File: SimpleRange.cpp

package info (click to toggle)
webkit2gtk 2.48.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 429,764 kB
  • sloc: cpp: 3,697,587; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,295; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (346 lines) | stat: -rw-r--r-- 12,223 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
/*
 * Copyright (C) 2020 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"
#include "SimpleRange.h"

#include "CharacterData.h"
#include "HTMLFrameOwnerElement.h"
#include "LocalFrame.h"
#include "NodeTraversal.h"
#include "ShadowRoot.h"

namespace WebCore {

SimpleRange::SimpleRange(const BoundaryPoint& start, const BoundaryPoint& end)
    : start(start)
    , end(end)
{
}

SimpleRange::SimpleRange(BoundaryPoint&& start, BoundaryPoint&& end)
    : start(WTFMove(start))
    , end(WTFMove(end))
{
}

WeakSimpleRange::WeakSimpleRange(const WeakBoundaryPoint& start, const WeakBoundaryPoint& end)
    : start(start)
    , end(end)
{
}

WeakSimpleRange::WeakSimpleRange(WeakBoundaryPoint&& start, WeakBoundaryPoint&& end)
    : start(WTFMove(start))
    , end(WTFMove(end))
{
}

std::optional<SimpleRange> makeRangeSelectingNode(Node& node)
{
    RefPtr parent = node.parentNode();
    if (!parent)
        return std::nullopt;
    unsigned offset = node.computeNodeIndex();
    return SimpleRange { { *parent, offset }, { *parent, offset + 1 } };
}

SimpleRange makeRangeSelectingNodeContents(Node& node)
{
    return { makeBoundaryPointBeforeNodeContents(node), makeBoundaryPointAfterNodeContents(node) };
}

OffsetRange characterDataOffsetRange(const SimpleRange& range, const Node& node)
{
    return { &node == range.start.container.ptr() ? range.start.offset : 0,
        &node == range.end.container.ptr() ? range.end.offset : std::numeric_limits<unsigned>::max() };
}

static RefPtr<Node> firstIntersectingNode(const SimpleRange& range)
{
    if (range.start.container->isCharacterDataNode())
        return range.start.container.ptr();
    if (auto child = range.start.container->traverseToChildAt(range.start.offset))
        return child;
    return NodeTraversal::nextSkippingChildren(range.start.container);
}

static RefPtr<Node> nodePastLastIntersectingNode(const SimpleRange& range)
{
    if (range.end.container->isCharacterDataNode())
        return NodeTraversal::nextSkippingChildren(range.end.container);
    if (auto child = range.end.container->traverseToChildAt(range.end.offset))
        return child;
    return NodeTraversal::nextSkippingChildren(range.end.container);
}

static RefPtr<Node> firstIntersectingNodeWithDeprecatedZeroOffsetStartQuirk(const SimpleRange& range)
{
    if (range.start.container->isCharacterDataNode())
        return range.start.container.ptr();
    if (auto child = range.start.container->traverseToChildAt(range.start.offset))
        return child;
    if (!range.start.offset)
        return range.start.container.ptr();
    return NodeTraversal::nextSkippingChildren(range.start.container);
}

IntersectingNodeIterator::IntersectingNodeIterator(const SimpleRange& range)
    : m_node(firstIntersectingNode(range))
    , m_pastLastNode(nodePastLastIntersectingNode(range))
{
    enforceEndInvariant();
}

IntersectingNodeIterator::IntersectingNodeIterator(const SimpleRange& range, QuirkFlag)
    : m_node(firstIntersectingNodeWithDeprecatedZeroOffsetStartQuirk(range))
    , m_pastLastNode(nodePastLastIntersectingNode(range))
{
    enforceEndInvariant();
}

void IntersectingNodeIterator::advance()
{
    ASSERT(m_node);
    m_node = NodeTraversal::next(*m_node);
    enforceEndInvariant();
}

