1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
|
/*
* Copyright (C) 2014 Igalia S.L. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "CryptoKeyRSA.h"
#include "CryptoAlgorithmRegistry.h"
#include "CryptoKeyPair.h"
#include "CryptoKeyRSAComponents.h"
#include "GCryptUtilities.h"
#include "ScriptExecutionContext.h"
#include <JavaScriptCore/GenericTypedArrayViewInlines.h>
#include <JavaScriptCore/HeapInlines.h>
#include <JavaScriptCore/JSGenericTypedArrayViewInlines.h>
#include <pal/crypto/gcrypt/Utilities.h>
#include <pal/crypto/tasn1/Utilities.h>
namespace WebCore {
static size_t getRSAModulusLength(gcry_sexp_t keySexp)
{
// Retrieve the s-expression token for the public modulus N of the given RSA key.
PAL::GCrypt::Handle<gcry_sexp_t> nSexp(gcry_sexp_find_token(keySexp, "n", 0));
if (!nSexp)
return 0;
// Retrieve the MPI length for the corresponding s-expression token, in bits.
auto length = mpiLength(nSexp);
if (!length)
return 0;
return *length * 8;
}
static Vector<uint8_t> getRSAKeyParameter(gcry_sexp_t keySexp, ASCIILiteral name)
{
// Retrieve the s-expression token for the specified parameter of the given RSA key.
PAL::GCrypt::Handle<gcry_sexp_t> paramSexp(gcry_sexp_find_token(keySexp, name, 0));
if (!paramSexp)
return { };
// Retrieve the MPI data for the corresponding s-expression token.
auto data = mpiData(paramSexp);
if (!data)
return { };
return WTFMove(data.value());
}
RefPtr<CryptoKeyRSA> CryptoKeyRSA::create(CryptoAlgorithmIdentifier identifier, CryptoAlgorithmIdentifier hash, bool hasHash, const CryptoKeyRSAComponents& keyData, bool extractable, CryptoKeyUsageBitmap usages)
{
// When creating a private key, we require the p and q prime information.
if (keyData.type() == CryptoKeyRSAComponents::Type::Private && !keyData.hasAdditionalPrivateKeyParameters())
return nullptr;
// But we don't currently support creating keys with any additional prime information.
if (!keyData.otherPrimeInfos().isEmpty())
return nullptr;
// Validate the key data.
{
bool valid = true;
// For both public and private keys, we need the public modulus and exponent.
valid &= !keyData.modulus().isEmpty() && !keyData.exponent().isEmpty();
// For private keys, we require the private exponent, as well as p and q prime information.
if (keyData.type() == CryptoKeyRSAComponents::Type::Private)
valid &= !keyData.privateExponent().isEmpty() && !keyData.firstPrimeInfo().primeFactor.isEmpty() && !keyData.secondPrimeInfo().primeFactor.isEmpty();
if (!valid)
return nullptr;
}
CryptoKeyType keyType;
switch (keyData.type()) {
case CryptoKeyRSAComponents::Type::Public:
keyType = CryptoKeyType::Public;
break;
case CryptoKeyRSAComponents::Type::Private:
keyType = CryptoKeyType::Private;
break;
}
// Construct the key s-expression, using the data that's available.
