File: CSSCalcTree%2BSimplification.cpp

package info (click to toggle)
webkit2gtk 2.48.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 429,764 kB
  • sloc: cpp: 3,697,587; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,295; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (1623 lines) | stat: -rw-r--r-- 67,979 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
/*
 * Copyright (C) 2024-2025 Samuel Weinig <sam@webkit.org>
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"
#include "CSSCalcTree+Simplification.h"

#include "AnchorPositionEvaluator.h"
#include "CSSCalcSymbolTable.h"
#include "CSSCalcTree+ContainerProgressEvaluator.h"
#include "CSSCalcTree+Copy.h"
#include "CSSCalcTree+Evaluation.h"
#include "CSSCalcTree+Mappings.h"
#include "CSSCalcTree+MediaProgressEvaluator.h"
#include "CSSCalcTree+NumericIdentity.h"
#include "CSSCalcTree+Traversal.h"
#include "CSSCalcTree.h"
#include "CSSPrimitiveValue.h"
#include "CalculationCategory.h"
#include "CalculationExecutor.h"
#include "ContainerQueryFeatures.h"
#include "MediaQueryFeatures.h"
#include "RenderStyle.h"
#include "RenderStyleInlines.h"
#include "StyleBuilderState.h"
#include "StyleLengthResolution.h"
#include <wtf/StdLibExtras.h>

namespace WebCore {
namespace CSSCalc {

static auto copyAndSimplify(const MQ::MediaProgressProviding*, const SimplificationOptions&) -> const MQ::MediaProgressProviding*;
static auto copyAndSimplify(const CQ::ContainerProgressProviding*, const SimplificationOptions&) -> const CQ::ContainerProgressProviding*;
static auto copyAndSimplify(const Random::CachingOptions&, const SimplificationOptions&) -> Random::CachingOptions;
static auto copyAndSimplify(const AtomString&, const SimplificationOptions&) -> AtomString;
static auto copyAndSimplify(const CSS::Keyword::None&, const SimplificationOptions&) -> CSS::Keyword::None;
static auto copyAndSimplify(const Children&, const SimplificationOptions&) -> Children;
static auto copyAndSimplify(const ChildOrNone&, const SimplificationOptions&) -> ChildOrNone;
template<typename T>
static auto copyAndSimplify(const std::optional<T>&, const SimplificationOptions&) -> std::optional<T>;

template<typename Op, typename... Args> static double executeMathOperation(Args&&... args)
{
    return Calculation::executeOperation<ToCalculationTreeOp<Op>>(std::forward<Args>(args)...);
}

template<typename... F> static decltype(auto) switchTogether(const Child& a, const Child& b, F&&... f)
{
    auto visitor = WTF::makeVisitor(std::forward<F>(f)...);
    using ResultType = decltype(visitor(std::declval<Number>(), std::declval<Number>()));

    if (a.index() != b.index())
        return visitor(std::nullopt, std::nullopt);

    return WTF::switchOn(a,
        [&]<typename T>(const T& aT) -> ResultType {
            return visitor(aT, get<T>(b));
        }
    );
}

// MARK: Predicate: percentageResolveToDimension

static bool percentageResolveToDimension(const SimplificationOptions& options)
{
    switch (options.category) {
    case Calculation::Category::Integer:
    case Calculation::Category::Number:
    case Calculation::Category::Length:
    case Calculation::Category::Percentage:
    case Calculation::Category::Angle:
    case Calculation::Category::Time:
    case Calculation::Category::Frequency:
    case Calculation::Category::Resolution:
    case Calculation::Category::Flex:
        return false;

    case Calculation::Category::AnglePercentage:
    case Calculation::Category::LengthPercentage:
        return true;
    }

    ASSERT_NOT_REACHED();
    return false;
}

// MARK: Predicate: unitsMatch

constexpr bool unitsMatch(const Number&, const Number&, const SimplificationOptions&)
{
    return true;
}

constexpr bool unitsMatch(const Percentage&, const Percentage&, const SimplificationOptions&)
{
    return true;
}

static bool unitsMatch(const CanonicalDimension& a, const CanonicalDimension& b, const SimplificationOptions&)
{
    return a.dimension == b.dimension;
}

static bool unitsMatch(const NonCanonicalDimension& a, const NonCanonicalDimension& b, const SimplificationOptions&)
{
    return a.unit == b.unit;
}

// MARK: Predicate: magnitudeComparable

constexpr bool magnitudeComparable(const Number&, const SimplificationOptions&)
{
    return true;
}

static bool magnitudeComparable(const Percentage&, const SimplificationOptions& options)
{
    return !percentageResolveToDimension(options);
}

constexpr bool magnitudeComparable(const CanonicalDimension&, const SimplificationOptions&)
{
    return true;
}

constexpr bool magnitudeComparable(const NonCanonicalDimension&, const SimplificationOptions&)
{
    return true;
}

// MARK: Predicate: fullyResolved

constexpr bool fullyResolved(const Number&, const SimplificationOptions&)
{
    return true;
}

static bool fullyResolved(const Percentage&, const SimplificationOptions& options)
{
    return !percentageResolveToDimension(options);
}

constexpr bool fullyResolved(const CanonicalDimension&, const SimplificationOptions&)
{
    return true;
}

constexpr bool fullyResolved(const NonCanonicalDimension&, const SimplificationOptions&)
{
    return false;
}

std::optional<CanonicalDimension> canonicalize(NonCanonicalDimension root, const std::optional<CSSToLengthConversionData>& conversionData)
{
    auto makeCanonical = [&](double value, CanonicalDimension::Dimension dimension) -> std::optional<CanonicalDimension> {
        return CanonicalDimension { .value = value, .dimension = dimension };
    };

    auto tryMakeCanonical = [&](double value, CSS::LengthUnit lengthUnit) -> std::optional<CanonicalDimension> {
        if (conversionData) {
            // We are only interested in canonicalizing to `px`, not adjusting for zoom, which will be handled later. When computing font-size, zoom is not applied in the same way, so must be special cased here.
            if (conversionData->computingFontSize())
                return CanonicalDimension { .value = Style::computeNonCalcLengthDouble(value, lengthUnit, *conversionData), .dimension = CanonicalDimension::Dimension::Length };
            return CanonicalDimension { .value = Style::computeNonCalcLengthDouble(value, lengthUnit, *conversionData) / conversionData->style()->usedZoom(), .dimension = CanonicalDimension::Dimension::Length };
        }
        return { };
    };

    switch (root.unit) {
    // Absolute Lengths (can be canonicalized without conversion data).
    case CSSUnitType::CSS_CM:
        return makeCanonical(root.value * CSS::pixelsPerCm,              CanonicalDimension::Dimension::Length);
    case CSSUnitType::CSS_MM:
        return makeCanonical(root.value * CSS::pixelsPerMm,              CanonicalDimension::Dimension::Length);
    case CSSUnitType::CSS_Q:
        return makeCanonical(root.value * CSS::pixelsPerQ,               CanonicalDimension::Dimension::Length);
    case CSSUnitType::CSS_IN:
        return makeCanonical(root.value * CSS::pixelsPerInch,            CanonicalDimension::Dimension::Length);
    case CSSUnitType::CSS_PT:
        return makeCanonical(root.value * CSS::pixelsPerPt,              CanonicalDimension::Dimension::Length);
    case CSSUnitType::CSS_PC:
        return makeCanonical(root.value * CSS::pixelsPerPc,              CanonicalDimension::Dimension::Length);