void IntersectingNodeIterator::advanceSkippingChildren()
{
    auto node = protectedNode();
    ASSERT(node);
    m_node = node->contains(m_pastLastNode.get()) ? nullptr : NodeTraversal::nextSkippingChildren(*node);
    enforceEndInvariant();
}

void IntersectingNodeIterator::enforceEndInvariant()
{
    if (m_node == m_pastLastNode || !m_node) {
        m_node = nullptr;
        m_pastLastNode = nullptr;
    }
}

template<TreeType treeType> Node* commonInclusiveAncestor(const SimpleRange& range)
{
    return commonInclusiveAncestor<treeType>(range.start.container, range.end.container);
}

template Node* commonInclusiveAncestor<ComposedTree>(const SimpleRange&);

template<TreeType treeType> bool contains(const SimpleRange& range, const BoundaryPoint& point)
{
    return is_lteq(treeOrder<treeType>(range.start, point)) && is_lteq(treeOrder<treeType>(point, range.end));
}

template bool contains<Tree>(const SimpleRange&, const BoundaryPoint&);

template<TreeType treeType> bool contains(const SimpleRange& range, const std::optional<BoundaryPoint>& point)
{
    return point && contains<treeType>(range, *point);
}

template<> bool contains<ComposedTree>(const SimpleRange& range, const std::optional<BoundaryPoint>& point)
{
    return point && contains<ComposedTree>(range, *point);
}

bool contains(TreeType type, const SimpleRange& range, const BoundaryPoint& point)
{
    switch (type) {
    case Tree:
        return contains<Tree>(range, point);
    case ShadowIncludingTree:
        return contains<ShadowIncludingTree>(range, point);
    case ComposedTree:
        return contains<ComposedTree>(range, point);
    }
    ASSERT_NOT_REACHED();
    return false;
}

template<TreeType treeType> std::partial_ordering treeOrder(const SimpleRange& range, const BoundaryPoint& point)
{
    if (auto order = treeOrder<treeType>(range.start, point); !is_lt(order))
        return order;
    if (auto order = treeOrder<treeType>(range.end, point); !is_gt(order))
        return order;
    return std::partial_ordering::equivalent;
}

template<TreeType treeType> std::partial_ordering treeOrder(const BoundaryPoint& point, const SimpleRange& range)
{
    if (auto order = treeOrder<treeType>(point, range.start); !is_gt(order))
        return order;
    if (auto order = treeOrder<treeType>(point, range.end); !is_lt(order))
        return order;
    return std::strong_ordering::equivalent;
}

template std::partial_ordering treeOrder<Tree>(const SimpleRange&, const BoundaryPoint&);
template std::partial_ordering treeOrder<Tree>(const BoundaryPoint&, const SimpleRange&);

template<TreeType treeType> bool contains(const SimpleRange& outerRange, const SimpleRange& innerRange)
{
    return is_lteq(treeOrder<treeType>(outerRange.start, innerRange.start)) && is_gteq(treeOrder<treeType>(outerRange.end, innerRange.end));
}

template bool contains<Tree>(const SimpleRange&, const SimpleRange&);
template bool contains<ComposedTree>(const SimpleRange&, const SimpleRange&);

bool contains(TreeType type, const SimpleRange& outerRange, const SimpleRange& innerRange)
{
    switch (type) {
    case Tree:
        return contains<Tree>(outerRange, innerRange);
    case ShadowIncludingTree:
        return contains<ShadowIncludingTree>(outerRange, innerRange);
    case ComposedTree:
        return contains<ComposedTree>(outerRange, innerRange);
    }
    ASSERT_NOT_REACHED();
    return false;
}

template<TreeType treeType> bool intersects(const SimpleRange& a, const SimpleRange& b)
{
    return is_lteq(treeOrder<treeType>(a.start, b.end)) && is_lteq(treeOrder<treeType>(b.start, a.end));
}

template bool intersects<Tree>(const SimpleRange&, const SimpleRange&);
template bool intersects<ComposedTree>(const SimpleRange&, const SimpleRange&);

bool intersectsForTesting(TreeType type, const SimpleRange& a, const SimpleRange& b)
{
    switch (type) {
    case Tree:
        return intersects<Tree>(a, b);
    case ShadowIncludingTree:
        return intersects<ShadowIncludingTree>(a, b);
    case ComposedTree:
        return intersects<ComposedTree>(a, b);
    }
    ASSERT_NOT_REACHED();
    return false;
}

static bool compareByComposedTreeOrder(const BoundaryPoint& a, const BoundaryPoint& b)
{
    return is_lt(treeOrder<ComposedTree>(a, b));
}