PAL::GCrypt::Handle<gcry_sexp_t> keySexp;
{
gcry_error_t error = GPG_ERR_NO_ERROR;
switch (keyType) {
case CryptoKeyType::Public:
error = gcry_sexp_build(&keySexp, nullptr, "(public-key(rsa(n %b)(e %b)))",
keyData.modulus().size(), keyData.modulus().data(),
keyData.exponent().size(), keyData.exponent().data());
break;
case CryptoKeyType::Private:
if (keyData.hasAdditionalPrivateKeyParameters()) {
error = gcry_sexp_build(&keySexp, nullptr, "(private-key(rsa(n %b)(e %b)(d %b)(p %b)(q %b)))",
keyData.modulus().size(), keyData.modulus().data(),
keyData.exponent().size(), keyData.exponent().data(),
keyData.privateExponent().size(), keyData.privateExponent().data(),
keyData.secondPrimeInfo().primeFactor.size(), keyData.secondPrimeInfo().primeFactor.data(),
keyData.firstPrimeInfo().primeFactor.size(), keyData.firstPrimeInfo().primeFactor.data());
break;
}
error = gcry_sexp_build(&keySexp, nullptr, "(private-key(rsa(n %b)(e %b)(d %b)))",
keyData.modulus().size(), keyData.modulus().data(),
keyData.exponent().size(), keyData.exponent().data(),
keyData.privateExponent().size(), keyData.privateExponent().data());
break;
case CryptoKeyType::Secret:
ASSERT_NOT_REACHED();
return nullptr;
}
if (error != GPG_ERR_NO_ERROR) {
PAL::GCrypt::logError(error);
return nullptr;
}
}
return adoptRef(new CryptoKeyRSA(identifier, hash, hasHash, keyType, PlatformRSAKeyContainer(keySexp.release()), extractable, usages));
}
CryptoKeyRSA::CryptoKeyRSA(CryptoAlgorithmIdentifier identifier, CryptoAlgorithmIdentifier hash, bool hasHash, CryptoKeyType type, PlatformRSAKeyContainer&& platformKey, bool extractable, CryptoKeyUsageBitmap usage)
: CryptoKey(identifier, type, extractable, usage)
, m_platformKey(WTFMove(platformKey))
, m_restrictedToSpecificHash(hasHash)
, m_hash(hash)
{
}
bool CryptoKeyRSA::isRestrictedToHash(CryptoAlgorithmIdentifier& identifier) const
{
if (!m_restrictedToSpecificHash)
return false;
identifier = m_hash;
return true;
}
size_t CryptoKeyRSA::keySizeInBits() const
{
return getRSAModulusLength(m_platformKey.get());
}
// Convert the exponent vector to a 32-bit value, if possible.
static std::optional<uint32_t> exponentVectorToUInt32(const Vector<uint8_t>& exponent)
{
if (exponent.size() > 4) {
for (auto element : exponent.subspan(0, exponent.size() - 4)) {
if (!!element)
return std::nullopt;
}
}
uint32_t result = 0;
for (size_t size = exponent.size(), i = std::min<size_t>(4, size); i > 0; --i) {
result <<= 8;
result += exponent[size - i];
}
return result;
}
void CryptoKeyRSA::generatePair(CryptoAlgorithmIdentifier algorithm, CryptoAlgorithmIdentifier hash, bool hasHash, unsigned modulusLength, const Vector<uint8_t>& publicExponent, bool extractable, CryptoKeyUsageBitmap usage, KeyPairCallback&& callback, VoidCallback&& failureCallback, ScriptExecutionContext* context)
{
// libgcrypt doesn't report an error if the exponent is smaller than three or even.
auto e = exponentVectorToUInt32(publicExponent);
if (!e || *e < 3 || !(*e & 0x1)) {
failureCallback();
return;
}
// libgcrypt doesn't support generating primes of less than 16 bits.
if (modulusLength < 16) {
failureCallback();
return;
}
PAL::GCrypt::Handle<gcry_sexp_t> genkeySexp;
gcry_error_t error = gcry_sexp_build(&genkeySexp, nullptr, "(genkey(rsa(nbits %d)(rsa-use-e %d)))", modulusLength, *e);
if (error != GPG_ERR_NO_ERROR) {
PAL::GCrypt::logError(error);
failureCallback();
return;
}
PAL::GCrypt::Handle<gcry_sexp_t> keyPairSexp;
error = gcry_pk_genkey(&keyPairSexp, genkeySexp);
if (error != GPG_ERR_NO_ERROR) {
PAL::GCrypt::logError(error);
failureCallback();
return;
}
PAL::GCrypt::Handle<gcry_sexp_t> publicKeySexp(gcry_sexp_find_token(keyPairSexp, "public-key", 0));
PAL::GCrypt::Handle<gcry_sexp_t> privateKeySexp(gcry_sexp_find_token(keyPairSexp, "private-key", 0));
if (!publicKeySexp || !privateKeySexp) {
failureCallback();
return;
}
context->postTask(