    // Font, Viewport and Container relative Lengths (require conversion data for canonicalization).
    case CSSUnitType::CSS_EM:
    case CSSUnitType::CSS_EX:
    case CSSUnitType::CSS_LH:
    case CSSUnitType::CSS_CAP:
    case CSSUnitType::CSS_CH:
    case CSSUnitType::CSS_IC:
    case CSSUnitType::CSS_RCAP:
    case CSSUnitType::CSS_RCH:
    case CSSUnitType::CSS_REM:
    case CSSUnitType::CSS_REX:
    case CSSUnitType::CSS_RIC:
    case CSSUnitType::CSS_RLH:
    case CSSUnitType::CSS_VW:
    case CSSUnitType::CSS_VH:
    case CSSUnitType::CSS_VMIN:
    case CSSUnitType::CSS_VMAX:
    case CSSUnitType::CSS_VB:
    case CSSUnitType::CSS_VI:
    case CSSUnitType::CSS_SVW:
    case CSSUnitType::CSS_SVH:
    case CSSUnitType::CSS_SVMIN:
    case CSSUnitType::CSS_SVMAX:
    case CSSUnitType::CSS_SVB:
    case CSSUnitType::CSS_SVI:
    case CSSUnitType::CSS_LVW:
    case CSSUnitType::CSS_LVH:
    case CSSUnitType::CSS_LVMIN:
    case CSSUnitType::CSS_LVMAX:
    case CSSUnitType::CSS_LVB:
    case CSSUnitType::CSS_LVI:
    case CSSUnitType::CSS_DVW:
    case CSSUnitType::CSS_DVH:
    case CSSUnitType::CSS_DVMIN:
    case CSSUnitType::CSS_DVMAX:
    case CSSUnitType::CSS_DVB:
    case CSSUnitType::CSS_DVI:
    case CSSUnitType::CSS_CQW:
    case CSSUnitType::CSS_CQH:
    case CSSUnitType::CSS_CQI:
    case CSSUnitType::CSS_CQB:
    case CSSUnitType::CSS_CQMIN:
    case CSSUnitType::CSS_CQMAX:
        return tryMakeCanonical(root.value, *CSS::toLengthUnit(root.unit));

    // <angle>
    case CSSUnitType::CSS_RAD:
        return makeCanonical(root.value * degreesPerRadianDouble,        CanonicalDimension::Dimension::Angle);
    case CSSUnitType::CSS_GRAD:
        return makeCanonical(root.value * degreesPerGradientDouble,      CanonicalDimension::Dimension::Angle);
    case CSSUnitType::CSS_TURN:
        return makeCanonical(root.value * degreesPerTurnDouble,          CanonicalDimension::Dimension::Angle);

    // <time>
    case CSSUnitType::CSS_MS:
        return makeCanonical(root.value * CSS::secondsPerMillisecond,    CanonicalDimension::Dimension::Time);

    // <frequency>
    case CSSUnitType::CSS_KHZ:
        return makeCanonical(root.value * CSS::hertzPerKilohertz,        CanonicalDimension::Dimension::Frequency);

    // <resolution>
    case CSSUnitType::CSS_X:
        return makeCanonical(root.value * CSS::dppxPerX,                 CanonicalDimension::Dimension::Resolution);
    case CSSUnitType::CSS_DPI:
        return makeCanonical(root.value * CSS::dppxPerDpi,               CanonicalDimension::Dimension::Resolution);
    case CSSUnitType::CSS_DPCM:
        return makeCanonical(root.value * CSS::dppxPerDpcm,              CanonicalDimension::Dimension::Resolution);

    // Canonical dimensional types should never be stored in a NonCanonicalDimension.
    case CSSUnitType::CSS_PX:
    case CSSUnitType::CSS_DEG:
    case CSSUnitType::CSS_S:
    case CSSUnitType::CSS_HZ:
    case CSSUnitType::CSS_DPPX:
    case CSSUnitType::CSS_FR:
    // Non-dimensional types should never be stored in a NonCanonicalDimension.
    case CSSUnitType::CSS_NUMBER:
    case CSSUnitType::CSS_INTEGER:
    case CSSUnitType::CSS_PERCENTAGE:
    // Non-numeric types should never be stored in a NonCanonicalDimension.
    case CSSUnitType::CSS_ATTR:
    case CSSUnitType::CSS_CALC:
    case CSSUnitType::CSS_CALC_PERCENTAGE_WITH_ANGLE:
    case CSSUnitType::CSS_CALC_PERCENTAGE_WITH_LENGTH:
    case CSSUnitType::CSS_DIMENSION:
    case CSSUnitType::CSS_FONT_FAMILY:
    case CSSUnitType::CSS_IDENT:
    case CSSUnitType::CSS_PROPERTY_ID:
    case CSSUnitType::CSS_QUIRKY_EM:
    case CSSUnitType::CSS_STRING:
    case CSSUnitType::CSS_UNKNOWN:
    case CSSUnitType::CSS_URI:
    case CSSUnitType::CSS_VALUE_ID:
    case CSSUnitType::CustomIdent:
        break;
    }

    ASSERT_NOT_REACHED();
    return { };
}


// MARK: Generic partial evaluation functions

template<typename Op> static std::optional<Child> simplifyForOperation(Child& a, Child& b, const SimplificationOptions& options)
{
    return switchTogether(a, b,
        [&]<Numeric T>(const T& numericA, const T& numericB) -> std::optional<Child> {
            if (!unitsMatch(numericA, numericB, options) || !fullyResolved(numericA, options))
                return { };

            return makeChildWithValueBasedOn(executeMathOperation<Op>(numericA.value, numericB.value), numericA);
        },
        [](const auto&, const auto&) -> std::optional<Child> {
            return { };
        }
    );
}

template<typename Op, typename Completion> static std::optional<Child> simplifyForOperationWithCompletion(Child& a, Child& b, const SimplificationOptions& options, Completion&& completion)
{
    return switchTogether(a, b,
        [&]<Numeric T>(const T& numericA, const T& numericB) -> std::optional<Child> {
            if (!unitsMatch(numericA, numericB, options) || !fullyResolved(numericA, options))
                return { };

            return completion(executeMathOperation<Op>(numericA.value, numericB.value));
        },
        [](const auto&, const auto&) -> std::optional<Child> {
            return { };
        }
    );
}

template<typename Op> static std::optional<Child> simplifyForRound(Op& root, const SimplificationOptions& options)
{
    if (root.b)
        return simplifyForOperation<Op>(root.a, *root.b, options);

    if (auto* numberA = get_if<Number>(&root.a))
        return makeChild(Number { .value = executeMathOperation<Op>(numberA->value, 1.0) });

    return { };
}

template<typename Op> static std::optional<Child> simplifyForTrig(Op& root, const SimplificationOptions&)
{
    // NOTE: `a` has been type checked by this point to be `<number>` or an `<angle>`, though they may not
    // be able to be fully resolved yet. If its an `<angle>`, it is also already been converted to canonical
    // units via earlier simplification.

    return WTF::switchOn(root.a,
        [&](const Number& a) -> std::optional<Child> {
            return makeChild(Number { .value = executeMathOperation<Op>(a.value) });
        },
        [&](const CanonicalDimension& a) -> std::optional<Child> {
            ASSERT(a.dimension == CanonicalDimension::Dimension::Angle);
            return makeChild(Number { .value = executeMathOperation<Op>(deg2rad(a.value)) });
        },
        [](const auto&) -> std::optional<Child> {
            return { };
        }
    );
}

template<typename Op> static std::optional<Child> simplifyForArcTrig(Op& root, const SimplificationOptions&)
{
    // NOTE: `a` has been type checked by this point to be `<number>`, though they may not
    // be able to be fully resolved yet.

    return WTF::switchOn(root.a,
        [&](const Number& a) -> std::optional<Child> {
            return makeChild(CanonicalDimension { .value = executeMathOperation<Op>(a.value), .dimension = CanonicalDimension::Dimension::Angle });
        },
        [](const auto&) -> std::optional<Child> {
            return { };
        }
    );
}

template<typename Op> static std::optional<Child> simplifyForMinMax(Op& root, const SimplificationOptions& options)
{
    ASSERT(!root.children.isEmpty());

    // This function implements shared logic for Min and Max simplification:

    //   5.1. For each node child of root’s children:
    //        If child is a numeric value with enough information to compare magnitudes with another child of the same unit (see note in previous step), and there are other children of root that are numeric values with the same unit, combine all such children with the appropriate operator per root, and replace child with the result, removing all other child nodes involved.
    //   5.2. If root has only one child, return the child.
    //   5.3. Otherwise, return root.

