the line through *that* point.
const float dx = 1.0f / static_cast<float>(N - 1);
int lin_points = 1;
float f_zero = 0.0f;
if (f) {
*f = eval_curve(curve, 0);
} else {
f = &f_zero;
}
float slope_min = -INFINITY_;
float slope_max = +INFINITY_;
for (int i = 1; i < N; ++i) {
float x = static_cast<float>(i) * dx;
float y = eval_curve(curve, x);
float slope_max_i = (y + tol - *f) / x,
slope_min_i = (y - tol - *f) / x;
if (slope_max_i < slope_min || slope_max < slope_min_i) {
// Slope intervals would no longer overlap.
break;
}
slope_max = fminf_(slope_max, slope_max_i);
slope_min = fmaxf_(slope_min, slope_min_i);
float cur_slope = (y - *f) / x;
if (slope_min <= cur_slope && cur_slope <= slope_max) {
lin_points = i + 1;
*c = cur_slope;
}
}
// Set D to the last point that met our tolerance.
*d = static_cast<float>(lin_points - 1) * dx;
return lin_points;
}
// If this skcms_Curve holds an identity table, rewrite it as an identity skcms_TransferFunction.
static void canonicalize_identity(skcms_Curve* curve) {
if (curve->table_entries && curve->table_entries <= (uint32_t)INT_MAX) {
int N = (int)curve->table_entries;
float c = 0.0f, d = 0.0f, f = 0.0f;
if (N == fit_linear(curve, N, 1.0f/static_cast<float>(2*N), &c,&d,&f)
&& c == 1.0f
&& f == 0.0f) {
curve->table_entries = 0;
curve->table_8 = nullptr;
curve->table_16 = nullptr;
curve->parametric = skcms_TransferFunction{1,1,0,0,0,0,0};
}
}
}
static bool read_a2b(const skcms_ICCTag* tag, skcms_A2B* a2b, bool pcs_is_xyz) {
bool ok = false;
if (tag->type == skcms_Signature_mft1) { ok = read_tag_mft1(tag, a2b); }
if (tag->type == skcms_Signature_mft2) { ok = read_tag_mft2(tag, a2b); }
if (tag->type == skcms_Signature_mAB ) { ok = read_tag_mab(tag, a2b, pcs_is_xyz); }
if (!ok) {
return false;
}
if (a2b->input_channels > 0) { canonicalize_identity(a2b->input_curves + 0); }
if (a2b->input_channels > 1) { canonicalize_identity(a2b->input_curves + 1); }
if (a2b->input_channels > 2) { canonicalize_identity(a2b->input_curves + 2); }
if (a2b->input_channels > 3) { canonicalize_identity(a2b->input_curves + 3); }
if (a2b->matrix_channels > 0) { canonicalize_identity(a2b->matrix_curves + 0); }
if (a2b->matrix_channels > 1) { canonicalize_identity(a2b->matrix_curves + 1); }
if (a2b->matrix_channels > 2) { canonicalize_identity(a2b->matrix_curves + 2); }
if (a2b->output_channels > 0) { canonicalize_identity(a2b->output_curves + 0); }
if (a2b->output_channels > 1) { canonicalize_identity(a2b->output_curves + 1); }
if (a2b->output_channels > 2) { canonicalize_identity(a2b->output_curves + 2); }
return true;
}
static bool read_b2a(const skcms_ICCTag* tag, skcms_B2A* b2a, bool pcs_is_xyz) {
bool ok = false;
if (tag->type == skcms_Signature_mft1) { ok = read_tag_mft1(tag, b2a); }
if (tag->type == skcms_Signature_mft2) { ok = read_tag_mft2(tag, b2a); }
if (tag->type == skcms_Signature_mBA ) { ok = read_tag_mba(tag, b2a, pcs_is_xyz); }
if (!ok) {
return false;
}
if (b2a->input_channels > 0) { canonicalize_identity(b2a->input_curves + 0); }
if (b2a->input_channels > 1) { canonicalize_identity(b2a->input_curves + 1); }
if (b2a->input_channels > 2) { canonicalize_identity(b2a->input_curves + 2); }
if (b2a->matrix_channels > 0) { canonicalize_identity(b2a->matrix_curves + 0); }
if (b2a->matrix_channels > 1) { canonicalize_identity(b2a->matrix_curves + 1); }
if (b2a->matrix_channels > 2) { canonicalize_identity(b2a->matrix_curves + 2); }
if (b2a->output_channels > 0) { canonicalize_identity(b2a->output_curves + 0); }
if (b2a->output_channels > 1) { canonicalize_identity(b2a->output_curves + 1); }
if (b2a->output_channels > 2) { canonicalize_identity(b2a->output_curves + 2); }
if (b2a->output_channels > 3) { canonicalize_identity(b2a->output_curves + 3); }
return true;
}
typedef struct {
uint8_t type [4];
uint8_t reserved [4];
uint8_t color_primaries [1];
uint8_t transfer_characteristics [1];
uint8_t matrix_coefficients [1];
uint8_t video_full_range_flag [1];
} CICP_Layout;
static bool read_cicp(const skcms_ICCTag* tag, skcms_CICP* cicp) {
if (tag->type != skcms_Signature_CICP || tag->size < SAFE_SIZEOF(CICP_Layout)) {
return false;
}
const CICP_Layout* cicpTag = (const CICP_Layout*)tag->buf;
cicp->color_primaries = cicpTag->color_primaries[0];
cicp->transfer_characteristics = cicpTag->transfer_characteristics[0];
cicp->matrix_coefficients = cicpTag->matrix_coefficients[0];
cicp->video_full_range_flag = cicpTag->video_full_range_flag[0];
return true;
}
void skcms_GetTagByIndex(const skcms_ICCProfile* profile, uint32_t idx, skcms_ICCTag* tag) {
if (!profile || !profile->buffer || !tag) { return; }
if (idx > profile->tag_count) { return; }
const tag_Layout* tags = get_tag_table(profile);
tag->signature = read_big_u32(tags[idx].signature);
tag->size = read_big_u32(tags[idx].size);
tag->buf = read_big_u32(tags[idx].offset) + profile->buffer;
tag->type = read_big_u32(tag->buf);
}
bool skcms_GetTagBySignature(const skcms_ICCProfile* profile, uint32_t sig, skcms_ICCTag* tag) {
if (!profile || !profile->buffer || !tag) { return false; }
const tag_Layout* tags = get_tag_table(profile);
for (uint32_t i = 0; i < profile->tag_count; ++i) {
if (read_big_u32(tags[i].signature) == sig) {
tag->signature = sig;
tag->size = read_big_u32(tags[i].size);
tag->buf = read_big_u32(tags[i].offset) + profile->buffer;
tag->type = read_big_u32(tag->buf);
return true;
}
}
return false;
}
static bool usable_as_src(const skcms_ICCProfile* profile) {
return profile->has_A2B
|| (profile->has_trc && profile->has_toXYZD50);
}
bool skcms_ParseWithA2BPriority(const void* buf, size_t len,
const int priority[], const int priorities,
skcms_ICCProfile* profile) {
static_assert(SAFE_SIZEOF(header_Layout) == 132, "need to update header code");
if (!profile) {
return false;
}
memset(profile, 0, SAFE_SIZEOF(*profile));
if (len < SAFE_SIZEOF(header_Layout)) {
return false;
}
// Byte-swap all header fields
const header_Layout* header = (const header_Layout*)buf;
profile->buffer = (const uint8_t*)buf;
profile->size = read_big_u32(header->size);
uint32_t version = read_big_u32(header->version);
profile->data_color_space = read_big_u32(header->data_color_space);
profile->pcs = read_big_u32(header->pcs);
uint32_t signature = read_big_u32(header->signature);
float illuminant_X = read_big_fixed(header->illuminant_X);
float illuminant_Y = read_big_fixed(header->illuminant_Y);
float illuminant_Z = read_big_fixed(header->illuminant_Z);
profile->tag_count = read_big_u32(header->tag_count);
// Validate signature, size (smaller than buffer, large enough to hold tag table),
// and major version
uint64_t tag_table_size = profile->tag_count * SAFE_SIZEOF(tag_Layout);
if (signature != skcms_Signature_acsp ||
profile->size > len ||
profile->size < SAFE_SIZEOF(header_Layout) + tag_table_size ||
(version >> 24) > 4) {
return false;
}
// Validate that illuminant is D50 white
if (fabsf_(illuminant_X - 0.9642f) > 0.0100f ||
fabsf_(illuminant_Y - 1.0000f) > 0.0100f ||
fabsf_(illuminant_Z - 0.8249f) > 0.0100f) {
return false;
}
// Validate that all tag entries have sane offset + size
const tag_Layout* tags = get_tag_table(profile);
for (uint32_t i = 0; i < profile->tag_count; ++i) {
uint32_t tag_offset = read_big_u32(tags[i].offset);
uint32_t tag_size = read_big_u32(tags[i].size);
uint64_t tag_end = (uint64_t)tag_offset + (uint64_t)tag_size;
if (tag_size < 4 || tag_end > profile->size) {
return false;
}
}
if (profile->pcs != skcms_Signature_XYZ && profile->pcs != skcms_Signature_Lab) {
return false;
}
bool pcs_is_xyz = profile->pcs == skcms_Signature_XYZ;
// Pre-parse commonly used tags.
