1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
/*
* Copyright (C) 2023 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "AXTextRun.h"
#if ENABLE(AX_THREAD_TEXT_APIS)
#include <wtf/text/MakeString.h>
namespace WebCore {
String AXTextRuns::debugDescription() const
{
return makeString('[', interleave(runs, [&](auto& run) { return run.debugDescription(containingBlock); }, ", "_s), ']');
}
size_t AXTextRuns::indexForOffset(unsigned textOffset) const
{
size_t cumulativeLength = 0;
for (size_t i = 0; i < runs.size(); i++) {
cumulativeLength += runLength(i);
if (cumulativeLength >= textOffset)
return i;
}
return notFound;
}
AXTextRunLineID AXTextRuns::lineIDForOffset(unsigned textOffset) const
{
size_t runIndex = indexForOffset(textOffset);
return runIndex == notFound ? AXTextRunLineID() : lineID(runIndex);
}
unsigned AXTextRuns::runLengthSumTo(size_t index) const
{
unsigned length = 0;
for (size_t i = 0; i <= index && i < runs.size(); i++)
length += runLength(i);
return length;
}
String AXTextRuns::substring(unsigned start, unsigned length) const
{
if (!length)
return emptyString();
StringBuilder result;
size_t charactersSeen = 0;
auto remaining = [&] () {
return result.length() >= length ? 0 : length - result.length();
};
for (unsigned i = 0; i < runs.size() && result.length() < length; i++) {
size_t runLength = this->runLength(i);
if (charactersSeen >= start) {
// The start points entirely within bounds of this run.
result.append(runs[i].text.left(remaining()));
} else if (charactersSeen + runLength > start) {
// start points somewhere in the middle of the current run, collect part of the text.
unsigned startInRun = start - charactersSeen;
RELEASE_ASSERT(startInRun < runLength);
result.append(runs[i].text.substring(startInRun, remaining()));
}
// If charactersSeen + runLength == start, the start points to the end of the run, and there is no text to gather.
charactersSeen += runLength;
}
return result.toString();
}
unsigned AXTextRuns::domOffset(unsigned renderedTextOffset) const
{
unsigned cumulativeDomOffset = 0;
unsigned previousEndDomOffset = 0;
for (size_t i = 0; i < size(); i++) {
const auto& domOffsets = at(i).domOffsets();
for (const auto& domOffsetPair : domOffsets) {
RELEASE_ASSERT(domOffsetPair[0] >= previousEndDomOffset);
// domOffsetPair[0] represents the start DOM offset of this run. Subtracting it
// from the previous run's end DOM offset, we know how much whitespace was collapsed,
// and thus know the offset between the DOM text and what was actually rendered.
// For example, given domOffsets: [2, 10], [13, 18]
// The first offset to rendered text is 2 (2 - 0), e.g. because of two leading
// whitespaces that were trimmed: " foo"
// The second offset to rendered text is 3 (13 - 10), e.g. because of three
// collapsed whitespaces in between the first and second runs.
cumulativeDomOffset += domOffsetPair[0] - previousEndDomOffset;
// Using the example above, these values would be 0 and 8 for the first run,
// and 8 and 13 for the second run. Text that would fits this example would be:
// " Charlie Delta", rendered as: "Charlie Delta".
unsigned startRenderedTextOffset = domOffsetPair[0] - cumulativeDomOffset;
unsigned endRenderedTextOffset = domOffsetPair[1] - cumulativeDomOffset;
if (renderedTextOffset >= startRenderedTextOffset && renderedTextOffset <= endRenderedTextOffset) {
// The rendered text offset is in range of this run. We can get the DOM offset
// by adding the accumulated difference between the rendered text and DOM text.
return renderedTextOffset + cumulativeDomOffset;
}
previousEndDomOffset = domOffsetPair[1];
}
}
// We were provided with a rendered-text offset that didn't actually fit into our
// runs. This should never happen.
RELEASE_ASSERT_NOT_REACHED();
return renderedTextOffset;
}
FloatRect AXTextRuns::localRect(unsigned start, unsigned end, float lineHeight) const
{
unsigned smallerOffset = start;
unsigned largerOffset = end;
if (smallerOffset > largerOffset)
std::swap(smallerOffset, largerOffset);
unsigned runIndexOfSmallerOffset = indexForOffset(smallerOffset);
unsigned runIndexOfLargerOffset = indexForOffset(largerOffset);
// FIXME: Probably want a special case for hard linebreaks (<br>s). Investigate how the main-thread does this.