[algorithm, hash, hasHash, extractable, usage, publicKeySexp = PlatformRSAKeyContainer(publicKeySexp.release()), privateKeySexp = PlatformRSAKeyContainer(privateKeySexp.release()), callback = WTFMove(callback)](auto&) mutable {
auto publicKey = CryptoKeyRSA::create(algorithm, hash, hasHash, CryptoKeyType::Public, WTFMove(publicKeySexp), true, usage);
auto privateKey = CryptoKeyRSA::create(algorithm, hash, hasHash, CryptoKeyType::Private, WTFMove(privateKeySexp), extractable, usage);
callback(CryptoKeyPair { WTFMove(publicKey), WTFMove(privateKey) });
});
}
static bool supportedAlgorithmIdentifier(const uint8_t* data, size_t size)
{
// FIXME: This is far from sufficient. Per the spec, when importing for key algorithm
// - RSASSA-PKCS1-v1_5:
// - rsaEncryption, sha{1,256,384,512}WithRSAEncryption OIDs must be supported
// - in case of sha{1,256,384,512}WithRSAEncryption OIDs the specified hash algorithm
// has to match the algorithm in the OID
// - RSA-PSS:
// - rsaEncryption, id-RSASSA-PSS OIDs must be supported
// - in case of id-RSASSA-PSS OID the parameters field of AlgorithmIdentifier has
// to be decoded as RSASSA-PSS-params ASN.1 structure, and the hashAlgorithm field
// of that structure has to contain one of id-sha{1,256,384,512} OIDs that match
// the specified hash algorithm
// - RSA-OAEP:
// - rsaEncryption, id-RSAES-OAEP OIDS must be supported
// - in case of id-RSAES-OAEP OID the parameters field of AlgorithmIdentifier has
// to be decoded as RSAES-OAEP-params ASN.1 structure, and the hashAlgorithm field
// of that structure has to contain one of id-sha{1,256,384,512} OIDs that match
// the specified hash algorithm
if (CryptoConstants::matches(data, size, CryptoConstants::s_rsaEncryptionIdentifier))
return true;
if (CryptoConstants::matches(data, size, CryptoConstants::s_RSAES_OAEPIdentifier))
return false; // Not yet supported.
if (CryptoConstants::matches(data, size, CryptoConstants::s_RSASSA_PSSIdentifier))
return false; // Not yet supported.
return false;
}
RefPtr<CryptoKeyRSA> CryptoKeyRSA::importSpki(CryptoAlgorithmIdentifier identifier, std::optional<CryptoAlgorithmIdentifier> hash, Vector<uint8_t>&& keyData, bool extractable, CryptoKeyUsageBitmap usages)
{
// Decode the `SubjectPublicKeyInfo` structure using the provided key data.
PAL::TASN1::Structure spki;
if (!PAL::TASN1::decodeStructure(&spki, "WebCrypto.SubjectPublicKeyInfo", keyData))
return nullptr;
// Validate `algorithm.algorithm`.
{
auto algorithm = PAL::TASN1::elementData(spki, "algorithm.algorithm");
if (!algorithm)
return nullptr;
if (!supportedAlgorithmIdentifier(algorithm->data(), algorithm->size()))
return nullptr;
}
// Decode the `RSAPublicKey` structure using the `subjectPublicKey` data.
PAL::TASN1::Structure rsaPublicKey;
{
auto subjectPublicKey = PAL::TASN1::elementData(spki, "subjectPublicKey");
if (!subjectPublicKey)
return nullptr;
if (!PAL::TASN1::decodeStructure(&rsaPublicKey, "WebCrypto.RSAPublicKey", *subjectPublicKey))
return nullptr;
}
// Retrieve the `modulus` and `publicExponent` data and embed it into the `public-key` s-expression.
PAL::GCrypt::Handle<gcry_sexp_t> platformKey;
{
auto modulus = PAL::TASN1::elementData(rsaPublicKey, "modulus");
auto publicExponent = PAL::TASN1::elementData(rsaPublicKey, "publicExponent");
if (!modulus || !publicExponent)
return nullptr;
gcry_error_t error = gcry_sexp_build(&platformKey, nullptr, "(public-key(rsa(n %b)(e %b)))",
modulus->size(), modulus->data(), publicExponent->size(), publicExponent->data());
if (error != GPG_ERR_NO_ERROR) {
PAL::GCrypt::logError(error);
return nullptr;
}
}
return adoptRef(new CryptoKeyRSA(identifier, hash.value_or(CryptoAlgorithmIdentifier::SHA_1), !!hash, CryptoKeyType::Public, PlatformRSAKeyContainer(platformKey.release()), extractable, usages));
}
RefPtr<CryptoKeyRSA> CryptoKeyRSA::importPkcs8(CryptoAlgorithmIdentifier identifier, std::optional<CryptoAlgorithmIdentifier> hash, Vector<uint8_t>&& keyData, bool extractable, CryptoKeyUsageBitmap usages)
{
// Decode the `PrivateKeyInfo` structure using the provided key data.