skcms_ICCTag kTRC;
if (profile->data_color_space == skcms_Signature_Gray &&
skcms_GetTagBySignature(profile, skcms_Signature_kTRC, &kTRC)) {
if (!read_curve(kTRC.buf, kTRC.size, &profile->trc[0], nullptr)) {
// Malformed tag
return false;
}
profile->trc[1] = profile->trc[0];
profile->trc[2] = profile->trc[0];
profile->has_trc = true;
if (pcs_is_xyz) {
profile->toXYZD50.vals[0][0] = illuminant_X;
profile->toXYZD50.vals[1][1] = illuminant_Y;
profile->toXYZD50.vals[2][2] = illuminant_Z;
profile->has_toXYZD50 = true;
}
} else {
skcms_ICCTag rTRC, gTRC, bTRC;
if (skcms_GetTagBySignature(profile, skcms_Signature_rTRC, &rTRC) &&
skcms_GetTagBySignature(profile, skcms_Signature_gTRC, &gTRC) &&
skcms_GetTagBySignature(profile, skcms_Signature_bTRC, &bTRC)) {
if (!read_curve(rTRC.buf, rTRC.size, &profile->trc[0], nullptr) ||
!read_curve(gTRC.buf, gTRC.size, &profile->trc[1], nullptr) ||
!read_curve(bTRC.buf, bTRC.size, &profile->trc[2], nullptr)) {
// Malformed TRC tags
return false;
}
profile->has_trc = true;
}
skcms_ICCTag rXYZ, gXYZ, bXYZ;
if (skcms_GetTagBySignature(profile, skcms_Signature_rXYZ, &rXYZ) &&
skcms_GetTagBySignature(profile, skcms_Signature_gXYZ, &gXYZ) &&
skcms_GetTagBySignature(profile, skcms_Signature_bXYZ, &bXYZ)) {
if (!read_to_XYZD50(&rXYZ, &gXYZ, &bXYZ, &profile->toXYZD50)) {
// Malformed XYZ tags
return false;
}
profile->has_toXYZD50 = true;
}
}
for (int i = 0; i < priorities; i++) {
// enum { perceptual, relative_colormetric, saturation }
if (priority[i] < 0 || priority[i] > 2) {
return false;
}
uint32_t sig = skcms_Signature_A2B0 + static_cast<uint32_t>(priority[i]);
skcms_ICCTag tag;
if (skcms_GetTagBySignature(profile, sig, &tag)) {
if (!read_a2b(&tag, &profile->A2B, pcs_is_xyz)) {
// Malformed A2B tag
return false;
}
profile->has_A2B = true;
break;
}
}
for (int i = 0; i < priorities; i++) {
// enum { perceptual, relative_colormetric, saturation }
if (priority[i] < 0 || priority[i] > 2) {
return false;
}
uint32_t sig = skcms_Signature_B2A0 + static_cast<uint32_t>(priority[i]);
skcms_ICCTag tag;
if (skcms_GetTagBySignature(profile, sig, &tag)) {
if (!read_b2a(&tag, &profile->B2A, pcs_is_xyz)) {
// Malformed B2A tag
return false;
}
profile->has_B2A = true;
break;
}
}
skcms_ICCTag cicp_tag;
if (skcms_GetTagBySignature(profile, skcms_Signature_CICP, &cicp_tag)) {
if (!read_cicp(&cicp_tag, &profile->CICP)) {
// Malformed CICP tag
return false;
}
profile->has_CICP = true;
}
return usable_as_src(profile);
}
const skcms_ICCProfile* skcms_sRGB_profile() {
static const skcms_ICCProfile sRGB_profile = {
nullptr, // buffer, moot here
0, // size, moot here
skcms_Signature_RGB, // data_color_space
skcms_Signature_XYZ, // pcs
0, // tag count, moot here
// We choose to represent sRGB with its canonical transfer function,
// and with its canonical XYZD50 gamut matrix.
{ // the 3 trc curves
{{0, {2.4f, (float)(1/1.055), (float)(0.055/1.055), (float)(1/12.92), 0.04045f, 0, 0}}},
{{0, {2.4f, (float)(1/1.055), (float)(0.055/1.055), (float)(1/12.92), 0.04045f, 0, 0}}},
{{0, {2.4f, (float)(1/1.055), (float)(0.055/1.055), (float)(1/12.92), 0.04045f, 0, 0}}},
},
{{ // 3x3 toXYZD50 matrix
{ 0.436065674f, 0.385147095f, 0.143066406f },
{ 0.222488403f, 0.716873169f, 0.060607910f },
{ 0.013916016f, 0.097076416f, 0.714096069f },
}},
{ // an empty A2B
{ // input_curves
{{0, {0,0, 0,0,0,0,0}}},
{{0, {0,0, 0,0,0,0,0}}},
{{0, {0,0, 0,0,0,0,0}}},
{{0, {0,0, 0,0,0,0,0}}},
},
nullptr, // grid_8
nullptr, // grid_16
0, // input_channels
{0,0,0,0}, // grid_points
{ // matrix_curves
{{0, {0,0, 0,0,0,0,0}}},
{{0, {0,0, 0,0,0,0,0}}},
{{0, {0,0, 0,0,0,0,0}}},
},
{{ // matrix (3x4)
{ 0,0,0,0 },
{ 0,0,0,0 },
{ 0,0,0,0 },
}},
0, // matrix_channels
0, // output_channels
{ // output_curves
{{0, {0,0, 0,0,0,0,0}}},
{{0, {0,0, 0,0,0,0,0}}},
{{0, {0,0, 0,0,0,0,0}}},
},
},
{ // an empty B2A
{ // input_curves
{{0, {0,0, 0,0,0,0,0}}},
{{0, {0,0, 0,0,0,0,0}}},
{{0, {0,0, 0,0,0,0,0}}},
},
0, // input_channels
0, // matrix_channels
{ // matrix_curves
{{0, {0,0, 0,0,0,0,0}}},
{{0, {0,0, 0,0,0,0,0}}},
{{0, {0,0, 0,0,0,0,0}}},
},
{{ // matrix (3x4)
{ 0,0,0,0 },
{ 0,0,0,0 },
{ 0,0,0,0 },
}},
{ // output_curves
{{0, {0,0, 0,0,0,0,0}}},
{{0, {0,0, 0,0,0,0,0}}},
{{0, {0,0, 0,0,0,0,0}}},
{{0, {0,0, 0,0,0,0,0}}},
},
nullptr, // grid_8
nullptr, // grid_16
{0,0,0,0}, // grid_points
0, // output_channels
},
{ 0, 0, 0, 0 }, // an empty CICP
true, // has_trc
true, // has_toXYZD50
false, // has_A2B
false, // has B2A
false, // has_CICP
};
return &sRGB_profile;
}
const skcms_ICCProfile* skcms_XYZD50_profile() {
// Just like sRGB above, but with identity transfer functions and toXYZD50 matrix.
