File: BiquadDSPKernel.cpp

package info (click to toggle)
webkit2gtk 2.48.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 429,764 kB
  • sloc: cpp: 3,697,587; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,295; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (269 lines) | stat: -rw-r--r-- 10,825 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
/*
 * Copyright (C) 2010, Google Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1.  Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2.  Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"

#if ENABLE(WEB_AUDIO)

#include "BiquadDSPKernel.h"

#include "AudioArray.h"
#include "AudioUtilities.h"
#include "Biquad.h"
#include "BiquadProcessor.h"
#include "FloatConversion.h"
#include <limits.h>
#include <wtf/TZoneMallocInlines.h>
#include <wtf/Vector.h>

#if CPU(X86_SSE2)
#include <immintrin.h>
#endif

#if HAVE(ARM_NEON_INTRINSICS)
#include <arm_neon.h>
#endif

namespace WebCore {

WTF_MAKE_TZONE_ALLOCATED_IMPL(BiquadDSPKernel);

static bool hasConstantValue(std::span<float> values)
{
    // Load the initial value
    const float value = values[0];
    // This initialization ensures that we correctly handle the first frame and
    // start the processing from the second frame onwards, effectively excluding
    // the first frame from the subsequent comparisons in the non-SIMD paths
    // it guarantees that we don't redundantly compare the first frame again
    // during the loop execution.
    size_t processedFrames = 1;

#if CPU(X86_SSE2)
    // Process 4 floats at a time using SIMD.
    __m128 valueVec = _mm_set1_ps(value);
    // Start at 0 for byte alignment
    for (processedFrames = 0; processedFrames < values.size() - 3; processedFrames += 4) {
        // Load 4 floats from memory.
        __m128 inputVec = _mm_loadu_ps(&values[processedFrames]);
        // Compare the 4 floats with the value.
        __m128 cmpVec = _mm_cmpneq_ps(inputVec, valueVec);
        // Check if any of the floats are not equal to the value.
        if (_mm_movemask_ps(cmpVec))
            return false;
    }
#elif HAVE(ARM_NEON_INTRINSICS)
    // Process 4 floats at a time using SIMD.
    float32x4_t valueVec = vdupq_n_f32(value);
    // Start at 0 for byte alignment.
    for (processedFrames = 0; processedFrames < values.size() - 3; processedFrames += 4) {
        // Load 4 floats from memory.
        float32x4_t inputVec = vld1q_f32(&values[processedFrames]);
        // Compare the 4 floats with the value.
        uint32x4_t cmpVec = vceqq_f32(inputVec, valueVec);
        // Accumulate the elements of the cmpVec vector using bitwise AND.
        uint32x2_t cmpReduced32 = vand_u32(vget_low_u32(cmpVec), vget_high_u32(cmpVec));
        // Check if any of the floats are not equal to the value.
        if (!vget_lane_u32(vpmin_u32(cmpReduced32, cmpReduced32), 0))
            return false;
    }
#endif
    // Fallback implementation without SIMD optimization.
    while (processedFrames < values.size()) {
        if (values[processedFrames] != value)
            return false;
        ++processedFrames;
    }
    return true;
}

void BiquadDSPKernel::updateCoefficientsIfNecessary(size_t framesToProcess)
{
    if (biquadProcessor()->filterCoefficientsDirty()) {
        if (biquadProcessor()->hasSampleAccurateValues() && biquadProcessor()->shouldUseARate()) {
            // Use float arrays instead of AudioFloatArray to avoid heap allocations on the audio thread.
            std::array<float, AudioUtilities::renderQuantumSize> cutoffFrequency;
            std::array<float, AudioUtilities::renderQuantumSize> q;
            std::array<float, AudioUtilities::renderQuantumSize> gain;
            std::array<float, AudioUtilities::renderQuantumSize> detune; // in Cents

            RELEASE_ASSERT(framesToProcess <= AudioUtilities::renderQuantumSize);

            auto cutoffFrequencySpan = std::span { cutoffFrequency }.first(framesToProcess);
            auto qSpan = std::span { q }.first(framesToProcess);
            auto gainSpan = std::span { gain }.first(framesToProcess);
            auto detuneSpan = std::span { detune }.first(framesToProcess);

            biquadProcessor()->parameter1().calculateSampleAccurateValues(cutoffFrequencySpan);
            biquadProcessor()->parameter2().calculateSampleAccurateValues(qSpan);
            biquadProcessor()->parameter3().calculateSampleAccurateValues(gainSpan);
            biquadProcessor()->parameter4().calculateSampleAccurateValues(detuneSpan);