PAL::TASN1::Structure pkcs8;
if (!PAL::TASN1::decodeStructure(&pkcs8, "WebCrypto.PrivateKeyInfo", keyData))
return nullptr;
// Validate `version`.
{
auto version = PAL::TASN1::elementData(pkcs8, "version");
if (!version)
return nullptr;
if (!CryptoConstants::matches(version->data(), version->size(), CryptoConstants::s_asn1Version0))
return nullptr;
}
// Validate `privateKeyAlgorithm.algorithm`.
{
auto algorithm = PAL::TASN1::elementData(pkcs8, "privateKeyAlgorithm.algorithm");
if (!algorithm)
return nullptr;
if (!supportedAlgorithmIdentifier(algorithm->data(), algorithm->size()))
return nullptr;
}
// Decode the `RSAPrivateKey` structure using the `privateKey` data.
PAL::TASN1::Structure rsaPrivateKey;
{
auto privateKey = PAL::TASN1::elementData(pkcs8, "privateKey");
if (!privateKey)
return nullptr;
if (!PAL::TASN1::decodeStructure(&rsaPrivateKey, "WebCrypto.RSAPrivateKey", *privateKey))
return nullptr;
}
// Validate `privateKey.version`.
{
auto version = PAL::TASN1::elementData(rsaPrivateKey, "version");
if (!version)
return nullptr;
if (!CryptoConstants::matches(version->data(), version->size(), CryptoConstants::s_asn1Version0))
return nullptr;
}
// Retrieve the `modulus`, `publicExponent`, `privateExponent`, `prime1`, `prime2`,
// `exponent1`, `exponent2` and `coefficient` data and embed it into the `public-key` s-expression.
PAL::GCrypt::Handle<gcry_sexp_t> platformKey;
{
auto modulus = PAL::TASN1::elementData(rsaPrivateKey, "modulus");
auto publicExponent = PAL::TASN1::elementData(rsaPrivateKey, "publicExponent");
auto privateExponent = PAL::TASN1::elementData(rsaPrivateKey, "privateExponent");
auto prime1 = PAL::TASN1::elementData(rsaPrivateKey, "prime1");
auto prime2 = PAL::TASN1::elementData(rsaPrivateKey, "prime2");
auto exponent1 = PAL::TASN1::elementData(rsaPrivateKey, "exponent1");
auto exponent2 = PAL::TASN1::elementData(rsaPrivateKey, "exponent2");
auto coefficient = PAL::TASN1::elementData(rsaPrivateKey, "coefficient");
if (!modulus || !publicExponent || !privateExponent
|| !prime1 || !prime2 || !exponent1 || !exponent2 || !coefficient)
return nullptr;
// libgcrypt inverts the use of p and q parameters, so we have to recalculate the `coefficient` value.