static const skcms_ICCProfile XYZD50_profile = {
nullptr, // buffer, moot here
0, // size, moot here
skcms_Signature_RGB, // data_color_space
skcms_Signature_XYZ, // pcs
0, // tag count, moot here
{ // the 3 trc curves
{{0, {1,1, 0,0,0,0,0}}},
{{0, {1,1, 0,0,0,0,0}}},
{{0, {1,1, 0,0,0,0,0}}},
},
{{ // 3x3 toXYZD50 matrix
{ 1,0,0 },
{ 0,1,0 },
{ 0,0,1 },
}},
{ // an empty A2B
{ // input_curves
{{0, {0,0, 0,0,0,0,0}}},
{{0, {0,0, 0,0,0,0,0}}},
{{0, {0,0, 0,0,0,0,0}}},
{{0, {0,0, 0,0,0,0,0}}},
},
nullptr, // grid_8
nullptr, // grid_16
0, // input_channels
{0,0,0,0}, // grid_points
{ // matrix_curves
{{0, {0,0, 0,0,0,0,0}}},
{{0, {0,0, 0,0,0,0,0}}},
{{0, {0,0, 0,0,0,0,0}}},
},
{{ // matrix (3x4)
{ 0,0,0,0 },
{ 0,0,0,0 },
{ 0,0,0,0 },
}},
0, // matrix_channels
0, // output_channels
{ // output_curves
{{0, {0,0, 0,0,0,0,0}}},
{{0, {0,0, 0,0,0,0,0}}},
{{0, {0,0, 0,0,0,0,0}}},
},
},
{ // an empty B2A
{ // input_curves
{{0, {0,0, 0,0,0,0,0}}},
{{0, {0,0, 0,0,0,0,0}}},
{{0, {0,0, 0,0,0,0,0}}},
},
0, // input_channels
0, // matrix_channels
{ // matrix_curves
{{0, {0,0, 0,0,0,0,0}}},
{{0, {0,0, 0,0,0,0,0}}},
{{0, {0,0, 0,0,0,0,0}}},
},
{{ // matrix (3x4)
{ 0,0,0,0 },
{ 0,0,0,0 },
{ 0,0,0,0 },
}},
{ // output_curves
{{0, {0,0, 0,0,0,0,0}}},
{{0, {0,0, 0,0,0,0,0}}},
{{0, {0,0, 0,0,0,0,0}}},
{{0, {0,0, 0,0,0,0,0}}},
},
nullptr, // grid_8
nullptr, // grid_16
{0,0,0,0}, // grid_points
0, // output_channels
},
{ 0, 0, 0, 0 }, // an empty CICP
true, // has_trc
true, // has_toXYZD50
false, // has_A2B
false, // has B2A
false, // has_CICP
};
return &XYZD50_profile;
}
const skcms_TransferFunction* skcms_sRGB_TransferFunction() {
return &skcms_sRGB_profile()->trc[0].parametric;
}
const skcms_TransferFunction* skcms_sRGB_Inverse_TransferFunction() {
static const skcms_TransferFunction sRGB_inv =
{0.416666657f, 1.137283325f, -0.0f, 12.920000076f, 0.003130805f, -0.054969788f, -0.0f};
return &sRGB_inv;
}
const skcms_TransferFunction* skcms_Identity_TransferFunction() {
static const skcms_TransferFunction identity = {1,1,0,0,0,0,0};
return &identity;
}
const uint8_t skcms_252_random_bytes[] = {
8, 179, 128, 204, 253, 38, 134, 184, 68, 102, 32, 138, 99, 39, 169, 215,
119, 26, 3, 223, 95, 239, 52, 132, 114, 74, 81, 234, 97, 116, 244, 205, 30,
154, 173, 12, 51, 159, 122, 153, 61, 226, 236, 178, 229, 55, 181, 220, 191,
194, 160, 126, 168, 82, 131, 18, 180, 245, 163, 22, 246, 69, 235, 252, 57,
108, 14, 6, 152, 240, 255, 171, 242, 20, 227, 177, 238, 96, 85, 16, 211,
70, 200, 149, 155, 146, 127, 145, 100, 151, 109, 19, 165, 208, 195, 164,
137, 254, 182, 248, 64, 201, 45, 209, 5, 147, 207, 210, 113, 162, 83, 225,
9, 31, 15, 231, 115, 37, 58, 53, 24, 49, 197, 56, 120, 172, 48, 21, 214,
129, 111, 11, 50, 187, 196, 34, 60, 103, 71, 144, 47, 203, 77, 80, 232,
140, 222, 250, 206, 166, 247, 139, 249, 221, 72, 106, 27, 199, 117, 54,
219, 135, 118, 40, 79, 41, 251, 46, 93, 212, 92, 233, 148, 28, 121, 63,
123, 158, 105, 59, 29, 42, 143, 23, 0, 107, 176, 87, 104, 183, 156, 193,
189, 90, 188, 65, 190, 17, 198, 7, 186, 161, 1, 124, 78, 125, 170, 133,
174, 218, 67, 157, 75, 101, 89, 217, 62, 33, 141, 228, 25, 35, 91, 230, 4,
2, 13, 73, 86, 167, 237, 84, 243, 44, 185, 66, 130, 110, 150, 142, 216, 88,
112, 36, 224, 136, 202, 76, 94, 98, 175, 213
};
bool skcms_ApproximatelyEqualProfiles(const skcms_ICCProfile* A, const skcms_ICCProfile* B) {
// Test for exactly equal profiles first.
if (A == B || 0 == memcmp(A,B, sizeof(skcms_ICCProfile))) {
return true;
}
// For now this is the essentially the same strategy we use in test_only.c
// for our skcms_Transform() smoke tests:
// 1) transform A to XYZD50
// 2) transform B to XYZD50
// 3) return true if they're similar enough
// Our current criterion in 3) is maximum 1 bit error per XYZD50 byte.
// skcms_252_random_bytes are 252 of a random shuffle of all possible bytes.
// 252 is evenly divisible by 3 and 4. Only 192, 10, 241, and 43 are missing.
// We want to allow otherwise equivalent profiles tagged as grayscale and RGB
// to be treated as equal. But CMYK profiles are a totally different ballgame.
const auto CMYK = skcms_Signature_CMYK;
if ((A->data_color_space == CMYK) != (B->data_color_space == CMYK)) {
return false;
}
// Interpret as RGB_888 if data color space is RGB or GRAY, RGBA_8888 if CMYK.
// TODO: working with RGBA_8888 either way is probably fastest.
skcms_PixelFormat fmt = skcms_PixelFormat_RGB_888;
size_t npixels = 84;
if (A->data_color_space == skcms_Signature_CMYK) {
fmt = skcms_PixelFormat_RGBA_8888;
npixels = 63;
}
// TODO: if A or B is a known profile (skcms_sRGB_profile, skcms_XYZD50_profile),
// use pre-canned results and skip that skcms_Transform() call?
uint8_t dstA[252],
dstB[252];
if (!skcms_Transform(
skcms_252_random_bytes, fmt, skcms_AlphaFormat_Unpremul, A,
dstA, skcms_PixelFormat_RGB_888, skcms_AlphaFormat_Unpremul, skcms_XYZD50_profile(),
npixels)) {
return false;
}
if (!skcms_Transform(
skcms_252_random_bytes, fmt, skcms_AlphaFormat_Unpremul, B,
dstB, skcms_PixelFormat_RGB_888, skcms_AlphaFormat_Unpremul, skcms_XYZD50_profile(),
npixels)) {
return false;
}
// TODO: make sure this final check has reasonable codegen.
for (size_t i = 0; i < 252; i++) {
if (abs((int)dstA[i] - (int)dstB[i]) > 1) {
return false;
}
}
return true;
}
bool skcms_TRCs_AreApproximateInverse(const skcms_ICCProfile* profile,
const skcms_TransferFunction* inv_tf) {
if (!profile || !profile->has_trc) {
return false;
}
return skcms_AreApproximateInverses(&profile->trc[0], inv_tf) &&
skcms_AreApproximateInverses(&profile->trc[1], inv_tf) &&
skcms_AreApproximateInverses(&profile->trc[2], inv_tf);
}
static bool is_zero_to_one(float x) {
return 0 <= x && x <= 1;
}
typedef struct { float vals[3]; } skcms_Vector3;
static skcms_Vector3 mv_mul(const skcms_Matrix3x3* m, const skcms_Vector3* v) {
skcms_Vector3 dst = {{0,0,0}};
for (int row = 0; row < 3; ++row) {
dst.vals[row] = m->vals[row][0] * v->vals[0]
+ m->vals[row][1] * v->vals[1]
+ m->vals[row][2] * v->vals[2];
}
return dst;
}
bool skcms_AdaptToXYZD50(float wx, float wy,
skcms_Matrix3x3* toXYZD50) {
if (!is_zero_to_one(wx) || !is_zero_to_one(wy) ||
!toXYZD50) {
return false;
}
// Assumes that Y is 1.0f.
skcms_Vector3 wXYZ = { { wx / wy, 1, (1 - wx - wy) / wy } };
// Now convert toXYZ matrix to toXYZD50.
skcms_Vector3 wXYZD50 = { { 0.96422f, 1.0f, 0.82521f } };
// Calculate the chromatic adaptation matrix. We will use the Bradford method, thus
// the matrices below. The Bradford method is used by Adobe and is widely considered
// to be the best.
skcms_Matrix3x3 xyz_to_lms = {{
{ 0.8951f, 0.2664f, -0.1614f },
{ -0.7502f, 1.7135f, 0.0367f },
{ 0.0389f, -0.0685f, 1.0296f },
}};
skcms_Matrix3x3 lms_to_xyz = {{
{ 0.9869929f, -0.1470543f, 0.1599627f },
{ 0.4323053f, 0.5183603f, 0.0492912f },
{ -0.0085287f, 0.0400428f, 0.9684867f },
}};
skcms_Vector3 srcCone = mv_mul(&xyz_to_lms, &wXYZ);
skcms_Vector3 dstCone = mv_mul(&xyz_to_lms, &wXYZD50);
*toXYZD50 = {{
{ dstCone.vals[0] / srcCone.vals[0], 0, 0 },
{ 0, dstCone.vals[1] / srcCone.vals[1], 0 },
{ 0, 0, dstCone.vals[2] / srcCone.vals[2] },
}};
*toXYZD50 = skcms_Matrix3x3_concat(toXYZD50, &xyz_to_lms);
*toXYZD50 = skcms_Matrix3x3_concat(&lms_to_xyz, toXYZD50);
return true;
}
bool skcms_PrimariesToXYZD50(float rx, float ry,
float gx, float gy,
float bx, float by,
float wx, float wy,
skcms_Matrix3x3* toXYZD50) {
if (!is_zero_to_one(rx) || !is_zero_to_one(ry) ||
!is_zero_to_one(gx) || !is_zero_to_one(gy) ||
!is_zero_to_one(bx) || !is_zero_to_one(by) ||
!is_zero_to_one(wx) || !is_zero_to_one(wy) ||
!toXYZD50) {
return false;
}
// First, we need to convert xy values (primaries) to XYZ.