    // --

    // These steps are implemented as a two phase procedure.
    //    1. Iterate children to find "merge opportunities", counting the total number of merges that will happen, and storing the index of the first child of each merge type in a lookup table.
    //    2. Perform merges based on data from step 1.
    //
    // By splitting it up, we can perform two optimizations:
    //    1. If the result of step 1 shows that the number of "merge opportunities" will lead to only one remaining child, we can avoid allocating a new Children Vector, and just merge directly into the child.
    //    2. If the result of step 1 shows that the number of "merge opportunities" will lead to more than one remaining child, we can precisely allocate the Children Vector to be (existing children - "merge opportunities").

    auto evaluate = [](const Child& a, const Child& b) -> Child {
        ASSERT(a.index() == b.index());

        return WTF::switchOn(a,
            [&]<Numeric T>(const T& aNumeric) -> Child {
                ASSERT(toNumericIdentity(aNumeric) == toNumericIdentity(get<T>(b)));
                return makeChildWithValueBasedOn(executeMathOperation<Op>(aNumeric.value, get<T>(b).value), aNumeric);
            },
            [](const auto&) -> Child {
                ASSERT_NOT_REACHED();
                return makeChild(Number { .value = 0 });
            }
        );
    };

    // Special case a root with one child to avoid doing any work at all, and just returning the child.
    if (root.children.size() == 1)
        return { WTFMove(root.children[0]) };

    // Map of unit types (via NumericIdentity) to the first index in `root.children` where a value with that unit can be found.
    // More specifically, it maps the unit to the index + 1, as 0 is used to indicate no units of that type have been found.
    // FIXME: This should be turned into a type with an interface that doesn't require explicit use of static_cast<uint8_t> by the caller.
    std::array<size_t, numberOfNumericIdentityTypes> offsetOfFirstInstance { };

    bool canMergePercentages = !percentageResolveToDimension(options);

    unsigned numberOfMergeOpportunities = 0;
    for (size_t i = 0; i < root.children.size(); ++i) {
        numberOfMergeOpportunities += WTF::switchOn(root.children[i],
            [&]<Numeric T>(const T& child) {
                auto id = toNumericIdentity(child);
                if (id == NumericIdentity::Percentage && !canMergePercentages)
                    return 0;

                if (auto offset = offsetOfFirstInstance[static_cast<uint8_t>(id)]) {
                    // There has already been an instance of this type. This is a merge opportunity.

                    // Merge the value into first instance.
                    root.children[offset - 1] = evaluate(root.children[offset - 1], root.children[i]);

                    // Return 1 to increment the number of merge opportunities observed.
                    return 1;
                }

                // First instance of this. Store the index (well, index + 1, since 0 is the unset value).
                offsetOfFirstInstance[static_cast<uint8_t>(id)] = i + 1;

                // Give this was the first instance, it is not yet a merge opportunity.
                return 0;
            },
            [](const auto&) {
                return 0;
            }
        );
    }

    // If there are no merge opportunities, no further simplification is possible.
    if (!numberOfMergeOpportunities)
        return { };

    auto combinedChildrenSize = root.children.size() - numberOfMergeOpportunities;

    // If all the removal from merges leaves a single child, that means everything merged into the first child.
    if (combinedChildrenSize == 1)
        return { WTFMove(root.children[0]) };

    Vector<Child> combinedChildren;
    combinedChildren.reserveInitialCapacity(combinedChildrenSize);

    for (size_t i = 0; i < root.children.size(); ++i) {
        WTF::switchOn(root.children[i],
            [&]<Numeric T>(const T& child) {
                auto offset = offsetOfFirstInstance[static_cast<uint8_t>(toNumericIdentity(child))];

                // If the stored offset for this type is unset (as it would be for percentages if merging them is disallowed) or is set to this index (as it would be for the first instance of a merged type), append the child as normal.
                if (!offset || (offset - 1) == i) {
                    combinedChildren.append(WTFMove(root.children[i]));
                    return;
                }

                // Otherwise, it's one that can be dropped.
            },
            [&](const auto&) {
                combinedChildren.append(WTFMove(root.children[i]));
            }
        );
    }
    root.children = WTFMove(combinedChildren);

    return { };
}

// MARK: In-place simplification / replacement finding.

std::optional<Child> simplify(Number&, const SimplificationOptions&)
{
    // No further simplification possible for <number>.
    return { };
}

std::optional<Child> simplify(Percentage&, const SimplificationOptions&)
{
    // 1.1. If root is a percentage that will be resolved against another value, and there is enough information available to resolve it, do so, and express the resulting numeric value in the appropriate canonical unit. Return the value.
    // NOTE: Handled by the Calculation::Tree / CalculationValue types at use time.
    return { };
}

std::optional<Child> simplify(CanonicalDimension&, const SimplificationOptions&)
{
    // No further simplification possible for canonical <dimension>.
    return { };
}

std::optional<Child> simplify(NonCanonicalDimension& root, const SimplificationOptions& options)
{
    // NOTE: This implements the non-canonical dimension relevant parts of the numeric value simplification steps.

    // 1.2. If root is a dimension that is not expressed in its canonical unit, and there is enough information available to convert it to the canonical unit, do so, and return the value.
    if (auto canonical = canonicalize(root, options.conversionData))
        return makeChild(WTFMove(*canonical));

    return { };
}

std::optional<Child> simplify(Symbol& root, const SimplificationOptions& options)
{
    // NOTE: This implements the keyword relevant parts of the numeric value simplification steps.

    // 1.3. If root is a <calc-keyword> that can be resolved, return what it resolves to, simplified.
    if (auto value = options.symbolTable.get(root.id))
        return copyAndSimplify(makeNumeric(value->value, root.unit), options);

    return { };
}

std::optional<Child> simplify(Sum& root, const SimplificationOptions& options)
{
    ASSERT(!root.children.isEmpty());

    // 8. If root is a Sum node:

    // 8.1. For each of root’s children that are Sum nodes, replace them with their children.
    if (std::ranges::any_of(root.children, [](auto& child) { return WTF::holdsAlternative<IndirectNode<Sum>>(child); })) {
        Vector<Child> newChildren;
        for (auto& child : root.children) {
            if (auto* childSum = get_if<IndirectNode<Sum>>(&child))
                newChildren.appendVector(WTFMove((*childSum)->children.value));
            else
                newChildren.append(WTFMove(child));
        }
        root.children = WTFMove(newChildren);
    }

    // 8.2. For each set of root’s children that are numeric values with identical units, remove those children and replace them with a single numeric value containing the sum of the removed nodes, and with the same unit. (E.g. combine numbers, combine percentages, combine px values, etc.)
    // 8.3. If root has only a single child at this point, return the child.
    // 8.4. Otherwise, return root