PAL::GCrypt::Handle<gcry_mpi_t> uMPI(gcry_mpi_new(0));
{
PAL::GCrypt::Handle<gcry_mpi_t> pMPI;
gcry_error_t error = gcry_mpi_scan(&pMPI, GCRYMPI_FMT_USG, prime1->data(), prime1->size(), nullptr);
if (error != GPG_ERR_NO_ERROR)
return nullptr;
PAL::GCrypt::Handle<gcry_mpi_t> qMPI;
error = gcry_mpi_scan(&qMPI, GCRYMPI_FMT_USG, prime2->data(), prime2->size(), nullptr);
if (error != GPG_ERR_NO_ERROR)
return nullptr;
gcry_mpi_invm(uMPI, qMPI, pMPI);
}
gcry_error_t error = gcry_sexp_build(&platformKey, nullptr, "(private-key(rsa(n %b)(e %b)(d %b)(p %b)(q %b)(u %M)))",
modulus->size(), modulus->data(),
publicExponent->size(), publicExponent->data(),
privateExponent->size(), privateExponent->data(),
prime2->size(), prime2->data(), prime1->size(), prime1->data(), uMPI.handle());
if (error != GPG_ERR_NO_ERROR) {
PAL::GCrypt::logError(error);
return nullptr;
}
}
return adoptRef(new CryptoKeyRSA(identifier, hash.value_or(CryptoAlgorithmIdentifier::SHA_1), !!hash, CryptoKeyType::Private, PlatformRSAKeyContainer(platformKey.release()), extractable, usages));
}
ExceptionOr<Vector<uint8_t>> CryptoKeyRSA::exportSpki() const
{
if (type() != CryptoKeyType::Public)
return Exception { ExceptionCode::InvalidAccessError };
PAL::TASN1::Structure rsaPublicKey;
{
// Create the `RSAPublicKey` structure.
if (!PAL::TASN1::createStructure("WebCrypto.RSAPublicKey", &rsaPublicKey))
return Exception { ExceptionCode::OperationError };
// Retrieve the modulus and public exponent s-expressions.
PAL::GCrypt::Handle<gcry_sexp_t> modulusSexp(gcry_sexp_find_token(m_platformKey.get(), "n", 0));
PAL::GCrypt::Handle<gcry_sexp_t> publicExponentSexp(gcry_sexp_find_token(m_platformKey.get(), "e", 0));
if (!modulusSexp || !publicExponentSexp)
return Exception { ExceptionCode::OperationError };
// Retrieve MPI data for the modulus and public exponent components.
auto modulus = mpiSignedData(modulusSexp);
auto publicExponent = mpiSignedData(publicExponentSexp);
if (!modulus || !publicExponent)
return Exception { ExceptionCode::OperationError };
// Write out the modulus data under `modulus`.
if (!PAL::TASN1::writeElement(rsaPublicKey, "modulus", modulus->data(), modulus->size()))
return Exception { ExceptionCode::OperationError };
// Write out the public exponent data under `publicExponent`.
if (!PAL::TASN1::writeElement(rsaPublicKey, "publicExponent", publicExponent->data(), publicExponent->size()))
return Exception { ExceptionCode::OperationError };
}
PAL::TASN1::Structure spki;
{
// Create the `SubjectPublicKeyInfo` structure.
if (!PAL::TASN1::createStructure("WebCrypto.SubjectPublicKeyInfo", &spki))
return Exception { ExceptionCode::OperationError };
// Write out the id-rsaEncryption identifier under `algorithm.algorithm`.
// FIXME: In case the key algorithm is:
// - RSA-PSS:
// - this should write out id-RSASSA-PSS, along with setting `algorithm.parameters`
// to a RSASSA-PSS-params structure
// - RSA-OAEP:
// - this should write out id-RSAES-OAEP, along with setting `algorithm.parameters`
// to a RSAES-OAEP-params structure
if (!PAL::TASN1::writeElement(spki, "algorithm.algorithm", CryptoConstants::s_rsaEncryptionIdentifier.data(), 1))
return Exception { ExceptionCode::OperationError };
// Write out the null value under `algorithm.parameters`.
if (!PAL::TASN1::writeElement(spki, "algorithm.parameters", CryptoConstants::s_asn1NullValue.data(), CryptoConstants::s_asn1NullValue.size()))
return Exception { ExceptionCode::OperationError };
// Write out the `RSAPublicKey` data under `subjectPublicKey`. Because this is a
// bit string parameter, the data size has to be multiplied by 8.
