1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
/*
* Copyright (C) 2017 Apple Inc. All rights reserved.
* Copyright (C) 2017 Metrological Group B.V.
* Copyright (C) 2017 Igalia S.L.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "CryptoAlgorithmAESCTR.h"
#include "CryptoAlgorithmAesCtrParams.h"
#include "CryptoKeyAES.h"
#include <pal/crypto/gcrypt/Handle.h>
#include <pal/crypto/gcrypt/Utilities.h>
namespace WebCore {
// This is a helper function that resets the cipher object, sets the provided counter data,
// and executes the encrypt or decrypt operation, retrieving and returning the output data.
static std::optional<Vector<uint8_t>> callOperation(PAL::GCrypt::CipherOperation operation, gcry_cipher_hd_t handle, const Vector<uint8_t>& counter, const uint8_t* data, const size_t size)
{
gcry_error_t error = gcry_cipher_reset(handle);
if (error != GPG_ERR_NO_ERROR) {
PAL::GCrypt::logError(error);
return std::nullopt;
}
error = gcry_cipher_setctr(handle, counter.data(), counter.size());
if (error != GPG_ERR_NO_ERROR) {
PAL::GCrypt::logError(error);
return std::nullopt;
}
error = gcry_cipher_final(handle);
if (error != GPG_ERR_NO_ERROR) {
PAL::GCrypt::logError(error);
return std::nullopt;
}
Vector<uint8_t> output(size);
error = operation(handle, output.data(), output.size(), data, size);
if (error != GPG_ERR_NO_ERROR) {
PAL::GCrypt::logError(error);
return std::nullopt;
}
return output;
}
static std::optional<Vector<uint8_t>> gcryptAESCTR(PAL::GCrypt::CipherOperation operation, const Vector<uint8_t>& key, const Vector<uint8_t>& counter, size_t counterLength, const Vector<uint8_t>& inputText)
{
constexpr size_t blockSize = 16;
auto algorithm = PAL::GCrypt::aesAlgorithmForKeySize(key.size() * 8);
if (!algorithm)
return std::nullopt;
// Construct the libgcrypt cipher object and attach the key to it. Key information on this
// cipher object will live through any gcry_cipher_reset() calls.
PAL::GCrypt::Handle<gcry_cipher_hd_t> handle;
gcry_error_t error = gcry_cipher_open(&handle, *algorithm, GCRY_CIPHER_MODE_CTR, 0);
if (error != GPG_ERR_NO_ERROR) {
PAL::GCrypt::logError(error);
return std::nullopt;
}
error = gcry_cipher_setkey(handle, key.data(), key.size());
if (error != GPG_ERR_NO_ERROR) {
PAL::GCrypt::logError(error);
return std::nullopt;
}
// Calculate the block count: ((inputText.size() + blockSize - 1) / blockSize), remainder discarded.
PAL::GCrypt::Handle<gcry_mpi_t> blockCountMPI(gcry_mpi_new(0));
{
PAL::GCrypt::Handle<gcry_mpi_t> blockSizeMPI(gcry_mpi_set_ui(nullptr, blockSize));
PAL::GCrypt::Handle<gcry_mpi_t> roundedUpSize(gcry_mpi_set_ui(nullptr, inputText.size()));
gcry_mpi_add_ui(roundedUpSize, roundedUpSize, blockSize - 1);
gcry_mpi_div(blockCountMPI, nullptr, roundedUpSize, blockSizeMPI, 0);
}
// Calculate the counter limit for the specified counter length: (2 << counterLength).
// (counterLimitMPI - 1) is the maximum value the counter can hold -- essentially it's
// a bit-mask for valid counter values.
PAL::GCrypt::Handle<gcry_mpi_t> counterLimitMPI(gcry_mpi_set_ui(nullptr, 1));
gcry_mpi_mul_2exp(counterLimitMPI, counterLimitMPI, counterLength);
// Counter values must not repeat for a given cipher text. If the counter limit (i.e.
// the number of unique counter values we could produce for the specified counter
// length) is lower than the deduced block count, we bail.
if (gcry_mpi_cmp(counterLimitMPI, blockCountMPI) < 0)
return std::nullopt;
// If the counter length, in bits, matches the size of the counter data, we don't have to
// use any part of the counter Vector<> as nonce. This allows us to directly encrypt or
// decrypt all the provided data in a single step.
if (counterLength == counter.size() * 8)
return callOperation(operation, handle, counter, inputText.data(), inputText.size());
// Scan the counter data into the MPI format. We'll do all the counter computations with
// the MPI API.