skcms_Matrix3x3 primaries = {{
{ rx, gx, bx },
{ ry, gy, by },
{ 1 - rx - ry, 1 - gx - gy, 1 - bx - by },
}};
skcms_Matrix3x3 primaries_inv;
if (!skcms_Matrix3x3_invert(&primaries, &primaries_inv)) {
return false;
}
// Assumes that Y is 1.0f.
skcms_Vector3 wXYZ = { { wx / wy, 1, (1 - wx - wy) / wy } };
skcms_Vector3 XYZ = mv_mul(&primaries_inv, &wXYZ);
skcms_Matrix3x3 toXYZ = {{
{ XYZ.vals[0], 0, 0 },
{ 0, XYZ.vals[1], 0 },
{ 0, 0, XYZ.vals[2] },
}};
toXYZ = skcms_Matrix3x3_concat(&primaries, &toXYZ);
skcms_Matrix3x3 DXtoD50;
if (!skcms_AdaptToXYZD50(wx, wy, &DXtoD50)) {
return false;
}
*toXYZD50 = skcms_Matrix3x3_concat(&DXtoD50, &toXYZ);
return true;
}
bool skcms_Matrix3x3_invert(const skcms_Matrix3x3* src, skcms_Matrix3x3* dst) {
double a00 = src->vals[0][0],
a01 = src->vals[1][0],
a02 = src->vals[2][0],
a10 = src->vals[0][1],
a11 = src->vals[1][1],
a12 = src->vals[2][1],
a20 = src->vals[0][2],
a21 = src->vals[1][2],
a22 = src->vals[2][2];
double b0 = a00*a11 - a01*a10,
b1 = a00*a12 - a02*a10,
b2 = a01*a12 - a02*a11,
b3 = a20,
b4 = a21,
b5 = a22;
double determinant = b0*b5
- b1*b4
+ b2*b3;
if (determinant == 0) {
return false;
}
double invdet = 1.0 / determinant;
if (invdet > +FLT_MAX || invdet < -FLT_MAX || !isfinitef_((float)invdet)) {
return false;
}
b0 *= invdet;
b1 *= invdet;
b2 *= invdet;
b3 *= invdet;
b4 *= invdet;
b5 *= invdet;
dst->vals[0][0] = (float)( a11*b5 - a12*b4 );
dst->vals[1][0] = (float)( a02*b4 - a01*b5 );
dst->vals[2][0] = (float)( + b2 );
dst->vals[0][1] = (float)( a12*b3 - a10*b5 );
dst->vals[1][1] = (float)( a00*b5 - a02*b3 );
dst->vals[2][1] = (float)( - b1 );
dst->vals[0][2] = (float)( a10*b4 - a11*b3 );
dst->vals[1][2] = (float)( a01*b3 - a00*b4 );
dst->vals[2][2] = (float)( + b0 );
for (int r = 0; r < 3; ++r)
for (int c = 0; c < 3; ++c) {
if (!isfinitef_(dst->vals[r][c])) {
return false;
}
}
return true;
}
skcms_Matrix3x3 skcms_Matrix3x3_concat(const skcms_Matrix3x3* A, const skcms_Matrix3x3* B) {
skcms_Matrix3x3 m = { { { 0,0,0 },{ 0,0,0 },{ 0,0,0 } } };
for (int r = 0; r < 3; r++)
for (int c = 0; c < 3; c++) {
m.vals[r][c] = A->vals[r][0] * B->vals[0][c]
+ A->vals[r][1] * B->vals[1][c]
+ A->vals[r][2] * B->vals[2][c];
}
return m;
}
#if defined(__clang__)
[[clang::no_sanitize("float-divide-by-zero")]] // Checked for by classify() on the way out.
#endif
bool skcms_TransferFunction_invert(const skcms_TransferFunction* src, skcms_TransferFunction* dst) {
TF_PQish pq;
TF_HLGish hlg;
switch (classify(*src, &pq, &hlg)) {
case skcms_TFType_Invalid: return false;
case skcms_TFType_sRGBish: break; // handled below
case skcms_TFType_PQish:
*dst = { TFKind_marker(skcms_TFType_PQish), -pq.A, pq.D, 1.0f/pq.F
, pq.B, -pq.E, 1.0f/pq.C};
return true;
case skcms_TFType_HLGish:
*dst = { TFKind_marker(skcms_TFType_HLGinvish), 1.0f/hlg.R, 1.0f/hlg.G
, 1.0f/hlg.a, hlg.b, hlg.c
, hlg.K_minus_1 };
return true;
case skcms_TFType_HLGinvish:
*dst = { TFKind_marker(skcms_TFType_HLGish), 1.0f/hlg.R, 1.0f/hlg.G
, 1.0f/hlg.a, hlg.b, hlg.c
, hlg.K_minus_1 };
return true;
}
assert (classify(*src) == skcms_TFType_sRGBish);
// We're inverting this function, solving for x in terms of y.
// y = (cx + f) x < d
// (ax + b)^g + e x ≥ d
// The inverse of this function can be expressed in the same piecewise form.
skcms_TransferFunction inv = {0,0,0,0,0,0,0};
// We'll start by finding the new threshold inv.d.
// In principle we should be able to find that by solving for y at x=d from either side.
// (If those two d values aren't the same, it's a discontinuous transfer function.)
float d_l = src->c * src->d + src->f,
d_r = powf_(src->a * src->d + src->b, src->g) + src->e;
if (fabsf_(d_l - d_r) > 1/512.0f) {
return false;
}
inv.d = d_l; // TODO(mtklein): better in practice to choose d_r?
// When d=0, the linear section collapses to a point. We leave c,d,f all zero in that case.
if (inv.d > 0) {
// Inverting the linear section is pretty straightfoward:
// y = cx + f
// y - f = cx
// (1/c)y - f/c = x
inv.c = 1.0f/src->c;
inv.f = -src->f/src->c;
}
// The interesting part is inverting the nonlinear section:
// y = (ax + b)^g + e.
// y - e = (ax + b)^g
// (y - e)^1/g = ax + b
// (y - e)^1/g - b = ax
// (1/a)(y - e)^1/g - b/a = x
//
// To make that fit our form, we need to move the (1/a) term inside the exponentiation:
// let k = (1/a)^g
// (1/a)( y - e)^1/g - b/a = x
// (ky - ke)^1/g - b/a = x
float k = powf_(src->a, -src->g); // (1/a)^g == a^-g
inv.g = 1.0f / src->g;
inv.a = k;
inv.b = -k * src->e;
inv.e = -src->b / src->a;
// We need to enforce the same constraints here that we do when fitting a curve,
// a >= 0 and ad+b >= 0. These constraints are checked by classify(), so they're true
// of the source function if we're here.
// Just like when fitting the curve, there's really no way to rescue a < 0.
if (inv.a < 0) {
return false;
}
// On the other hand we can rescue an ad+b that's gone slightly negative here.
if (inv.a * inv.d + inv.b < 0) {
inv.b = -inv.a * inv.d;
}
// That should usually make classify(inv) == sRGBish true, but there are a couple situations
// where we might still fail here, like non-finite parameter values.
if (classify(inv) != skcms_TFType_sRGBish) {
return false;
}
assert (inv.a >= 0);
assert (inv.a * inv.d + inv.b >= 0);
// Now in principle we're done.
// But to preserve the valuable invariant inv(src(1.0f)) == 1.0f, we'll tweak
// e or f of the inverse, depending on which segment contains src(1.0f).
float s = skcms_TransferFunction_eval(src, 1.0f);
if (!isfinitef_(s)) {
return false;
}
float sign = s < 0 ? -1.0f : 1.0f;
s *= sign;
if (s < inv.d) {
inv.f = 1.0f - sign * inv.c * s;
} else {
inv.e = 1.0f - sign * powf_(inv.a * s + inv.b, inv.g);
}
*dst = inv;
return classify(*dst) == skcms_TFType_sRGBish;
}
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
// From here below we're approximating an skcms_Curve with an skcms_TransferFunction{g,a,b,c,d,e,f}:
//
// tf(x) = cx + f x < d
// tf(x) = (ax + b)^g + e x ≥ d
//
// When fitting, we add the additional constraint that both pieces meet at d:
//
// cd + f = (ad + b)^g + e
//
// Solving for e and folding it through gives an alternate formulation of the non-linear piece:
//
// tf(x) = cx + f x < d
// tf(x) = (ax + b)^g - (ad + b)^g + cd + f x ≥ d
//
// Our overall strategy is then:
// For a couple tolerances,
// - fit_linear(): fit c,d,f iteratively to as many points as our tolerance allows
// - invert c,d,f
// - fit_nonlinear(): fit g,a,b using Gauss-Newton given those inverted c,d,f
// (and by constraint, inverted e) to the inverse of the table.
// Return the parameters with least maximum error.
//
// To run Gauss-Newton to find g,a,b, we'll also need the gradient of the residuals
// of round-trip f_inv(x), the inverse of the non-linear piece of f(x).