{
auto data = PAL::TASN1::encodedData(rsaPublicKey, "");
if (!data || !PAL::TASN1::writeElement(spki, "subjectPublicKey", data->data(), data->size() * 8))
return Exception { ExceptionCode::OperationError };
}
}
// Retrieve the encoded `SubjectPublicKeyInfo` data and return it.
auto result = PAL::TASN1::encodedData(spki, "");
if (!result)
return Exception { ExceptionCode::OperationError };
return WTFMove(result.value());
}
ExceptionOr<Vector<uint8_t>> CryptoKeyRSA::exportPkcs8() const
{
if (type() != CryptoKeyType::Private)
return Exception { ExceptionCode::InvalidAccessError };
PAL::TASN1::Structure rsaPrivateKey;
{
// Create the `RSAPrivateKey` structure.
if (!PAL::TASN1::createStructure("WebCrypto.RSAPrivateKey", &rsaPrivateKey))
return Exception { ExceptionCode::OperationError };
// Write out '0' under `version`.
if (!PAL::TASN1::writeElement(rsaPrivateKey, "version", "0", 0))
return Exception { ExceptionCode::OperationError };
// Retrieve the `n`, `e`, `d`, `q` and `p` s-expression tokens. libgcrypt swaps the usage of
// the p and q primes internally, so we adjust the lookup accordingly.
PAL::GCrypt::Handle<gcry_sexp_t> nSexp(gcry_sexp_find_token(m_platformKey.get(), "n", 0));
PAL::GCrypt::Handle<gcry_sexp_t> eSexp(gcry_sexp_find_token(m_platformKey.get(), "e", 0));
PAL::GCrypt::Handle<gcry_sexp_t> dSexp(gcry_sexp_find_token(m_platformKey.get(), "d", 0));
PAL::GCrypt::Handle<gcry_sexp_t> pSexp(gcry_sexp_find_token(m_platformKey.get(), "q", 0));
PAL::GCrypt::Handle<gcry_sexp_t> qSexp(gcry_sexp_find_token(m_platformKey.get(), "p", 0));
if (!nSexp || !eSexp || !dSexp || !pSexp || !qSexp)
return Exception { ExceptionCode::OperationError };
// Write the MPI data of retrieved s-expression tokens under `modulus`, `publicExponent`,
// `privateExponent`, `prime1` and `prime2`.
{
auto modulus = mpiSignedData(nSexp);
auto publicExponent = mpiSignedData(eSexp);
auto privateExponent = mpiSignedData(dSexp);
auto prime1 = mpiSignedData(pSexp);
auto prime2 = mpiSignedData(qSexp);
if (!modulus || !publicExponent || !privateExponent || !prime1 || !prime2)
return Exception { ExceptionCode::OperationError };
if (!PAL::TASN1::writeElement(rsaPrivateKey, "modulus", modulus->data(), modulus->size())
|| !PAL::TASN1::writeElement(rsaPrivateKey, "publicExponent", publicExponent->data(), publicExponent->size())
|| !PAL::TASN1::writeElement(rsaPrivateKey, "privateExponent", privateExponent->data(), privateExponent->size())
|| !PAL::TASN1::writeElement(rsaPrivateKey, "prime1", prime1->data(), prime1->size())
|| !PAL::TASN1::writeElement(rsaPrivateKey, "prime2", prime2->data(), prime2->size()))
return Exception { ExceptionCode::OperationError };
}
// Manually compute the MPI values for the `exponent1`, `exponent2` and `coefficient`
// parameters. Again note the swapped usage of the `p` and `q` s-expression parameters.