SimpleRange unionRange(const SimpleRange& a, const SimpleRange& b)
{
    return { std::min(a.start, b.start, compareByComposedTreeOrder), std::max(a.end, b.end, compareByComposedTreeOrder) };
}

std::optional<SimpleRange> intersection(const std::optional<SimpleRange>& a, const std::optional<SimpleRange>& b)
{
    // FIXME: Can this be done more efficiently, with fewer calls to treeOrder?
    if (!a || !b || !intersects<ComposedTree>(*a, *b))
        return std::nullopt;
    return { { std::max(a->start, b->start, compareByComposedTreeOrder), std::min(a->end, b->end, compareByComposedTreeOrder) } };
}

template<TreeType treeType> bool contains(const SimpleRange& range, const Node& node)
{
    // FIXME: Consider a more efficient algorithm that avoids always computing the node index.
    // FIXME: Does this const_cast point to a design problem?
    auto nodeRange = makeRangeSelectingNode(const_cast<Node&>(node));
    return nodeRange && contains<treeType>(range, *nodeRange);
}

template bool contains<Tree>(const SimpleRange&, const Node&);
template bool contains<ComposedTree>(const SimpleRange&, const Node&);

bool contains(TreeType type, const SimpleRange& range, const Node& node)
{
    switch (type) {
    case Tree:
        return contains<Tree>(range, node);
    case ShadowIncludingTree:
        return contains<ShadowIncludingTree>(range, node);
    case ComposedTree:
        return contains<ComposedTree>(range, node);
    }
    ASSERT_NOT_REACHED();
    return false;
}

template<TreeType treeType> bool contains(const Node& outer, const Node& inner)
{
    for (auto inclusiveAncestor = &inner; inclusiveAncestor; inclusiveAncestor = parent<treeType>(*inclusiveAncestor)) {
        if (inclusiveAncestor == &outer)
            return true;
    }
    return false;
}

template<> bool contains<Tree>(const Node& outer, const Node& inner)
{
    // We specialize here because we want to take advantage of optimizations in Node::isDescendantOf.
    return outer.contains(inner);
}

template<TreeType treeType> bool intersects(const SimpleRange& range, const Node& node)
{
    // FIXME: Consider a more efficient algorithm that avoids always computing the node index.
    // FIXME: Does this const_cast point to a design problem?
    auto nodeRange = makeRangeSelectingNode(const_cast<Node&>(node));
    if (!nodeRange)
        return contains<treeType>(node, range.start.container);
    return is_lt(treeOrder<treeType>(nodeRange->start, range.end)) && is_lt(treeOrder<treeType>(range.start, nodeRange->end));
}

template bool intersects<Tree>(const SimpleRange&, const Node&);
template bool intersects<ComposedTree>(const SimpleRange&, const Node&);

bool intersectsForTesting(TreeType type, const SimpleRange& range, const Node& node)
{
    switch (type) {
    case Tree:
        return intersects<Tree>(range, node);
    case ShadowIncludingTree:
        return intersects<ShadowIncludingTree>(range, node);
    case ComposedTree:
        return intersects<ComposedTree>(range, node);
    }
    ASSERT_NOT_REACHED();
    return false;
}

bool containsCrossingDocumentBoundaries(const SimpleRange& range, Node& node)
{
    auto* ancestor = &node;
    while (&range.start.document() != &ancestor->document()) {
        ancestor = ancestor->document().ownerElement();
        if (!ancestor)
            return false;
    }
    return contains<ComposedTree>(range, *ancestor);
}

}