//
// let y = Table(x)
// r(x) = x - f_inv(y)
//
// ∂r/∂g = ln(ay + b)*(ay + b)^g
// - ln(ad + b)*(ad + b)^g
// ∂r/∂a = yg(ay + b)^(g-1)
// - dg(ad + b)^(g-1)
// ∂r/∂b = g(ay + b)^(g-1)
// - g(ad + b)^(g-1)
// Return the residual of roundtripping skcms_Curve(x) through f_inv(y) with parameters P,
// and fill out the gradient of the residual into dfdP.
static float rg_nonlinear(float x,
const skcms_Curve* curve,
const skcms_TransferFunction* tf,
float dfdP[3]) {
const float y = eval_curve(curve, x);
const float g = tf->g, a = tf->a, b = tf->b,
c = tf->c, d = tf->d, f = tf->f;
const float Y = fmaxf_(a*y + b, 0.0f),
D = a*d + b;
assert (D >= 0);
// The gradient.
dfdP[0] = logf_(Y)*powf_(Y, g)
- logf_(D)*powf_(D, g);
dfdP[1] = y*g*powf_(Y, g-1)
- d*g*powf_(D, g-1);
dfdP[2] = g*powf_(Y, g-1)
- g*powf_(D, g-1);
// The residual.
const float f_inv = powf_(Y, g)
- powf_(D, g)
+ c*d + f;
return x - f_inv;
}
static bool gauss_newton_step(const skcms_Curve* curve,
skcms_TransferFunction* tf,
float x0, float dx, int N) {
// We'll sample x from the range [x0,x1] (both inclusive) N times with even spacing.
//
// Let P = [ tf->g, tf->a, tf->b ] (the three terms that we're adjusting).
//
// We want to do P' = P + (Jf^T Jf)^-1 Jf^T r(P),
// where r(P) is the residual vector
// and Jf is the Jacobian matrix of f(), ∂r/∂P.
//
// Let's review the shape of each of these expressions:
// r(P) is [N x 1], a column vector with one entry per value of x tested
// Jf is [N x 3], a matrix with an entry for each (x,P) pair
// Jf^T is [3 x N], the transpose of Jf
//
// Jf^T Jf is [3 x N] * [N x 3] == [3 x 3], a 3x3 matrix,
// and so is its inverse (Jf^T Jf)^-1
// Jf^T r(P) is [3 x N] * [N x 1] == [3 x 1], a column vector with the same shape as P
//
// Our implementation strategy to get to the final ∆P is
// 1) evaluate Jf^T Jf, call that lhs
// 2) evaluate Jf^T r(P), call that rhs
// 3) invert lhs
// 4) multiply inverse lhs by rhs
//
// This is a friendly implementation strategy because we don't have to have any
// buffers that scale with N, and equally nice don't have to perform any matrix
// operations that are variable size.
//
// Other implementation strategies could trade this off, e.g. evaluating the
// pseudoinverse of Jf ( (Jf^T Jf)^-1 Jf^T ) directly, then multiplying that by
// the residuals. That would probably require implementing singular value
// decomposition, and would create a [3 x N] matrix to be multiplied by the
// [N x 1] residual vector, but on the upside I think that'd eliminate the
// possibility of this gauss_newton_step() function ever failing.
// 0) start off with lhs and rhs safely zeroed.
skcms_Matrix3x3 lhs = {{ {0,0,0}, {0,0,0}, {0,0,0} }};
skcms_Vector3 rhs = { {0,0,0} };
// 1,2) evaluate lhs and evaluate rhs
// We want to evaluate Jf only once, but both lhs and rhs involve Jf^T,
// so we'll have to update lhs and rhs at the same time.
for (int i = 0; i < N; i++) {
float x = x0 + static_cast<float>(i)*dx;
float dfdP[3] = {0,0,0};
float resid = rg_nonlinear(x,curve,tf, dfdP);
for (int r = 0; r < 3; r++) {
for (int c = 0; c < 3; c++) {
lhs.vals[r][c] += dfdP[r] * dfdP[c];
}
rhs.vals[r] += dfdP[r] * resid;
}
}
// If any of the 3 P parameters are unused, this matrix will be singular.
// Detect those cases and fix them up to indentity instead, so we can invert.
for (int k = 0; k < 3; k++) {
if (lhs.vals[0][k]==0 && lhs.vals[1][k]==0 && lhs.vals[2][k]==0 &&
lhs.vals[k][0]==0 && lhs.vals[k][1]==0 && lhs.vals[k][2]==0) {
lhs.vals[k][k] = 1;
}
}
// 3) invert lhs
skcms_Matrix3x3 lhs_inv;
if (!skcms_Matrix3x3_invert(&lhs, &lhs_inv)) {
return false;
}
// 4) multiply inverse lhs by rhs
skcms_Vector3 dP = mv_mul(&lhs_inv, &rhs);
tf->g += dP.vals[0];
tf->a += dP.vals[1];
tf->b += dP.vals[2];
return isfinitef_(tf->g) && isfinitef_(tf->a) && isfinitef_(tf->b);
}
static float max_roundtrip_error_checked(const skcms_Curve* curve,
const skcms_TransferFunction* tf_inv) {
skcms_TransferFunction tf;
if (!skcms_TransferFunction_invert(tf_inv, &tf) || skcms_TFType_sRGBish != classify(tf)) {
return INFINITY_;
}
skcms_TransferFunction tf_inv_again;
if (!skcms_TransferFunction_invert(&tf, &tf_inv_again)) {
return INFINITY_;
}
return skcms_MaxRoundtripError(curve, &tf_inv_again);
}
// Fit the points in [L,N) to the non-linear piece of tf, or return false if we can't.
static bool fit_nonlinear(const skcms_Curve* curve, int L, int N, skcms_TransferFunction* tf) {
// This enforces a few constraints that are not modeled in gauss_newton_step()'s optimization.
auto fixup_tf = [tf]() {
// a must be non-negative. That ensures the function is monotonically increasing.
// We don't really know how to fix up a if it goes negative.
if (tf->a < 0) {
return false;
}
// ad+b must be non-negative. That ensures we don't end up with complex numbers in powf.
// We feel just barely not uneasy enough to tweak b so ad+b is zero in this case.
if (tf->a * tf->d + tf->b < 0) {
tf->b = -tf->a * tf->d;
}
assert (tf->a >= 0 &&
tf->a * tf->d + tf->b >= 0);
// cd+f must be ~= (ad+b)^g+e. That ensures the function is continuous. We keep e as a free
// parameter so we can guarantee this.
tf->e = tf->c*tf->d + tf->f
- powf_(tf->a*tf->d + tf->b, tf->g);
return isfinitef_(tf->e);
};
if (!fixup_tf()) {
return false;
}
// No matter where we start, dx should always represent N even steps from 0 to 1.
const float dx = 1.0f / static_cast<float>(N-1);
skcms_TransferFunction best_tf = *tf;
float best_max_error = INFINITY_;
// Need this or several curves get worse... *sigh*
float init_error = max_roundtrip_error_checked(curve, tf);
if (init_error < best_max_error) {
best_max_error = init_error;
best_tf = *tf;
}
// As far as we can tell, 1 Gauss-Newton step won't converge, and 3 steps is no better than 2.
for (int j = 0; j < 8; j++) {
if (!gauss_newton_step(curve, tf, static_cast<float>(L)*dx, dx, N-L) || !fixup_tf()) {
*tf = best_tf;
return isfinitef_(best_max_error);
}
float max_error = max_roundtrip_error_checked(curve, tf);
if (max_error < best_max_error) {
best_max_error = max_error;
best_tf = *tf;
}
}
*tf = best_tf;
return isfinitef_(best_max_error);
}
bool skcms_ApproximateCurve(const skcms_Curve* curve,
skcms_TransferFunction* approx,
float* max_error) {
if (!curve || !approx || !max_error) {
return false;
}
if (curve->table_entries == 0) {
// No point approximating an skcms_TransferFunction with an skcms_TransferFunction!
return false;
}
if (curve->table_entries == 1 || curve->table_entries > (uint32_t)INT_MAX) {
// We need at least two points, and must put some reasonable cap on the maximum number.
return false;
}
int N = (int)curve->table_entries;
const float dx = 1.0f / static_cast<float>(N - 1);
*max_error = INFINITY_;
const float kTolerances[] = { 1.5f / 65535.0f, 1.0f / 512.0f };
for (int t = 0; t < ARRAY_COUNT(kTolerances); t++) {
skcms_TransferFunction tf,
tf_inv;
// It's problematic to fit curves with non-zero f, so always force it to zero explicitly.
tf.f = 0.0f;
int L = fit_linear(curve, N, kTolerances[t], &tf.c, &tf.d);
if (L == N) {
// If the entire data set was linear, move the coefficients to the nonlinear portion
// with G == 1. This lets use a canonical representation with d == 0.
tf.g = 1;
tf.a = tf.c;
tf.b = tf.f;
tf.c = tf.d = tf.e = tf.f = 0;
} else if (L == N - 1) {
// Degenerate case with only two points in the nonlinear segment. Solve directly.
tf.g = 1;
tf.a = (eval_curve(curve, static_cast<float>(N-1)*dx) -
eval_curve(curve, static_cast<float>(N-2)*dx))
/ dx;
tf.b = eval_curve(curve, static_cast<float>(N-2)*dx)
- tf.a * static_cast<float>(N-2)*dx;
tf.e = 0;
} else {
// Start by guessing a gamma-only curve through the midpoint.
int mid = (L + N) / 2;
float mid_x = static_cast<float>(mid) / static_cast<float>(N - 1);
float mid_y = eval_curve(curve, mid_x);
tf.g = log2f_(mid_y) / log2f_(mid_x);
tf.a = 1;
tf.b = 0;
tf.e = tf.c*tf.d + tf.f
- powf_(tf.a*tf.d + tf.b, tf.g);
if (!skcms_TransferFunction_invert(&tf, &tf_inv) ||
!fit_nonlinear(curve, L,N, &tf_inv)) {
continue;
}
// We fit tf_inv, so calculate tf to keep in sync.