    // These steps are implemented as a two phase procedure.
    //    1. Iterate children to find "merge/removal opportunities", counting the total number of opportunities that will happen, and storing the index of the first child of each type in a lookup table.
    //    2. Perform merges and removals based on data from step 1.
    //
    // By splitting it up, we can perform two optimizations:
    //    1. If the result of step 1 shows that the number of "merge/removal opportunities" will lead to only one remaining child, we can avoid allocating a new Children Vector, and just merge directly into the child.
    //    2. If the result of step 1 shows that the number of "merge/removal opportunities" will lead to more than one remaining child, we can precisely allocate the Children Vector to be (existing children - "merge/removal opportunities").

    auto evaluate = [](const Child& a, const Child& b) -> std::pair<Child, double> {
        ASSERT(a.index() == b.index());

        return WTF::switchOn(a,
            [&]<Numeric T>(const T& aNumeric) -> std::pair<Child, double> {
                ASSERT(toNumericIdentity(aNumeric) == toNumericIdentity(get<T>(b)));
                auto result = executeMathOperation<Sum>(aNumeric.value, get<T>(b).value);
                return { makeChildWithValueBasedOn(result, aNumeric), result };
            },
            [](const auto&) -> std::pair<Child, double> {
                ASSERT_NOT_REACHED();
                return { makeChild(Number { .value = 0 }), 0 };
            }
        );
    };

    // Special case a root with one child to avoid doing any work at all, and just returning the child.
    if (root.children.size() == 1)
        return { WTFMove(root.children[0]) };

    // Map of unit types (via NumericIdentity) to the first index in `root.children` where a value with that unit can be found.
    // More specifically, it maps the unit to the index + 1, as 0 is used to indicate no units of that type have been found.
    // FIXME: This should be turned into a type with an interface that doesn't require explicit use of static_cast<uint8_t> by the caller.
    struct FirstInstance {
        size_t offset = 0;
        unsigned merges = 0;
        bool canRemove = false;
    };
    std::array<FirstInstance, numberOfNumericIdentityTypes> firstInstances { };

    for (size_t i = 0; i < root.children.size(); ++i) {
        WTF::switchOn(root.children[i],
            [&]<Numeric T>(const T& child) {
                auto id = toNumericIdentity(child);
                bool canRemoveIfZero = isLength(id) && options.allowZeroValueLengthRemovalFromSum;

                if (auto& firstInstance = firstInstances[static_cast<uint8_t>(id)]; firstInstance.offset) {
                    // There has already been an instance of this type. This is a merge opportunity.

                    // Calculate the merged value.
                    auto [mergedChild, mergedValue] = evaluate(root.children[firstInstance.offset - 1], root.children[i]);

                    // Store the merged value in the original array.
                    root.children[firstInstance.offset - 1] = WTFMove(mergedChild);

                    // Update the `merges` count and `canRemove` bit for the new merged value.
                    firstInstance.merges += 1;
                    firstInstance.canRemove = canRemoveIfZero && !mergedValue;
                    return;
                }

                // First instance of this. Store the index (well, index + 1, since 0 is the unset value) and the canRemove bit.
                firstInstances[static_cast<uint8_t>(id)] = {
                    .offset = i + 1,
                    .merges = 0,
                    .canRemove = canRemoveIfZero && !child.value
                };
            },
            [](const auto&) {
                // Non-numeric values are not eligible for merge or removal.
            }
        );
    }

    // Calculate the total number of children we will be able to remove from merges and removals.
    unsigned childrenToRemoveFromMerges = 0;
    unsigned childrenToRemoveTotal = 0;
    for (auto& firstInstance : firstInstances) {
        if (firstInstance.offset) {
            childrenToRemoveFromMerges += firstInstance.merges;
            childrenToRemoveTotal += firstInstance.merges + (firstInstance.canRemove ? 1 : 0);
        }
    }

    // If there are no merge/removal opportunities, no further simplification is possible.
    if (!childrenToRemoveTotal)
        return { };

    // If all the removal from merges leaves a single child, that means everything merged into the first child.
    if ((root.children.size() - childrenToRemoveFromMerges) == 1)
        return { WTFMove(root.children[0]) };

    auto combinedChildrenSize = root.children.size() - childrenToRemoveTotal;

    // If the new size is 0, we removed too much. Return a single 0 value of type `length` to keep things valid. A value of type `length` is returned because the only kind of node that can be removed is of type `length`.
    if (!combinedChildrenSize)
        return { makeChild(CanonicalDimension { .value = 0, .dimension = CanonicalDimension::Dimension::Length }) };

    // If the new size is 1, we know there is one child, we just don't know which one yet.
    if (combinedChildrenSize == 1) {
        for (size_t i = 0; i < root.children.size(); ++i) {
            auto replacement = WTF::switchOn(root.children[i],
                [&]<Numeric T>(const T& child) -> std::optional<Child> {
                    auto& firstInstance = firstInstances[static_cast<uint8_t>(toNumericIdentity(child))];
                    ASSERT(firstInstance.offset);

                    // If the stored offset for this type is set to this index and it's not one that can be removed, this is the 1 child to return.
                    if ((firstInstance.offset - 1) == i && !firstInstance.canRemove)
                        return { WTFMove(root.children[i]) };

                    // Otherwise, it's one that can be dropped.
                    return { };
                },
                [&](const auto&) -> std::optional<Child> {
                    return { WTFMove(root.children[i]) };
                }
            );
            if (replacement)
                return { WTFMove(*replacement) };
        }
    }

    Vector<Child> combinedChildren;
    combinedChildren.reserveInitialCapacity(combinedChildrenSize);

    for (size_t i = 0; i < root.children.size(); ++i) {
        WTF::switchOn(root.children[i],
            [&]<Numeric T>(const T& child) {
                auto& firstInstance = firstInstances[static_cast<uint8_t>(toNumericIdentity(child))];
                ASSERT(firstInstance.offset);

                // If the stored offset for this type is set to this index and it's not one that can be removed, append the child as normal
                if ((firstInstance.offset - 1) == i && !firstInstance.canRemove) {
                    combinedChildren.append(WTFMove(root.children[i]));
                    return;
                }

                // Otherwise, it's one that can be dropped.
            },
            [&](const auto&) {
                combinedChildren.append(WTFMove(root.children[i]));
            }
        );
    }
    root.children = WTFMove(combinedChildren);

    return { };
}

std::optional<Child> simplify(Product& root, const SimplificationOptions& options)
{
    ASSERT(!root.children.isEmpty());

    // 9. If root is a Product node:

    // NOTE: We merge steps 9.1. and 9.2, as they have significant overlap.

    // 9.1. For each of root’s children that are Product nodes, replace them with their children.
    //
    //   -- and --
    //
    // 9.2. If root has multiple children that are numbers (not percentages or dimensions), remove them and replace them with a single number containing the product of the removed nodes.

    Vector<Child> newChildren;
    std::optional<Number> numericProduct;

    auto processChild = [&newChildren, &numericProduct](Child& child) {
        if (auto* childValue = get_if<Number>(&child)) {
            if (numericProduct)
                numericProduct = Number { .value = childValue->value * numericProduct->value };
            else
                numericProduct = Number { .value = childValue->value };
        } else
            newChildren.append(WTFMove(child));
    };

    for (auto& child : root.children) {
        if (auto* childProduct = get_if<IndirectNode<Product>>(&child)) {
            for (auto& childProductChild : (*childProduct)->children)
                processChild(childProductChild);
        } else
            processChild(child);
    }

    // If `numericProduct` has a value and `newChildren` is empty, that means all the children were numbers and the product can be returned directly.
    if (numericProduct) {
        if (newChildren.isEmpty())
            return makeChild(*numericProduct);

        // 9.3. If root contains only two children, one of which is a number (not a percentage or dimension) and the other of which is a Sum whose children are all numeric values, multiply all of the Sum’s children by the number, then return the Sum.