{
PAL::GCrypt::Handle<gcry_mpi_t> dMPI(gcry_sexp_nth_mpi(dSexp, 1, GCRYMPI_FMT_USG));
PAL::GCrypt::Handle<gcry_mpi_t> pMPI(gcry_sexp_nth_mpi(pSexp, 1, GCRYMPI_FMT_USG));
PAL::GCrypt::Handle<gcry_mpi_t> qMPI(gcry_sexp_nth_mpi(qSexp, 1, GCRYMPI_FMT_USG));
if (!dMPI || !pMPI || !qMPI)
return Exception { ExceptionCode::OperationError };
// `exponent1`
{
PAL::GCrypt::Handle<gcry_mpi_t> dpMPI(gcry_mpi_set_ui(nullptr, 0));
PAL::GCrypt::Handle<gcry_mpi_t> pm1MPI(gcry_mpi_set(nullptr, pMPI));
gcry_mpi_sub_ui(pm1MPI, pm1MPI, 1);
gcry_mpi_mod(dpMPI, dMPI, pm1MPI);
auto dp = mpiSignedData(dpMPI);
if (!dp || !PAL::TASN1::writeElement(rsaPrivateKey, "exponent1", dp->data(), dp->size()))
return Exception { ExceptionCode::OperationError };
}
// `exponent2`
{
PAL::GCrypt::Handle<gcry_mpi_t> dqMPI(gcry_mpi_set_ui(nullptr, 0));
PAL::GCrypt::Handle<gcry_mpi_t> qm1MPI(gcry_mpi_set(nullptr, qMPI));
gcry_mpi_sub_ui(qm1MPI, qm1MPI, 1);
gcry_mpi_mod(dqMPI, dMPI, qm1MPI);
auto dq = mpiSignedData(dqMPI);
if (!dq || !PAL::TASN1::writeElement(rsaPrivateKey, "exponent2", dq->data(), dq->size()))
return Exception { ExceptionCode::OperationError };
}
// `coefficient`
{
PAL::GCrypt::Handle<gcry_mpi_t> qiMPI(gcry_mpi_set_ui(nullptr, 0));
gcry_mpi_invm(qiMPI, qMPI, pMPI);
auto qi = mpiSignedData(qiMPI);
if (!qi || !PAL::TASN1::writeElement(rsaPrivateKey, "coefficient", qi->data(), qi->size()))
return Exception { ExceptionCode::OperationError };
}
}
// Eliminate the optional `otherPrimeInfos` element.
// FIXME: this should be supported in the future, if there is such information available.
if (!PAL::TASN1::writeElement(rsaPrivateKey, "otherPrimeInfos", nullptr, 0))
return Exception { ExceptionCode::OperationError };
}
PAL::TASN1::Structure pkcs8;
{
// Create the `PrivateKeyInfo` structure.
if (!PAL::TASN1::createStructure("WebCrypto.PrivateKeyInfo", &pkcs8))
return Exception { ExceptionCode::OperationError };
// Write out '0' under `version`.
if (!PAL::TASN1::writeElement(pkcs8, "version", "0", 0))
return Exception { ExceptionCode::OperationError };
// Write out the id-rsaEncryption identifier under `algorithm.algorithm`.
// FIXME: In case the key algorithm is:
// - RSA-PSS:
// - this should write out id-RSASSA-PSS, along with setting `algorithm.parameters`
// to a RSASSA-PSS-params structure
// - RSA-OAEP:
// - this should write out id-RSAES-OAEP, along with setting `algorithm.parameters`
// to a RSAES-OAEP-params structure
if (!PAL::TASN1::writeElement(pkcs8, "privateKeyAlgorithm.algorithm", "1.2.840.113549.1.1.1", 1))
return Exception { ExceptionCode::OperationError };
// Write out a null value under `algorithm.parameters`.
if (!PAL::TASN1::writeElement(pkcs8, "privateKeyAlgorithm.parameters", CryptoConstants::s_asn1NullValue.data(), CryptoConstants::s_asn1NullValue.size()))
return Exception { ExceptionCode::OperationError };
// Write out the `RSAPrivateKey` data under `privateKey`.
{
auto data = PAL::TASN1::encodedData(rsaPrivateKey, "");
if (!data || !PAL::TASN1::writeElement(pkcs8, "privateKey", data->data(), data->size()))
return Exception { ExceptionCode::OperationError };
}
// Eliminate the optional `attributes` element.
if (!PAL::TASN1::writeElement(pkcs8, "attributes", nullptr, 0))
return Exception { ExceptionCode::OperationError };
}
// Retrieve the encoded `PrivateKeyInfo` data and return it.