// fit_nonlinear() should guarantee invertibility.
if (!skcms_TransferFunction_invert(&tf_inv, &tf)) {
assert(false);
continue;
}
}
// We'd better have a sane, sRGB-ish TF by now.
// Other non-Bad TFs would be fine, but we know we've only ever tried to fit sRGBish;
// anything else is just some accident of math and the way we pun tf.g as a type flag.
// fit_nonlinear() should guarantee this, but the special cases may fail this test.
if (skcms_TFType_sRGBish != classify(tf)) {
continue;
}
// We find our error by roundtripping the table through tf_inv.
//
// (The most likely use case for this approximation is to be inverted and
// used as the transfer function for a destination color space.)
//
// We've kept tf and tf_inv in sync above, but we can't guarantee that tf is
// invertible, so re-verify that here (and use the new inverse for testing).
// fit_nonlinear() should guarantee this, but the special cases that don't use
// it may fail this test.
if (!skcms_TransferFunction_invert(&tf, &tf_inv)) {
continue;
}
float err = skcms_MaxRoundtripError(curve, &tf_inv);
if (*max_error > err) {
*max_error = err;
*approx = tf;
}
}
return isfinitef_(*max_error);
}
enum class CpuType { Baseline, HSW, SKX };
static CpuType cpu_type() {
#if defined(SKCMS_PORTABLE) || !defined(__x86_64__) || defined(SKCMS_FORCE_BASELINE)
return CpuType::Baseline;
#elif defined(SKCMS_FORCE_HSW)
return CpuType::HSW;
#elif defined(SKCMS_FORCE_SKX)
return CpuType::SKX;
#else
static const CpuType type = []{
if (!sAllowRuntimeCPUDetection) {
return CpuType::Baseline;
}
// See http://www.sandpile.org/x86/cpuid.htm
// First, a basic cpuid(1) lets us check prerequisites for HSW, SKX.
uint32_t eax, ebx, ecx, edx;
__asm__ __volatile__("cpuid" : "=a"(eax), "=b"(ebx), "=c"(ecx), "=d"(edx)
: "0"(1), "2"(0));
if ((edx & (1u<<25)) && // SSE
(edx & (1u<<26)) && // SSE2
(ecx & (1u<< 0)) && // SSE3
(ecx & (1u<< 9)) && // SSSE3
(ecx & (1u<<12)) && // FMA (N.B. not used, avoided even)
(ecx & (1u<<19)) && // SSE4.1
(ecx & (1u<<20)) && // SSE4.2
(ecx & (1u<<26)) && // XSAVE
(ecx & (1u<<27)) && // OSXSAVE
(ecx & (1u<<28)) && // AVX
(ecx & (1u<<29))) { // F16C
// Call cpuid(7) to check for AVX2 and AVX-512 bits.
__asm__ __volatile__("cpuid" : "=a"(eax), "=b"(ebx), "=c"(ecx), "=d"(edx)
: "0"(7), "2"(0));
// eax from xgetbv(0) will tell us whether XMM, YMM, and ZMM state is saved.
uint32_t xcr0, dont_need_edx;
__asm__ __volatile__("xgetbv" : "=a"(xcr0), "=d"(dont_need_edx) : "c"(0));
if ((xcr0 & (1u<<1)) && // XMM register state saved?
(xcr0 & (1u<<2)) && // YMM register state saved?
(ebx & (1u<<5))) { // AVX2
// At this point we're at least HSW. Continue checking for SKX.
if ((xcr0 & (1u<< 5)) && // Opmasks state saved?
(xcr0 & (1u<< 6)) && // First 16 ZMM registers saved?
(xcr0 & (1u<< 7)) && // High 16 ZMM registers saved?
(ebx & (1u<<16)) && // AVX512F
(ebx & (1u<<17)) && // AVX512DQ
(ebx & (1u<<28)) && // AVX512CD
(ebx & (1u<<30)) && // AVX512BW
(ebx & (1u<<31))) { // AVX512VL
return CpuType::SKX;
}
return CpuType::HSW;
}
}
return CpuType::Baseline;
}();
return type;
#endif
}
static bool tf_is_gamma(const skcms_TransferFunction& tf) {
return tf.g > 0 && tf.a == 1 &&
tf.b == 0 && tf.c == 0 && tf.d == 0 && tf.e == 0 && tf.f == 0;
}
struct OpAndArg {
Op op;
const void* arg;
};
static OpAndArg select_curve_op(const skcms_Curve* curve, int channel) {
struct OpType {
Op sGamma, sRGBish, PQish, HLGish, HLGinvish, table;
};
static constexpr OpType kOps[] = {
{ Op::gamma_r, Op::tf_r, Op::pq_r, Op::hlg_r, Op::hlginv_r, Op::table_r },
{ Op::gamma_g, Op::tf_g, Op::pq_g, Op::hlg_g, Op::hlginv_g, Op::table_g },
{ Op::gamma_b, Op::tf_b, Op::pq_b, Op::hlg_b, Op::hlginv_b, Op::table_b },
{ Op::gamma_a, Op::tf_a, Op::pq_a, Op::hlg_a, Op::hlginv_a, Op::table_a },
};
const auto& op = kOps[channel];
if (curve->table_entries == 0) {
const OpAndArg noop = { Op::load_a8/*doesn't matter*/, nullptr };
const skcms_TransferFunction& tf = curve->parametric;
if (tf_is_gamma(tf)) {
return tf.g != 1 ? OpAndArg{op.sGamma, &tf}
: noop;
}
switch (classify(tf)) {
case skcms_TFType_Invalid: return noop;
case skcms_TFType_sRGBish: return OpAndArg{op.sRGBish, &tf};
case skcms_TFType_PQish: return OpAndArg{op.PQish, &tf};
case skcms_TFType_HLGish: return OpAndArg{op.HLGish, &tf};
case skcms_TFType_HLGinvish: return OpAndArg{op.HLGinvish, &tf};
}
}
return OpAndArg{op.table, curve};
}
static int select_curve_ops(const skcms_Curve* curves, int numChannels, OpAndArg* ops) {
// We process the channels in reverse order, yielding ops in ABGR order.
// (Working backwards allows us to fuse trailing B+G+R ops into a single RGB op.)
int cursor = 0;
for (int index = numChannels; index-- > 0; ) {
ops[cursor] = select_curve_op(&curves[index], index);
if (ops[cursor].arg) {
++cursor;
}
}
// Identify separate B+G+R ops and fuse them into a single RGB op.
if (cursor >= 3) {
struct FusableOps {
Op r, g, b, rgb;
};
static constexpr FusableOps kFusableOps[] = {
{Op::gamma_r, Op::gamma_g, Op::gamma_b, Op::gamma_rgb},
{Op::tf_r, Op::tf_g, Op::tf_b, Op::tf_rgb},
{Op::pq_r, Op::pq_g, Op::pq_b, Op::pq_rgb},
{Op::hlg_r, Op::hlg_g, Op::hlg_b, Op::hlg_rgb},
{Op::hlginv_r, Op::hlginv_g, Op::hlginv_b, Op::hlginv_rgb},
};
int posR = cursor - 1;
int posG = cursor - 2;
int posB = cursor - 3;
for (const FusableOps& fusableOp : kFusableOps) {
if (ops[posR].op == fusableOp.r &&
ops[posG].op == fusableOp.g &&
ops[posB].op == fusableOp.b &&
(0 == memcmp(ops[posR].arg, ops[posG].arg, sizeof(skcms_TransferFunction))) &&
(0 == memcmp(ops[posR].arg, ops[posB].arg, sizeof(skcms_TransferFunction)))) {
// Fuse the three matching ops into one.