// FIXME: We'll need to flip the result rect based on writing mode.
unsigned x = 0;
unsigned maxWidth = 0;
float measuredHeight = 0.0f;
float heightBeforeRuns = 0.0f;
for (unsigned i = 0; i <= runIndexOfLargerOffset; i++) {
if (i < runIndexOfSmallerOffset) {
// Each text run represents a line, so count up the height of lines prior to our range start.
heightBeforeRuns += lineHeight;
} else {
const auto& run = at(i);
unsigned measuredWidth = 0;
if (i == runIndexOfSmallerOffset) {
unsigned offsetOfFirstCharacterInRun = !i ? 0 : runLengthSumTo(i - 1);
RELEASE_ASSERT(smallerOffset >= offsetOfFirstCharacterInRun);
// Measure the characters in this run (accomplished by smallerOffset - offsetOfFirstCharacterInRun)
// prior to the offset.
unsigned widthPriorToStart = (smallerOffset - offsetOfFirstCharacterInRun) * estimatedCharacterWidth;
unsigned widthAfterEnd = runIndexOfSmallerOffset == runIndexOfLargerOffset
// aa|aaa|aa
// length 7, smallerOffset = 2, largerOffset = 5 — measure the last two "a" characters.
? (runLengthSumTo(i) - largerOffset) * estimatedCharacterWidth
// The offsets pointed into different runs, so the width of this run extends to the end.
: 0;
unsigned fullRunWidth = run.text.length() * estimatedCharacterWidth;
RELEASE_ASSERT(fullRunWidth >= (widthPriorToStart + widthAfterEnd));
measuredWidth = fullRunWidth - widthPriorToStart - widthAfterEnd;
if (!measuredWidth) {
bool isCollapsedRange = (runIndexOfSmallerOffset == runIndexOfLargerOffset && smallerOffset == largerOffset);
if (isCollapsedRange) {
// If this is a collapsed range (start.offset == end.offset), we want to return the width of a cursor.
// Use 2px for this, matching CaretRectComputation::caretWidth. This overall behavior for collapsed
// ranges matches that of CaretRectComputation::computeLocalCaretRect, which is downstream of
// the main-thread-text-implementation equivalent of this function, AXObjectCache::boundsForRange.
measuredWidth = 2;
} else {
// There was no measured width in this run, so we should count this as a line before the actual rect starts.
heightBeforeRuns += lineHeight;
}
}
if (measuredWidth)
x = widthPriorToStart;
} else if (i == runIndexOfLargerOffset) {
// We're measuring the end of the range, so measure from the first character in the run up to largerOffset.
unsigned offsetOfFirstCharacterInRun = !i ? 0 : runLengthSumTo(i - 1);
RELEASE_ASSERT(largerOffset >= offsetOfFirstCharacterInRun);
measuredWidth = (largerOffset - offsetOfFirstCharacterInRun) * estimatedCharacterWidth;
if (measuredWidth) {
// Because our rect now includes the beginning of a run, set |x| to be 0, indicating the rect is not
// offset from its container.
x = 0;
}
} else {
// We're in some run between runIndexOfSmallerOffset and runIndexOfLargerOffset, so measure the whole run.
// For example, this could be the "bbb" runs:
// a|aa
// bbb
// cc|c
measuredWidth = run.text.length() * estimatedCharacterWidth;
if (measuredWidth) {
// Since we are measuring from the beginning of a run, x should be 0.
x = 0;
}
}
if (measuredWidth) {
// This run is within the range specified by |start| and |end|, so if we measured a width for it,
// also add to the height. It's important to only do this if we actually measured a width, as an
// offset pointing past the last character in a run will not add any width and thus should not
// contribute any height.
measuredHeight += lineHeight;
}
maxWidth = std::max(maxWidth, measuredWidth);
}
}
return { static_cast<float>(x), heightBeforeRuns, static_cast<float>(maxWidth), measuredHeight };
}
} // namespace WebCore
#endif // ENABLE(AX_THREAD_TEXT_APIS)
|