auto result = PAL::TASN1::encodedData(pkcs8, "");
if (!result)
return Exception { ExceptionCode::OperationError };
return WTFMove(result.value());
}
auto CryptoKeyRSA::algorithm() const -> KeyAlgorithm
{
auto modulusLength = getRSAModulusLength(m_platformKey.get());
auto publicExponent = getRSAKeyParameter(m_platformKey.get(), "e"_s);
if (m_restrictedToSpecificHash) {
CryptoRsaHashedKeyAlgorithm result;
result.name = CryptoAlgorithmRegistry::singleton().name(algorithmIdentifier());
result.modulusLength = modulusLength;
result.publicExponent = Uint8Array::tryCreate(publicExponent.data(), publicExponent.size());
result.hash.name = CryptoAlgorithmRegistry::singleton().name(m_hash);
return result;
}
CryptoRsaKeyAlgorithm result;
result.name = CryptoAlgorithmRegistry::singleton().name(algorithmIdentifier());
result.modulusLength = modulusLength;
result.publicExponent = Uint8Array::tryCreate(publicExponent.data(), publicExponent.size());
return result;
}
std::unique_ptr<CryptoKeyRSAComponents> CryptoKeyRSA::exportData() const
{
switch (type()) {
case CryptoKeyType::Public:
return CryptoKeyRSAComponents::createPublic(getRSAKeyParameter(m_platformKey.get(), "n"_s), getRSAKeyParameter(m_platformKey.get(), "e"_s));
case CryptoKeyType::Private: {
auto parameterMPI =
[](gcry_sexp_t sexp, ASCIILiteral name) -> gcry_mpi_t {
PAL::GCrypt::Handle<gcry_sexp_t> paramSexp(gcry_sexp_find_token(sexp, name, 0));
if (!paramSexp)
return nullptr;
return gcry_sexp_nth_mpi(paramSexp, 1, GCRYMPI_FMT_USG);
};
PAL::GCrypt::Handle<gcry_mpi_t> dMPI(parameterMPI(m_platformKey.get(), "d"_s));
// libgcrypt internally uses p and q such that p < q, while usually it's q < p.
// Switch the two primes here and continue with assuming the latter.
PAL::GCrypt::Handle<gcry_mpi_t> pMPI(parameterMPI(m_platformKey.get(), "q"_s));
PAL::GCrypt::Handle<gcry_mpi_t> qMPI(parameterMPI(m_platformKey.get(), "p"_s));
if (!dMPI || !pMPI || !qMPI)
return nullptr;
CryptoKeyRSAComponents::PrimeInfo firstPrimeInfo;
if (auto data = mpiData(pMPI))
firstPrimeInfo.primeFactor = WTFMove(data.value());
CryptoKeyRSAComponents::PrimeInfo secondPrimeInfo;
if (auto data = mpiData(qMPI))
secondPrimeInfo.primeFactor = WTFMove(data.value());
// dp -- d mod (p - 1)
{
PAL::GCrypt::Handle<gcry_mpi_t> dpMPI(gcry_mpi_new(0));
PAL::GCrypt::Handle<gcry_mpi_t> pm1MPI(gcry_mpi_new(0));
gcry_mpi_sub_ui(pm1MPI, pMPI, 1);
gcry_mpi_mod(dpMPI, dMPI, pm1MPI);
if (auto data = mpiData(dpMPI))
firstPrimeInfo.factorCRTExponent = WTFMove(data.value());
}
// dq -- d mod (q - 1)
{
PAL::GCrypt::Handle<gcry_mpi_t> dqMPI(gcry_mpi_new(0));
PAL::GCrypt::Handle<gcry_mpi_t> qm1MPI(gcry_mpi_new(0));
gcry_mpi_sub_ui(qm1MPI, qMPI, 1);
gcry_mpi_mod(dqMPI, dMPI, qm1MPI);
if (auto data = mpiData(dqMPI))
secondPrimeInfo.factorCRTExponent = WTFMove(data.value());
}
// qi -- q^(-1) mod p
{
PAL::GCrypt::Handle<gcry_mpi_t> qiMPI(gcry_mpi_new(0));
gcry_mpi_invm(qiMPI, qMPI, pMPI);
if (auto data = mpiData(qiMPI))
secondPrimeInfo.factorCRTCoefficient = WTFMove(data.value());
}
Vector<uint8_t> privateExponent;
if (auto data = mpiData(dMPI))
privateExponent = WTFMove(data.value());
return CryptoKeyRSAComponents::createPrivateWithAdditionalData(
getRSAKeyParameter(m_platformKey.get(), "n"_s), getRSAKeyParameter(m_platformKey.get(), "e"_s), WTFMove(privateExponent),
WTFMove(firstPrimeInfo), WTFMove(secondPrimeInfo), Vector<CryptoKeyRSAComponents::PrimeInfo> { });
}
default:
ASSERT_NOT_REACHED();
return nullptr;
}
}
} // namespace WebCore
|