ops[posB].op = fusableOp.rgb;
cursor -= 2;
break;
}
}
}
return cursor;
}
static size_t bytes_per_pixel(skcms_PixelFormat fmt) {
switch (fmt >> 1) { // ignore rgb/bgr
case skcms_PixelFormat_A_8 >> 1: return 1;
case skcms_PixelFormat_G_8 >> 1: return 1;
case skcms_PixelFormat_GA_88 >> 1: return 2;
case skcms_PixelFormat_ABGR_4444 >> 1: return 2;
case skcms_PixelFormat_RGB_565 >> 1: return 2;
case skcms_PixelFormat_RGB_888 >> 1: return 3;
case skcms_PixelFormat_RGBA_8888 >> 1: return 4;
case skcms_PixelFormat_RGBA_8888_sRGB >> 1: return 4;
case skcms_PixelFormat_RGBA_1010102 >> 1: return 4;
case skcms_PixelFormat_RGB_101010x_XR >> 1: return 4;
case skcms_PixelFormat_RGB_161616LE >> 1: return 6;
case skcms_PixelFormat_RGBA_10101010_XR >> 1: return 8;
case skcms_PixelFormat_RGBA_16161616LE >> 1: return 8;
case skcms_PixelFormat_RGB_161616BE >> 1: return 6;
case skcms_PixelFormat_RGBA_16161616BE >> 1: return 8;
case skcms_PixelFormat_RGB_hhh_Norm >> 1: return 6;
case skcms_PixelFormat_RGBA_hhhh_Norm >> 1: return 8;
case skcms_PixelFormat_RGB_hhh >> 1: return 6;
case skcms_PixelFormat_RGBA_hhhh >> 1: return 8;
case skcms_PixelFormat_RGB_fff >> 1: return 12;
case skcms_PixelFormat_RGBA_ffff >> 1: return 16;
}
assert(false);
return 0;
}
static bool prep_for_destination(const skcms_ICCProfile* profile,
skcms_Matrix3x3* fromXYZD50,
skcms_TransferFunction* invR,
skcms_TransferFunction* invG,
skcms_TransferFunction* invB) {
// skcms_Transform() supports B2A destinations...
if (profile->has_B2A) { return true; }
// ...and destinations with parametric transfer functions and an XYZD50 gamut matrix.
return profile->has_trc
&& profile->has_toXYZD50
&& profile->trc[0].table_entries == 0
&& profile->trc[1].table_entries == 0
&& profile->trc[2].table_entries == 0
&& skcms_TransferFunction_invert(&profile->trc[0].parametric, invR)
&& skcms_TransferFunction_invert(&profile->trc[1].parametric, invG)
&& skcms_TransferFunction_invert(&profile->trc[2].parametric, invB)
&& skcms_Matrix3x3_invert(&profile->toXYZD50, fromXYZD50);
}
bool skcms_Transform(const void* src,
skcms_PixelFormat srcFmt,
skcms_AlphaFormat srcAlpha,
const skcms_ICCProfile* srcProfile,
void* dst,
skcms_PixelFormat dstFmt,
skcms_AlphaFormat dstAlpha,
const skcms_ICCProfile* dstProfile,
size_t nz) {
const size_t dst_bpp = bytes_per_pixel(dstFmt),
src_bpp = bytes_per_pixel(srcFmt);
// Let's just refuse if the request is absurdly big.
if (nz * dst_bpp > INT_MAX || nz * src_bpp > INT_MAX) {
return false;
}
int n = (int)nz;
// Null profiles default to sRGB. Passing null for both is handy when doing format conversion.
if (!srcProfile) {
srcProfile = skcms_sRGB_profile();
}
if (!dstProfile) {
dstProfile = skcms_sRGB_profile();
}
// We can't transform in place unless the PixelFormats are the same size.
if (dst == src && dst_bpp != src_bpp) {
return false;
}
// TODO: more careful alias rejection (like, dst == src + 1)?
Op program[32];
const void* context[32];
Op* ops = program;
const void** contexts = context;
auto add_op = [&](Op o) {
*ops++ = o;
*contexts++ = nullptr;
};
auto add_op_ctx = [&](Op o, const void* c) {
*ops++ = o;
*contexts++ = c;
};
auto add_curve_ops = [&](const skcms_Curve* curves, int numChannels) {
OpAndArg oa[4];
assert(numChannels <= ARRAY_COUNT(oa));
int numOps = select_curve_ops(curves, numChannels, oa);
for (int i = 0; i < numOps; ++i) {
add_op_ctx(oa[i].op, oa[i].arg);
}
};
// These are always parametric curves of some sort.
skcms_Curve dst_curves[3];
dst_curves[0].table_entries =
dst_curves[1].table_entries =
dst_curves[2].table_entries = 0;
skcms_Matrix3x3 from_xyz;
switch (srcFmt >> 1) {
default: return false;
case skcms_PixelFormat_A_8 >> 1: add_op(Op::load_a8); break;
case skcms_PixelFormat_G_8 >> 1: add_op(Op::load_g8); break;
case skcms_PixelFormat_GA_88 >> 1: add_op(Op::load_ga88); break;
case skcms_PixelFormat_ABGR_4444 >> 1: add_op(Op::load_4444); break;
case skcms_PixelFormat_RGB_565 >> 1: add_op(Op::load_565); break;
case skcms_PixelFormat_RGB_888 >> 1: add_op(Op::load_888); break;
case skcms_PixelFormat_RGBA_8888 >> 1: add_op(Op::load_8888); break;
case skcms_PixelFormat_RGBA_1010102 >> 1: add_op(Op::load_1010102); break;
case skcms_PixelFormat_RGB_101010x_XR >> 1: add_op(Op::load_101010x_XR); break;
case skcms_PixelFormat_RGBA_10101010_XR >> 1: add_op(Op::load_10101010_XR); break;
case skcms_PixelFormat_RGB_161616LE >> 1: add_op(Op::load_161616LE); break;
case skcms_PixelFormat_RGBA_16161616LE >> 1: add_op(Op::load_16161616LE); break;
case skcms_PixelFormat_RGB_161616BE >> 1: add_op(Op::load_161616BE); break;
case skcms_PixelFormat_RGBA_16161616BE >> 1: add_op(Op::load_16161616BE); break;
case skcms_PixelFormat_RGB_hhh_Norm >> 1: add_op(Op::load_hhh); break;
case skcms_PixelFormat_RGBA_hhhh_Norm >> 1: add_op(Op::load_hhhh); break;
case skcms_PixelFormat_RGB_hhh >> 1: add_op(Op::load_hhh); break;
case skcms_PixelFormat_RGBA_hhhh >> 1: add_op(Op::load_hhhh); break;
case skcms_PixelFormat_RGB_fff >> 1: add_op(Op::load_fff); break;
case skcms_PixelFormat_RGBA_ffff >> 1: add_op(Op::load_ffff); break;
case skcms_PixelFormat_RGBA_8888_sRGB >> 1:
add_op(Op::load_8888);
add_op_ctx(Op::tf_rgb, skcms_sRGB_TransferFunction());
break;
}
if (srcFmt == skcms_PixelFormat_RGB_hhh_Norm ||
srcFmt == skcms_PixelFormat_RGBA_hhhh_Norm) {
add_op(Op::clamp);
}
if (srcFmt & 1) {
add_op(Op::swap_rb);
}
skcms_ICCProfile gray_dst_profile;
switch (dstFmt >> 1) {
case skcms_PixelFormat_G_8:
case skcms_PixelFormat_GA_88:
// When transforming to gray, stop at XYZ (by setting toXYZ to identity), then transform
// luminance (Y) by the destination transfer function.
gray_dst_profile = *dstProfile;
skcms_SetXYZD50(&gray_dst_profile, &skcms_XYZD50_profile()->toXYZD50);
dstProfile = &gray_dst_profile;
break;
default:
break;
}
if (srcProfile->data_color_space == skcms_Signature_CMYK) {
// Photoshop creates CMYK images as inverse CMYK.
// These happen to be the only ones we've _ever_ seen.
add_op(Op::invert);
// With CMYK, ignore the alpha type, to avoid changing K or conflating CMY with K.
srcAlpha = skcms_AlphaFormat_Unpremul;
}
if (srcAlpha == skcms_AlphaFormat_Opaque) {
add_op(Op::force_opaque);
} else if (srcAlpha == skcms_AlphaFormat_PremulAsEncoded) {
add_op(Op::unpremul);
}
if (dstProfile != srcProfile) {
if (!prep_for_destination(dstProfile,
&from_xyz,
&dst_curves[0].parametric,
&dst_curves[1].parametric,
&dst_curves[2].parametric)) {
return false;
}
if (srcProfile->has_A2B) {
if (srcProfile->A2B.input_channels) {
add_curve_ops(srcProfile->A2B.input_curves,
(int)srcProfile->A2B.input_channels);
add_op(Op::clamp);
add_op_ctx(Op::clut_A2B, &srcProfile->A2B);
}
if (srcProfile->A2B.matrix_channels == 3) {
add_curve_ops(srcProfile->A2B.matrix_curves, /*numChannels=*/3);
static const skcms_Matrix3x4 I = {{
{1,0,0,0},
{0,1,0,0},
{0,0,1,0},
}};
if (0 != memcmp(&I, &srcProfile->A2B.matrix, sizeof(I))) {
add_op_ctx(Op::matrix_3x4, &srcProfile->A2B.matrix);
}
}
if (srcProfile->A2B.output_channels == 3) {
add_curve_ops(srcProfile->A2B.output_curves, /*numChannels=*/3);
}
if (srcProfile->pcs == skcms_Signature_Lab) {
add_op(Op::lab_to_xyz);
}
} else if (srcProfile->has_trc && srcProfile->has_toXYZD50) {
add_curve_ops(srcProfile->trc, /*numChannels=*/3);
} else {
return false;
}
// A2B sources are in XYZD50 by now, but TRC sources are still in their original gamut.
assert (srcProfile->has_A2B || srcProfile->has_toXYZD50);
if (dstProfile->has_B2A) {
// B2A needs its input in XYZD50, so transform TRC sources now.
if (!srcProfile->has_A2B) {
add_op_ctx(Op::matrix_3x3, &srcProfile->toXYZD50);
}
if (dstProfile->pcs == skcms_Signature_Lab) {
add_op(Op::xyz_to_lab);
}
if (dstProfile->B2A.input_channels == 3) {
add_curve_ops(dstProfile->B2A.input_curves, /*numChannels=*/3);
}
if (dstProfile->B2A.matrix_channels == 3) {
static const skcms_Matrix3x4 I = {{
{1,0,0,0},
{0,1,0,0},
{0,0,1,0},
}};
if (0 != memcmp(&I, &dstProfile->B2A.matrix, sizeof(I))) {
add_op_ctx(Op::matrix_3x4, &dstProfile->B2A.matrix);
}
add_curve_ops(dstProfile->B2A.matrix_curves, /*numChannels=*/3);
}
if (dstProfile->B2A.output_channels) {
add_op(Op::clamp);
add_op_ctx(Op::clut_B2A, &dstProfile->B2A);
add_curve_ops(dstProfile->B2A.output_curves,
(int)dstProfile->B2A.output_channels);
}
} else {
// This is a TRC destination.