            // If all the values are actually constant for this render (or the
            // automation rate is "k-rate" for all of the AudioParams), we don't need
            // to compute filter coefficients for each frame since they would be the
            // same as the first.
            bool isConstant = hasConstantValue(cutoffFrequencySpan)
                && hasConstantValue(qSpan)
                && hasConstantValue(gainSpan)
                && hasConstantValue(detuneSpan);

            updateCoefficients(isConstant ? 1 : framesToProcess, cutoffFrequency, q, gain, detune);
        } else {
            float cutoffFrequency = biquadProcessor()->parameter1().finalValue();
            float q = biquadProcessor()->parameter2().finalValue();
            float gain = biquadProcessor()->parameter3().finalValue();
            float detune = biquadProcessor()->parameter4().finalValue();
            updateCoefficients(1, singleElementSpan(cutoffFrequency), singleElementSpan(q), singleElementSpan(gain), singleElementSpan(detune));
        }
    }
}

void BiquadDSPKernel::updateCoefficients(size_t numberOfFrames, std::span<const float> cutoffFrequency, std::span<const float> q, std::span<const float> gain, std::span<const float> detune)
{
    // Convert from Hertz to normalized frequency 0 -> 1.
    double nyquist = this->nyquist();

    m_biquad.setHasSampleAccurateValues(numberOfFrames > 1);

    for (size_t k = 0; k < numberOfFrames; ++k) {
        double normalizedFrequency = cutoffFrequency[k] / nyquist;

        // Offset frequency by detune.
        if (detune[k]) {
            // Detune multiplies the frequency by 2^(detune[k] / 1200).
            normalizedFrequency *= std::exp2(detune[k] / 1200);
        }

        // Configure the biquad with the new filter parameters for the appropriate
        // type of filter.
        switch (biquadProcessor()->type()) {
        case BiquadFilterType::Lowpass:
            m_biquad.setLowpassParams(k, normalizedFrequency, q[k]);
            break;

        case BiquadFilterType::Highpass:
            m_biquad.setHighpassParams(k, normalizedFrequency, q[k]);
            break;

        case BiquadFilterType::Bandpass:
            m_biquad.setBandpassParams(k, normalizedFrequency, q[k]);
            break;

        case BiquadFilterType::Lowshelf:
            m_biquad.setLowShelfParams(k, normalizedFrequency, gain[k]);
            break;

        case BiquadFilterType::Highshelf:
            m_biquad.setHighShelfParams(k, normalizedFrequency, gain[k]);
            break;

        case BiquadFilterType::Peaking:
            m_biquad.setPeakingParams(k, normalizedFrequency, q[k], gain[k]);
            break;

        case BiquadFilterType::Notch:
            m_biquad.setNotchParams(k, normalizedFrequency, q[k]);
            break;

        case BiquadFilterType::Allpass:
            m_biquad.setAllpassParams(k, normalizedFrequency, q[k]);
            break;
        }
    }

    ASSERT(numberOfFrames);
    updateTailTime(numberOfFrames - 1);
}

void BiquadDSPKernel::process(std::span<const float> source, std::span<float> destination)
{
    ASSERT(source.data() && destination.data() && biquadProcessor());
    
    // Recompute filter coefficients if any of the parameters have changed.
    // FIXME: as an optimization, implement a way that a Biquad object can simply copy its internal filter coefficients from another Biquad object.
    // Then re-factor this code to only run for the first BiquadDSPKernel of each BiquadProcessor.

    updateCoefficientsIfNecessary(source.size());

    m_biquad.process(source, destination);
}

void BiquadDSPKernel::getFrequencyResponse(unsigned nFrequencies, std::span<const float> frequencyHz, std::span<float> magResponse, std::span<float> phaseResponse)
{
    bool isGood = nFrequencies > 0 && frequencyHz.data() && magResponse.data() && phaseResponse.data();
    ASSERT(isGood);
    if (!isGood)
        return;

    Vector<float> frequency(nFrequencies);

    double nyquist = this->nyquist();

    // Convert from frequency in Hz to normalized frequency (0 -> 1),
    // with 1 equal to the Nyquist frequency.
    for (unsigned k = 0; k < nFrequencies; ++k)
        frequency[k] = frequencyHz[k] / nyquist;

    m_biquad.getFrequencyResponse(nFrequencies, frequency.span(), magResponse, phaseResponse);
}

double BiquadDSPKernel::tailTime() const
{
    return m_tailTime;
}

double BiquadDSPKernel::latencyTime() const
{
    return 0;
}

void BiquadDSPKernel::updateTailTime(size_t coefIndex)
{
    // A reasonable upper limit for the tail time. While it's easy to
    // create biquad filters whose tail time can be much larger than
    // this, limit the maximum to this value so that we don't keep such
    // nodes alive "forever".
    // TODO: What is a reasonable upper limit?
    constexpr double maxTailTime = 30;

    double sampleRate = this->sampleRate();
    double tail = m_biquad.tailFrame(coefIndex, maxTailTime * sampleRate) / sampleRate;

    m_tailTime = std::clamp(tail, 0.0, maxTailTime);
}

bool BiquadDSPKernel::requiresTailProcessing() const
{
    // Always return true even if the tail time and latency might both
    // be zero. This is for simplicity and because TailTime() is 0
    // basically only when the filter response H(z) = 0 or H(z) = 1. And
    // it's ok to return true. It just means the node lives a little
    // longer than strictly necessary.
    return true;
}

} // namespace WebCore

#endif // ENABLE(WEB_AUDIO)