        // We extend this step to include numeric and Invert children for the non-number child as an optimization taking advantage of step 9.4, but for the case where the check is cheaper.

        // NOTE: Since we just merged all numeric values into `numericProduct`, we know that if `numericProduct` is not std::nullopt the last child is a singular `number` child. Therefore, we only need to check if there is one child and is a Sum (or Numeric or Invert).

        if (newChildren.size() == 1) {
            auto replacement = WTF::switchOn(newChildren[0],
                [&]<Numeric T>(T& numeric) -> std::optional<Child> {
                    return makeChildWithValueBasedOn(numeric.value * numericProduct->value, numeric);
                },
                [&](IndirectNode<Sum>& sum) -> std::optional<Child> {
                    if (!std::ranges::all_of(sum->children, [](auto& child) { return isNumeric(child); }))
                        return { };

                    for (auto& child : sum->children) {
                        WTF::switchOn(child,
                            [&]<Numeric T>(T& child) { child.value *= numericProduct->value; },
                            [](auto&) { }
                        );
                    }

                    return { Child { WTFMove(sum) } };
                },
                [&](IndirectNode<Invert>& invert) -> std::optional<Child> {
                    return WTF::switchOn(invert->a,
                        [&]<Numeric T>(const T& child) -> std::optional<Child> {
                            return makeChildWithValueBasedOn(child.value * numericProduct->value, child);
                        },
                        [](const auto&) -> std::optional<Child> {
                            return { };
                        }
                    );
                },
                [](auto&) -> std::optional<Child> {
                    return { };
                }
            );

            if (replacement)
                return { WTFMove(*replacement) };
        }

        // If there was more than one child or no replacement was found, append the product from step 9.2 into the newChildren array.
        newChildren.append(makeChild(*numericProduct));
    }

    root.children = WTFMove(newChildren);

    // 9.4. If root contains only numeric values and/or Invert nodes containing numeric values, and multiplying the types of all the children (noting that the type of an Invert node is the inverse of its child’s type) results in a type that matches any of the types that a math function can resolve to, return the result of multiplying all the values of the children (noting that the value of an Invert node is the reciprocal of its child’s value), expressed in the result’s canonical unit.

    struct ProductResult {
        double value;
        Type type;
    };
    auto productResult = ProductResult { .value = 1, .type = Type { } };

    bool success = false;
    for (auto& child : root.children) {
        success = WTF::switchOn(child,
            [&](const Number& number) -> bool {
                // <number> is the identity type, so multiplying by it has no effect.
                productResult.value *= number.value;
                return true;
            },
            [&](const Percentage& percentage) -> bool {
                auto multipliedType = Type::multiply(productResult.type, getType(percentage));
                if (!multipliedType)
                    return false;

                productResult.type = *multipliedType;
                productResult.value *= percentage.value;
                return true;
            },
            [&](const CanonicalDimension& canonicalDimension) -> bool {
                auto multipliedType = Type::multiply(productResult.type, getType(canonicalDimension.dimension));
                if (!multipliedType)
                    return false;

                productResult.type = *multipliedType;
                productResult.value *= canonicalDimension.value;
                return true;
            },
            [&](IndirectNode<Invert>& invertChild) -> bool {
                return WTF::switchOn(invertChild->a,
                    [&](const Number& number) -> bool {
                        // <number> is the identity type, so multiplying / inverting by it has no effect.
                        productResult.value /= number.value;
                        return true;
                    },
                    [&](const Percentage& percentage) -> bool {
                        auto invertedPercentageChildType = Type::invert(getType(percentage));
                        auto multipliedType = Type::multiply(productResult.type, invertedPercentageChildType);
                        if (!multipliedType)
                            return false;

                        productResult.type = *multipliedType;
                        productResult.value /= percentage.value;
                        return true;
                    },
                    [&](const CanonicalDimension& canonicalDimension) -> bool {
                        auto invertedCanonicalDimensionType = Type::invert(getType(canonicalDimension));
                        auto multipliedType = Type::multiply(productResult.type, invertedCanonicalDimensionType);
                        if (!multipliedType)
                            return false;

                        productResult.type = *multipliedType;
                        productResult.value /= canonicalDimension.value;
                        return true;
                    },
                    [](const auto&) -> bool {
                        return false;
                    }
                );
            },
            [](const auto&) -> bool {
                return false;
            }
        );
        if (!success)
            break;
    }
    if (success) {
        if (auto category = productResult.type.calculationCategory()) {
            switch (*category) {
            case Calculation::Category::Integer:
            case Calculation::Category::Number:
                return makeChild(Number { .value = productResult.value });
            case Calculation::Category::Percentage:
                return makeChild(Percentage { .value = productResult.value, .hint = Type::determinePercentHint(options.category) });
            case Calculation::Category::LengthPercentage:
                return makeChild(Percentage { .value = productResult.value, .hint = PercentHint::Length });
            case Calculation::Category::Length:
                return makeChild(CanonicalDimension { .value = productResult.value, .dimension = CanonicalDimension::Dimension::Length });
            case Calculation::Category::Angle:
                return makeChild(CanonicalDimension { .value = productResult.value, .dimension = CanonicalDimension::Dimension::Angle });
            case Calculation::Category::AnglePercentage:
                return makeChild(Percentage { .value = productResult.value, .hint = PercentHint::Angle });
            case Calculation::Category::Time:
                return makeChild(CanonicalDimension { .value = productResult.value, .dimension = CanonicalDimension::Dimension::Time });
            case Calculation::Category::Frequency:
                return makeChild(CanonicalDimension { .value = productResult.value, .dimension = CanonicalDimension::Dimension::Frequency });
            case Calculation::Category::Resolution:
                return makeChild(CanonicalDimension { .value = productResult.value, .dimension = CanonicalDimension::Dimension::Resolution });
            case Calculation::Category::Flex:
                return makeChild(CanonicalDimension { .value = productResult.value, .dimension = CanonicalDimension::Dimension::Flex });
            }
        }
    }

    // 9.5. Return root.
    return { };
}

std::optional<Child> simplify(Negate& root, const SimplificationOptions&)
{
    // 6. If root is a Negate node:

    return WTF::switchOn(root.a,
        [&]<Numeric T>(T& a) -> std::optional<Child> {
            // 6.1. If root’s child is a numeric value, return an equivalent numeric value, but with the value negated (0 - value).
            return makeChildWithValueBasedOn(0.0 - a.value, a);
        },
        [](IndirectNode<Negate>& a) -> std::optional<Child> {
            // 6.2. If root’s child is a Negate node, return the child’s child.
            return { WTFMove(a->a) };
        },
        [](IndirectNode<Sum>& a) -> std::optional<Child> {
            // Not stated in spec, but needed for tests.

            if (!std::ranges::all_of(a->children, [](auto& child) { return isNumeric(child); }))
                return { };

            for (auto& child : a->children) {
                WTF::switchOn(child,
                    [&]<Numeric T>(T& child) { child.value = -child.value; },
                    [](auto&) { }
                );
            }

            return { Child { WTFMove(a) } };
        },
        [](IndirectNode<Product>& a) -> std::optional<Child> {
            // Not stated in spec, but needed for tests.