// We'll concat any src->xyz matrix with our xyz->dst matrix into one src->dst matrix.
// (A2B sources are already in XYZD50, making that src->xyz matrix I.)
static const skcms_Matrix3x3 I = {{
{ 1.0f, 0.0f, 0.0f },
{ 0.0f, 1.0f, 0.0f },
{ 0.0f, 0.0f, 1.0f },
}};
const skcms_Matrix3x3* to_xyz = srcProfile->has_A2B ? &I : &srcProfile->toXYZD50;
// There's a chance the source and destination gamuts are identical,
// in which case we can skip the gamut transform.
if (0 != memcmp(&dstProfile->toXYZD50, to_xyz, sizeof(skcms_Matrix3x3))) {
// Concat the entire gamut transform into from_xyz,
// now slightly misnamed but it's a handy spot to stash the result.
from_xyz = skcms_Matrix3x3_concat(&from_xyz, to_xyz);
add_op_ctx(Op::matrix_3x3, &from_xyz);
}
// Encode back to dst RGB using its parametric transfer functions.
OpAndArg oa[3];
int numOps = select_curve_ops(dst_curves, /*numChannels=*/3, oa);
for (int index = 0; index < numOps; ++index) {
assert(oa[index].op != Op::table_r &&
oa[index].op != Op::table_g &&
oa[index].op != Op::table_b &&
oa[index].op != Op::table_a);
add_op_ctx(oa[index].op, oa[index].arg);
}
}
}
// Clamp here before premul to make sure we're clamping to normalized values _and_ gamut,
// not just to values that fit in [0,1].
//
// E.g. r = 1.1, a = 0.5 would fit fine in fixed point after premul (ra=0.55,a=0.5),
// but would be carrying r > 1, which is really unexpected for downstream consumers.
if (dstFmt < skcms_PixelFormat_RGB_hhh) {
add_op(Op::clamp);
}
if (dstProfile->data_color_space == skcms_Signature_CMYK) {
// Photoshop creates CMYK images as inverse CMYK.
// These happen to be the only ones we've _ever_ seen.
add_op(Op::invert);
// CMYK has no alpha channel, so make sure dstAlpha is a no-op.
dstAlpha = skcms_AlphaFormat_Unpremul;
}
if (dstAlpha == skcms_AlphaFormat_Opaque) {
add_op(Op::force_opaque);
} else if (dstAlpha == skcms_AlphaFormat_PremulAsEncoded) {
add_op(Op::premul);
}
if (dstFmt & 1) {
add_op(Op::swap_rb);
}
switch (dstFmt >> 1) {
default: return false;
case skcms_PixelFormat_A_8 >> 1: add_op(Op::store_a8); break;
case skcms_PixelFormat_G_8 >> 1: add_op(Op::store_g8); break;
case skcms_PixelFormat_GA_88 >> 1: add_op(Op::store_ga88); break;
case skcms_PixelFormat_ABGR_4444 >> 1: add_op(Op::store_4444); break;
case skcms_PixelFormat_RGB_565 >> 1: add_op(Op::store_565); break;
case skcms_PixelFormat_RGB_888 >> 1: add_op(Op::store_888); break;
case skcms_PixelFormat_RGBA_8888 >> 1: add_op(Op::store_8888); break;
case skcms_PixelFormat_RGBA_1010102 >> 1: add_op(Op::store_1010102); break;
case skcms_PixelFormat_RGB_161616LE >> 1: add_op(Op::store_161616LE); break;
case skcms_PixelFormat_RGBA_16161616LE >> 1: add_op(Op::store_16161616LE); break;
case skcms_PixelFormat_RGB_161616BE >> 1: add_op(Op::store_161616BE); break;
case skcms_PixelFormat_RGBA_16161616BE >> 1: add_op(Op::store_16161616BE); break;
case skcms_PixelFormat_RGB_hhh_Norm >> 1: add_op(Op::store_hhh); break;
case skcms_PixelFormat_RGBA_hhhh_Norm >> 1: add_op(Op::store_hhhh); break;
case skcms_PixelFormat_RGB_101010x_XR >> 1: add_op(Op::store_101010x_XR); break;
case skcms_PixelFormat_RGBA_10101010_XR >> 1: add_op(Op::store_10101010_XR); break;
case skcms_PixelFormat_RGB_hhh >> 1: add_op(Op::store_hhh); break;
case skcms_PixelFormat_RGBA_hhhh >> 1: add_op(Op::store_hhhh); break;
case skcms_PixelFormat_RGB_fff >> 1: add_op(Op::store_fff); break;
case skcms_PixelFormat_RGBA_ffff >> 1: add_op(Op::store_ffff); break;
case skcms_PixelFormat_RGBA_8888_sRGB >> 1:
add_op_ctx(Op::tf_rgb, skcms_sRGB_Inverse_TransferFunction());
add_op(Op::store_8888);
break;
}
assert(ops <= program + ARRAY_COUNT(program));
assert(contexts <= context + ARRAY_COUNT(context));
auto run = baseline::run_program;
switch (cpu_type()) {
case CpuType::SKX:
#if !defined(SKCMS_DISABLE_SKX)
run = skx::run_program;
break;
#endif
case CpuType::HSW:
#if !defined(SKCMS_DISABLE_HSW)
run = hsw::run_program;
break;
#endif
case CpuType::Baseline:
break;
}
run(program, context, ops - program, (const char*)src, (char*)dst, n, src_bpp,dst_bpp);
return true;
}
static void assert_usable_as_destination(const skcms_ICCProfile* profile) {
#if defined(NDEBUG)
(void)profile;
#else
skcms_Matrix3x3 fromXYZD50;
skcms_TransferFunction invR, invG, invB;
assert(prep_for_destination(profile, &fromXYZD50, &invR, &invG, &invB));
#endif
}
bool skcms_MakeUsableAsDestination(skcms_ICCProfile* profile) {
if (!profile->has_B2A) {
skcms_Matrix3x3 fromXYZD50;
if (!profile->has_trc || !profile->has_toXYZD50
|| !skcms_Matrix3x3_invert(&profile->toXYZD50, &fromXYZD50)) {
return false;
}
skcms_TransferFunction tf[3];
for (int i = 0; i < 3; i++) {
skcms_TransferFunction inv;
if (profile->trc[i].table_entries == 0
&& skcms_TransferFunction_invert(&profile->trc[i].parametric, &inv)) {
tf[i] = profile->trc[i].parametric;
continue;
}
float max_error;
// Parametric curves from skcms_ApproximateCurve() are guaranteed to be invertible.
if (!skcms_ApproximateCurve(&profile->trc[i], &tf[i], &max_error)) {
return false;
}
}
for (int i = 0; i < 3; ++i) {
profile->trc[i].table_entries = 0;
profile->trc[i].parametric = tf[i];
}
}
assert_usable_as_destination(profile);
return true;
}
bool skcms_MakeUsableAsDestinationWithSingleCurve(skcms_ICCProfile* profile) {
// Call skcms_MakeUsableAsDestination() with B2A disabled;
// on success that'll return a TRC/XYZ profile with three skcms_TransferFunctions.
skcms_ICCProfile result = *profile;
result.has_B2A = false;
if (!skcms_MakeUsableAsDestination(&result)) {
return false;
}
// Of the three, pick the transfer function that best fits the other two.
int best_tf = 0;
float min_max_error = INFINITY_;
for (int i = 0; i < 3; i++) {
skcms_TransferFunction inv;
if (!skcms_TransferFunction_invert(&result.trc[i].parametric, &inv)) {
return false;
}
float err = 0;
for (int j = 0; j < 3; ++j) {
err = fmaxf_(err, skcms_MaxRoundtripError(&profile->trc[j], &inv));
}
if (min_max_error > err) {
min_max_error = err;
best_tf = i;
}
}
for (int i = 0; i < 3; i++) {
result.trc[i].parametric = result.trc[best_tf].parametric;
}
*profile = result;
assert_usable_as_destination(profile);
return true;
}
|