PAL::GCrypt::Handle<gcry_mpi_t> counterDataMPI;
error = gcry_mpi_scan(&counterDataMPI, GCRYMPI_FMT_USG, counter.data(), counter.size(), nullptr);
if (error != GPG_ERR_NO_ERROR) {
PAL::GCrypt::logError(error);
return std::nullopt;
}
// Extract the counter MPI from the counterDataMPI: (counterDataMPI % counterLimitMPI).
// This MPI represents solely the counter value, as initially provided.
PAL::GCrypt::Handle<gcry_mpi_t> counterMPI(gcry_mpi_new(0));
gcry_mpi_mod(counterMPI, counterDataMPI, counterLimitMPI);
{
// Calculate the leeway of the initially-provided counter: counterLimitMPI - counterMPI.
// This is essentially the number of blocks we can encrypt/decrypt with that counter
// (incrementing it after each operation) before the counter wraps around to 0.
PAL::GCrypt::Handle<gcry_mpi_t> counterLeewayMPI(gcry_mpi_new(0));
gcry_mpi_sub(counterLeewayMPI, counterLimitMPI, counterMPI);
// If counterLeewayMPI is larger or equal to the deduced block count, we can directly
// encrypt or decrypt the provided data in a single step since it's ensured that the
// counter won't overflow.
if (gcry_mpi_cmp(counterLeewayMPI, blockCountMPI) >= 0)
return callOperation(operation, handle, counter, inputText.data(), inputText.size());
}
// From here onwards we're dealing with a counter of which the length doesn't match the
// provided data, meaning we'll also have to manage the nonce data. The counter will also
// wrap around, so we'll have to address that too.
// Determine the nonce MPI that we'll use to reconstruct the counter data for each block:
// (counterDataMPI - counterMPI). This is equivalent to counterDataMPI with the lowest
// counterLength bits cleared.
PAL::GCrypt::Handle<gcry_mpi_t> nonceMPI(gcry_mpi_new(0));
gcry_mpi_sub(nonceMPI, counterDataMPI, counterMPI);
// FIXME: This should be optimized further by first encrypting the amount of blocks for
// which the counter won't yet wrap around, and then encrypting the rest of the blocks
// starting from the counter set to 0.
Vector<uint8_t> output;
Vector<uint8_t> blockCounterData(16);
size_t inputTextSize = inputText.size();
for (size_t i = 0; i < inputTextSize; i += 16) {
size_t blockInputSize = std::min<size_t>(16, inputTextSize - i);
// Construct the block-specific counter: (nonceMPI + counterMPI).
PAL::GCrypt::Handle<gcry_mpi_t> blockCounterMPI(gcry_mpi_new(0));
gcry_mpi_add(blockCounterMPI, nonceMPI, counterMPI);
error = gcry_mpi_print(GCRYMPI_FMT_USG, blockCounterData.data(), blockCounterData.size(), nullptr, blockCounterMPI);
if (error != GPG_ERR_NO_ERROR) {
PAL::GCrypt::logError(error);
return std::nullopt;
}
// Encrypt/decrypt this single block with the block-specific counter. Output for this
// single block is appended to the general output vector.
auto blockOutput = callOperation(operation, handle, blockCounterData, inputText.subspan(i).data(), blockInputSize);
if (!blockOutput)
return std::nullopt;
output.appendVector(*blockOutput);
// Increment the counter. The modulus operation takes care of any wrap-around.
PAL::GCrypt::Handle<gcry_mpi_t> counterIncrementMPI(gcry_mpi_new(0));
gcry_mpi_add_ui(counterIncrementMPI, counterMPI, 1);
gcry_mpi_mod(counterMPI, counterIncrementMPI, counterLimitMPI);
}
return output;
}
ExceptionOr<Vector<uint8_t>> CryptoAlgorithmAESCTR::platformEncrypt(const CryptoAlgorithmAesCtrParams& parameters, const CryptoKeyAES& key, const Vector<uint8_t>& plainText)
{
auto output = gcryptAESCTR(gcry_cipher_encrypt, key.key(), parameters.counterVector(), parameters.length, plainText);
if (!output)
return Exception { ExceptionCode::OperationError };
return WTFMove(*output);
}
ExceptionOr<Vector<uint8_t>> CryptoAlgorithmAESCTR::platformDecrypt(const CryptoAlgorithmAesCtrParams& parameters, const CryptoKeyAES& key, const Vector<uint8_t>& cipherText)
{
auto output = gcryptAESCTR(gcry_cipher_decrypt, key.key(), parameters.counterVector(), parameters.length, cipherText);
if (!output)
return Exception { ExceptionCode::OperationError };
return WTFMove(*output);
}
} // namespace WebCore
|