            if (!std::ranges::all_of(a->children, [](auto& child) { return isNumeric(child); }))
                return { };

            for (auto& child : a->children) {
                WTF::switchOn(child,
                    [&]<Numeric T>(T& child) { child.value = -child.value; },
                    [](auto&) { }
                );
            }

            return { Child { WTFMove(a) } };
        },
        [](auto&) -> std::optional<Child> {
            return { };
        }
    );
}

std::optional<Child> simplify(Invert& root, const SimplificationOptions&)
{
    // 7. If root is an Invert node:

    return WTF::switchOn(root.a,
        [&](Number& a) -> std::optional<Child> {
            // 7.1. If root’s child is a number (not a percentage or dimension) return the reciprocal of the child’s value.
            return makeChild(Number { .value = (1.0 / a.value) });
        },
        [](IndirectNode<Invert>& a) -> std::optional<Child> {
            // 7.2. If root’s child is an Invert node, return the child’s child.
            return { WTFMove(a->a) };
        },
        [](auto&) -> std::optional<Child> {
            return { };
        }
    );
}

std::optional<Child> simplify(Min& root, const SimplificationOptions& options)
{
    return simplifyForMinMax(root, options);
}

std::optional<Child> simplify(Max& root, const SimplificationOptions& options)
{
    return simplifyForMinMax(root, options);
}

std::optional<Child> simplify(Clamp& root, const SimplificationOptions& options)
{
    auto minIsNone = WTF::holdsAlternative<CSS::Keyword::None>(root.min);
    auto maxIsNone = WTF::holdsAlternative<CSS::Keyword::None>(root.max);

    if (minIsNone && maxIsNone) {
        // - clamp(none, VAL, none) is equivalent to just calc(VAL).
        return { WTFMove(root.val) };
    }

    // FIXME: Are any of these transforms kosher?
    // If only MIN and VAL have matching units, we can transform clamp(MIN, VAL, MAX) aka (max(MIN, min(VAL, MAX)) into a min(newVAL, MAX).
    // If only VAL and MAX have matching units, we can transform clamp(MIN, VAL, MAX) aka (max(MIN, min(VAL, MAX)) into a max(MIN, newVAL).

    return WTF::switchOn(root.val,
        [&]<Numeric T>(T& val) -> std::optional<Child> {
            if (minIsNone) {
                auto& maxChild = get<Child>(root.max);
                if (!WTF::holdsAlternative<T>(maxChild))
                    return { };

                auto& max = get<T>(maxChild);

                if (!unitsMatch(val, max, options))
                    return { };

                // As units already match, we only have to check that one of the arguments is `magnitudeComparable`.
                if (!magnitudeComparable(val, options))
                    return { };

                // - clamp(none, VAL, MAX) is equivalent to min(VAL, MAX)
                return makeChildWithValueBasedOn(executeMathOperation<Min>(val.value, max.value), val);
            } else if (maxIsNone) {
                auto& minChild = get<Child>(root.min);
                if (!WTF::holdsAlternative<T>(minChild))
                    return { };

                auto& min = get<T>(minChild);

                if (!unitsMatch(min, val, options))
                    return { };

                // As units already match, we only have to check that one of the arguments is `magnitudeComparable`.
                if (!magnitudeComparable(val, options))
                    return { };

                // - clamp(MIN, VAL, none) is equivalent to max(MIN, VAL)
                return makeChildWithValueBasedOn(executeMathOperation<Max>(min.value, val.value), val);
            } else {
                auto& minChild = get<Child>(root.min);
                auto& maxChild = get<Child>(root.max);

                // If all three parameters have the same unit, we can perform the clamp in full.
                if (!WTF::holdsAlternative<T>(minChild) || !WTF::holdsAlternative<T>(maxChild))
                    return { };

                auto& min = get<T>(minChild);
                auto& max = get<T>(maxChild);

                if (!unitsMatch(min, val, options) || !unitsMatch(val, max, options))
                    return { };

                // As units already match, we only have to check that one of the arguments is `magnitudeComparable`.
                if (!magnitudeComparable(val, options))
                    return { };

                return makeChildWithValueBasedOn(executeMathOperation<Clamp>(min.value, val.value, max.value), val);
            }
        },
        [](const auto&) -> std::optional<Child> {
            return { };
        }
    );
}

std::optional<Child> simplify(RoundNearest& root, const SimplificationOptions& options)
{
    return simplifyForRound(root, options);
}

std::optional<Child> simplify(RoundUp& root, const SimplificationOptions& options)
{
    return simplifyForRound(root, options);
}

std::optional<Child> simplify(RoundDown& root, const SimplificationOptions& options)
{
    return simplifyForRound(root, options);
}

std::optional<Child> simplify(RoundToZero& root, const SimplificationOptions& options)
{
    return simplifyForRound(root, options);
}

std::optional<Child> simplify(Mod& root, const SimplificationOptions& options)
{
    return simplifyForOperation<Mod>(root.a, root.b, options);
}

std::optional<Child> simplify(Rem& root, const SimplificationOptions& options)
{
    return simplifyForOperation<Rem>(root.a, root.b, options);
}

std::optional<Child> simplify(Sin& root, const SimplificationOptions& options)
{
    return simplifyForTrig(root, options);
}

std::optional<Child> simplify(Cos& root, const SimplificationOptions& options)
{
    return simplifyForTrig(root, options);
}

std::optional<Child> simplify(Tan& root, const SimplificationOptions& options)
{
    return simplifyForTrig(root, options);
}

std::optional<Child> simplify(Asin& root, const SimplificationOptions& options)
{
    return simplifyForArcTrig(root, options);
}

std::optional<Child> simplify(Acos& root, const SimplificationOptions& options)
{
    return simplifyForArcTrig(root, options);
}

std::optional<Child> simplify(Atan& root, const SimplificationOptions& options)
{
    return simplifyForArcTrig(root, options);
}

std::optional<Child> simplify(Atan2& root, const SimplificationOptions& options)
{
    return simplifyForOperationWithCompletion<Atan2>(root.a, root.b, options, [](double value) {
        return makeChild(CanonicalDimension { .value = value, .dimension = CanonicalDimension::Dimension::Angle });
    });
}

std::optional<Child> simplify(Pow& root, const SimplificationOptions&)
{
    // NOTE: `a` and `b` have been type checked by this point to be `<number>`, though they may not
    // be able to be fully resolved yet.

    return switchTogether(root.a, root.b,
        [&](const Number& a, const Number& b) -> std::optional<Child> {
            return makeChild(Number { .value = executeMathOperation<Pow>(a.value, b.value) });
        },
        [](const auto&, const auto&) -> std::optional<Child> {
            return { };
        }
    );
}

std::optional<Child> simplify(Sqrt& root, const SimplificationOptions&)
{
    // NOTE: `a` has been type checked by this point to be `<number>`, though they may not
    // be able to be fully resolved yet.

    return WTF::switchOn(root.a,
        [&](const Number& a) -> std::optional<Child> {
            return makeChild(Number { .value = executeMathOperation<Sqrt>(a.value) });
        },
        [](const auto&) -> std::optional<Child> {
            return { };
        }
    );
}

std::optional<Child> simplify(Hypot& root, const SimplificationOptions& options)
{
    // Hypot can be simplified if all its children are the same type, and it is both canonical (for lengths) and fully resolved (for percentages). We optimistically assume that the children fit this criteria, and execute the operation over the children, checking each one as it is requested. If we find out our assumption was incorrect (e.g. a child is non-canonical or non-resolved), we set a flag indicating the evaluation failed, but due to the evaluation API's interface, must evaluate all the remaining children. Once the evaluation is complete, if the fail bit is set, we failed to simplify, if it is not, we can return the new numeric result.

    struct NumberTag { };
    struct PercentageTag { };
    struct DimensionTag { CanonicalDimension::Dimension dimension; };
    struct FailureTag { };
    std::variant<std::monostate, NumberTag, PercentageTag, DimensionTag, FailureTag> result;

    double value = executeMathOperation<Hypot>(root.children.value, [&](const auto& child) {
        return WTF::switchOn(result,
            [&](const std::monostate&) -> double {
                // First iteration.
                return WTF::switchOn(child,
                    [&](const Number& number) -> double {
                        result = NumberTag { };
                        return number.value;
                    },
                    [&](const Percentage& percentage) -> double {
                        if (percentageResolveToDimension(options)) {
                            result = FailureTag { };
                            return std::numeric_limits<double>::quiet_NaN();
                        }
                        result = PercentageTag { };
                        return percentage.value;
                    },
                    [&](const CanonicalDimension& dimension) -> double {
                        result = DimensionTag { dimension.dimension };
                        return dimension.value;
                    },
                    [&](const auto&) -> double {
                        result = FailureTag { };
                        return std::numeric_limits<double>::quiet_NaN();
                    }
                );
            },
            [&](const NumberTag&) -> double {
                if (auto* numberChild = get_if<Number>(&child))
                    return numberChild->value;
                result = FailureTag { };
                return std::numeric_limits<double>::quiet_NaN();
            },
            [&](const PercentageTag&) -> double {
                if (auto* percentageChild = get_if<Percentage>(&child))
                    return percentageChild->value;
                result = FailureTag { };
                return std::numeric_limits<double>::quiet_NaN();
            },
            [&](const DimensionTag& tag) -> double {
                if (auto* dimensionChild = get_if<CanonicalDimension>(&child); dimensionChild && dimensionChild->dimension == tag.dimension)
                    return dimensionChild->value;
                result = FailureTag { };
                return std::numeric_limits<double>::quiet_NaN();
            },
            [&](const FailureTag&) -> double {
                return std::numeric_limits<double>::quiet_NaN();
            }
        );
    });

    return WTF::switchOn(result,
        [&](const NumberTag&) -> std::optional<Child> {
            return makeChild(Number { .value = value });
        },
        [&](const PercentageTag&) -> std::optional<Child> {
            return makeChild(Percentage { .value = value, .hint = Type::determinePercentHint(options.category) });
        },
        [&](const DimensionTag& tag) -> std::optional<Child> {
            return makeChild(CanonicalDimension { .value = value, .dimension = tag.dimension });
        },
        [&](const auto&) -> std::optional<Child> {
            return { };
        }
    );
}

std::optional<Child> simplify(Log& root, const SimplificationOptions&)
{
    // NOTE: `a` and `b` have been type checked by this point to be `<number>`, though they may not
    // be able to be fully resolved yet.

    if (root.b) {
        return switchTogether(root.a, *root.b,
            [&](const Number& a, const Number& b) -> std::optional<Child> {
                return makeChild(Number { .value = executeMathOperation<Log>(a.value, b.value) });
            },
            [](const auto&, const auto&) -> std::optional<Child> {
                return { };
            }
        );
    }

    return WTF::switchOn(root.a,
        [](const Number& a) -> std::optional<Child> {
            return makeChild(Number { .value = executeMathOperation<Log>(a.value) });
        },
        [](const auto&) -> std::optional<Child> {
            return { };
        }
    );
}

std::optional<Child> simplify(Exp& root, const SimplificationOptions&)
{
    // NOTE: `a` has been type checked by this point to be `<number>`, though they may not
    // be able to be fully resolved yet.

    return WTF::switchOn(root.a,
        [](const Number& a) -> std::optional<Child> {
            return makeChild(Number { .value = executeMathOperation<Exp>(a.value) });
        },
        [](const auto&) -> std::optional<Child> {
            return { };
        }
    );
}

std::optional<Child> simplify(Abs& root, const SimplificationOptions& options)
{
    return WTF::switchOn(root.a,
        [&]<Numeric T>(const T& a) -> std::optional<Child> {
            if (!magnitudeComparable(a, options))
                return { };
            return makeChildWithValueBasedOn(executeMathOperation<Abs>(a.value), a);
        },
        [](const auto&) -> std::optional<Child> {
            return { };
        }
    );
}

std::optional<Child> simplify(Sign& root, const SimplificationOptions& options)
{
    return WTF::switchOn(root.a,
        [&]<Numeric T>(const T& a) -> std::optional<Child> {
            if (!magnitudeComparable(a, options))
                return { };
            return makeChild(Number { .value = executeMathOperation<Sign>(a.value) });
        },
        [](const auto&) -> std::optional<Child> {
            return { };
        }
    );
}

std::optional<Child> simplify(Random& root, const SimplificationOptions& options)
{
    if (!options.conversionData || !options.conversionData->styleBuilderState())
        return { };
    if (root.cachingOptions.perElement && !options.conversionData->styleBuilderState()->element())
        return { };
    if (root.min.index() != root.max.index() || (root.step && root.step->index() != root.min.index()))
        return { };

    return WTF::switchOn(root.min,
        [&]<Numeric T>(const T& numericMin) -> std::optional<Child> {
            auto numericMax = get<T>(root.max);

            if (!unitsMatch(numericMin, numericMax, options) || !fullyResolved(numericMin, options))
                return { };

            std::optional<double> valueStep;
            if (root.step) {
                auto numericStep = get<T>(*root.step);

                if (!unitsMatch(numericMin, numericStep, options))
                    return { };

                valueStep = numericStep.value;
            }

            auto valueMin = numericMin.value;
            auto valueMax = numericMax.value;

            // RandomKeyMap relies on using NaN for HashTable deleted/empty values but
            // the result is always NaN if either is NaN, so we can return early here.
            if (std::isnan(valueMin) || std::isnan(valueMax))
                return makeChildWithValueBasedOn(std::numeric_limits<double>::quiet_NaN(), numericMin);

            auto keyMap = options.conversionData->styleBuilderState()->randomKeyMap(
                root.cachingOptions.perElement
            );

            auto randomUnitInterval = keyMap->lookupUnitInterval(
                root.cachingOptions.identifier,
                valueMin,
                valueMax,
                valueStep
            );

            auto result = Calculation::executeOperation<ToCalculationTreeOp<Random>>(
                randomUnitInterval,
                valueMin,
                valueMax,
                valueStep
            );

            return makeChildWithValueBasedOn(result, numericMin);
        },
        [](const auto&) -> std::optional<Child> {
            return { };
        }
    );

    return { };
}

std::optional<Child> simplify(Progress& root, const SimplificationOptions& options)
{
    if (root.value.index() != root.start.index() || root.start.index() != root.end.index())
        return { };

    return WTF::switchOn(root.value,
        [&]<Numeric T>(const T& numericValue) -> std::optional<Child> {
            const auto& numericStart = get<T>(root.start);
            const auto& numericEnd = get<T>(root.end);

            if (!unitsMatch(numericValue, numericStart, options) || !unitsMatch(numericStart, numericEnd, options) || !fullyResolved(numericValue, options))
                return { };

            return makeChild(Number { .value = executeMathOperation<Progress>(numericValue.value, numericStart.value, numericEnd.value) });
        },
        [](const auto&) -> std::optional<Child> {
            return { };
        }
    );
}

std::optional<Child> simplify(MediaProgress& root, const SimplificationOptions& options)
{
    ASSERT(root.feature->category() == options.category);

    if (!options.conversionData || !options.conversionData->styleBuilderState())
        return { };

    return switchTogether(root.start, root.end,
        [&]<Numeric T>(const T& start, const T& end) -> std::optional<Child> {
            if (!unitsMatch(start, end, options) || !fullyResolved(start, options))
                return { };

            Ref document = options.conversionData->styleBuilderState()->document();
            auto value = evaluateMediaProgress(root, document, *options.conversionData);
            return makeChild(Number { .value = executeMathOperation<Progress>(value, start.value, end.value) });
        },
        [](const auto&, const auto&) -> std::optional<Child> {
            return { };
        }
    );
}

std::optional<Child> simplify(ContainerProgress& root, const SimplificationOptions& options)
{
    ASSERT(root.feature->category() == options.category);

    if (!options.conversionData || !options.conversionData->styleBuilderState() || !options.conversionData->styleBuilderState()->element())
        return { };

    return switchTogether(root.start, root.end,
        [&]<Numeric T>(const T& start, const T& end) -> std::optional<Child> {
            if (!unitsMatch(start, end, options) || !fullyResolved(start, options))
                return { };

            Ref element = *options.conversionData->styleBuilderState()->element();
            auto value = evaluateContainerProgress(root, element, *options.conversionData);
            if (!value)
                return { };

            return makeChild(Number { .value = executeMathOperation<Progress>(*value, start.value, end.value) });
        },
        [](const auto&, const auto&) -> std::optional<Child> {
            return { };
        }
    );
}

std::optional<Child> simplify(Anchor& anchor, const SimplificationOptions& options)
{
    if (!options.conversionData || !options.conversionData->styleBuilderState())
        return { };

    auto evaluationOptions = EvaluationOptions {
        .category = options.category,
        .range = CSS::All,
        .conversionData = options.conversionData,
        .symbolTable = options.symbolTable
    };

    auto result = evaluateWithoutFallback(anchor, evaluationOptions);
    if (!result) {
        // https://drafts.csswg.org/css-anchor-position-1/#anchor-valid
        // "If any of these conditions are false, the anchor() function resolves to its specified fallback value.
        // If no fallback value is specified, it makes the declaration referencing it invalid at computed-value time."

        if (!anchor.fallback)
            options.conversionData->styleBuilderState()->setCurrentPropertyInvalidAtComputedValueTime();

        // Replace the anchor node with the fallback node.
        return std::exchange(anchor.fallback, { });
    }
    return CanonicalDimension { .value = *result, .dimension = CanonicalDimension::Dimension::Length };
}

std::optional<Child> simplify(AnchorSize& anchorSize, const SimplificationOptions& options)
{
    if (!options.conversionData || !options.conversionData->styleBuilderState())
        return { };

    auto& builderState = *options.conversionData->styleBuilderState();

    std::optional<Style::ScopedName> anchorSizeScopedName;
    if (!anchorSize.elementName.isNull()) {
        anchorSizeScopedName = Style::ScopedName {
            .name = anchorSize.elementName,
            .scopeOrdinal = builderState.styleScopeOrdinal()
        };
    }

    auto result = Style::AnchorPositionEvaluator::evaluateSize(builderState, anchorSizeScopedName, anchorSize.dimension);

    if (!result) {
        if (!anchorSize.fallback)
            options.conversionData->styleBuilderState()->setCurrentPropertyInvalidAtComputedValueTime();

        return std::exchange(anchorSize.fallback, { });
    }

    return CanonicalDimension { .value = *result, .dimension = CanonicalDimension::Dimension::Length };
}

// MARK: Copy & Simplify.

const MQ::MediaProgressProviding* copyAndSimplify(const MQ::MediaProgressProviding* root, const SimplificationOptions&)
{
    return root;
}

const CQ::ContainerProgressProviding* copyAndSimplify(const CQ::ContainerProgressProviding* root, const SimplificationOptions&)
{
    return root;
}

Random::CachingOptions copyAndSimplify(const Random::CachingOptions& root, const SimplificationOptions&)
{
    return root;
}

AtomString copyAndSimplify(const AtomString& root, const SimplificationOptions&)
{
    return root;
}

CSS::Keyword::None copyAndSimplify(const CSS::Keyword::None& root, const SimplificationOptions&)
{
    return root;
}

Children copyAndSimplify(const Children& children, const SimplificationOptions& options)
{
    return WTF::map(children, [&](auto& child) { return copyAndSimplify(child, options); });
}

auto copyAndSimplify(const ChildOrNone& root, const SimplificationOptions& options) -> ChildOrNone
{
    return WTF::switchOn(root, [&](auto& root) { return ChildOrNone { copyAndSimplify(root, options) }; });
}

template<typename T> auto copyAndSimplify(const std::optional<T>& root, const SimplificationOptions& options) -> std::optional<T>
{
    if (root)
        return copyAndSimplify(*root, options);
    return { };
}

template<Leaf Op> static auto copyAndSimplifyChildren(const Op& op, const SimplificationOptions&) -> Op
{
    return op;
}

template<typename Op> static auto copyAndSimplifyChildren(const IndirectNode<Op>& root, const SimplificationOptions& options) -> Op
{
    return WTF::apply([&](const auto& ...x) { return Op { copyAndSimplify(x, options)... }; } , *root);
}

static auto copyAndSimplifyChildren(const IndirectNode<MediaProgress>& root, const SimplificationOptions& options) -> MediaProgress
{
    // Modify the category to match the media-progress() category following non-"math function" rules.
    // FIXME: Catching cases like this would be a good reason to make non-"math function" nodes distinct, perhaps even using an explicitly nested Tree in some fashion.
    SimplificationOptions nestedOptions = options;
    nestedOptions.category = root->feature->category();

    return WTF::apply([&](const auto& ...x) { return MediaProgress { copyAndSimplify(x, nestedOptions)... }; } , *root);
}

static auto copyAndSimplifyChildren(const IndirectNode<ContainerProgress>& root, const SimplificationOptions& options) -> ContainerProgress
{
    // Modify the category to match the container-progress() category following non-"math function" rules.
    // FIXME: Catching cases like this would be a good reason to make non-"math function" nodes distinct, perhaps even using an explicitly nested Tree in some fashion.
    SimplificationOptions nestedOptions = options;
    nestedOptions.category = root->feature->category();

    return WTF::apply([&](const auto& ...x) { return ContainerProgress { copyAndSimplify(x, nestedOptions)... }; } , *root);
}

static auto copyAndSimplifyChildren(const IndirectNode<Anchor>& anchor, const SimplificationOptions& options) -> Anchor
{
    return Anchor { .elementName = anchor->elementName, .side = copy(anchor->side), .fallback = copyAndSimplify(anchor->fallback, options) };
}

static auto copyAndSimplifyChildren(const IndirectNode<AnchorSize>& anchorSize, const SimplificationOptions& options) -> AnchorSize
{
    return AnchorSize {
        .elementName = anchorSize->elementName,
        .dimension = anchorSize->dimension,
        .fallback = copyAndSimplify(anchorSize->fallback, options)
    };
}

Child copyAndSimplify(const Child& root, const SimplificationOptions& options)
{
    return WTF::switchOn(root,
        [&](const auto& root) -> Child {
            // Create a simplified copy by recursively calling simplify on all children.
            auto simplified = copyAndSimplifyChildren(root, options);

            // Attempt to simplify the term itself, using the result as a replacement if successful.
            if (auto replacement = simplify(simplified, options))
                return WTFMove(*replacement);

            return makeChild(WTFMove(simplified), getType(root));
        }
    );
}

Tree copyAndSimplify(const Tree& tree, const SimplificationOptions& options)
{
    return Tree {
        .root = copyAndSimplify(tree.root, options),
        .type = tree.type,
        .stage = tree.stage,
        .requiresConversionData = tree.requiresConversionData,
        .unique = tree.unique,
    };
}

// MARK: - Can Simplify

bool canSimplify(const Tree& tree, const SimplificationOptions&)
{
    // NOTE: This is a simple and conservative implementation of `canSimplify`. A more precise implementation
    // is possible by utilizing the provided `SimplificationOptions` if that should be necessary.

    return WTF::switchOn(tree.root,
        [&](const Number&) -> bool {
            return false;
        },
        [&](const Percentage&) -> bool {
            return false;
        },
        [&](const CanonicalDimension&) -> bool {
            return false;
        },
        [&](auto const&) -> bool {
            return true;
        }
    );
}

} // namespace CSSCalc
} // namespace WebCore