1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
/*
* Copyright (c) 2023 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "CanvasNoiseInjection.h"
#include "ByteArrayPixelBuffer.h"
#include "FloatRect.h"
#include "ImageBuffer.h"
#include "PixelBuffer.h"
namespace WebCore {
void CanvasNoiseInjection::updateDirtyRect(const IntRect& rect)
{
m_postProcessDirtyRect.unite(rect);
}
void CanvasNoiseInjection::clearDirtyRect()
{
m_postProcessDirtyRect = { };
}
static inline bool isIndexInBounds(int size, int index)
{
ASSERT(index <= size);
return index < size;
}
static inline bool setTightnessBounds(std::span<uint8_t> bytes, std::array<int, 4>& tightestBoundingDiff, int index1, int index2, int index3)
{
int boundingRedDiff = std::abs(static_cast<int>(bytes[index1]) - static_cast<int>(bytes[index3]));
int boundingGreenDiff = std::abs(static_cast<int>(bytes[index1 + 1]) - static_cast<int>(bytes[index3 + 1]));
int boundingBlueDiff = std::abs(static_cast<int>(bytes[index1 + 2]) - static_cast<int>(bytes[index3 + 2]));
int boundingAlphaDiff = std::abs(static_cast<int>(bytes[index1 + 3]) - static_cast<int>(bytes[index3 + 3]));
int neighborRedDiff1 = std::abs(static_cast<int>(bytes[index1]) - static_cast<int>(bytes[index2]));
int neighborGreenDiff1 = std::abs(static_cast<int>(bytes[index1 + 1]) - static_cast<int>(bytes[index2 + 1]));
int neighborBlueDiff1 = std::abs(static_cast<int>(bytes[index1 + 2]) - static_cast<int>(bytes[index2 + 2]));
int neighborAlphaDiff1 = std::abs(static_cast<int>(bytes[index1 + 3]) - static_cast<int>(bytes[index2 + 3]));
int neighborRedDiff2 = std::abs(static_cast<int>(bytes[index2]) - static_cast<int>(bytes[index3]));
int neighborGreenDiff2 = std::abs(static_cast<int>(bytes[index2 + 1]) - static_cast<int>(bytes[index3 + 1]));
int neighborBlueDiff2 = std::abs(static_cast<int>(bytes[index2 + 2]) - static_cast<int>(bytes[index3 + 2]));
int neighborAlphaDiff2 = std::abs(static_cast<int>(bytes[index2 + 3]) - static_cast<int>(bytes[index3 + 3]));
bool updatedTightnessBounds { false };
if (boundingRedDiff <= 1 && boundingGreenDiff <= 1 && boundingBlueDiff <= 1 && boundingAlphaDiff <= 1
&& neighborRedDiff1 <= 1 && neighborGreenDiff1 <= 1 && neighborBlueDiff1 <= 1 && neighborAlphaDiff1 <= 1
&& neighborRedDiff2 <= 1 && neighborGreenDiff2 <= 1 && neighborBlueDiff2 <= 1 && neighborAlphaDiff2 <= 1) {
tightestBoundingDiff[0] = 0;
tightestBoundingDiff[1] = 0;
tightestBoundingDiff[2] = 0;
tightestBoundingDiff[3] = 0;
updatedTightnessBounds = true;
} else if (boundingRedDiff < tightestBoundingDiff[0]
&& boundingGreenDiff < tightestBoundingDiff[1]
&& boundingBlueDiff < tightestBoundingDiff[2]
&& boundingAlphaDiff < tightestBoundingDiff[3]) {
tightestBoundingDiff[0] = boundingRedDiff;
tightestBoundingDiff[1] = boundingGreenDiff;
tightestBoundingDiff[2] = boundingBlueDiff;
tightestBoundingDiff[3] = boundingAlphaDiff;
updatedTightnessBounds = true;
}
return updatedTightnessBounds;
}
static std::pair<std::array<int, 4>, std::array<int, 4>> boundingNeighbors(int index, std::span<uint8_t> bytes, const IntSize& size)
{
constexpr auto bytesPerPixel = 4U;
auto bufferSize = bytes.size_bytes();
auto pixelIndex = index / bytesPerPixel;
bool isInTopRow = pixelIndex < static_cast<size_t>(size.width());
bool isInBottomRow = pixelIndex > static_cast<size_t>((size.height() - 1) * size.width());
bool isInLeftColumn = !(pixelIndex % size.width());
bool isInRightColumn = (pixelIndex % size.width()) == static_cast<unsigned>(size.width()) - 1;
bool isInTopLeftCorner = isInTopRow && isInLeftColumn;
bool isInBottomLeftCorner = isInBottomRow && isInLeftColumn;
bool isInTopRightCorner = isInTopRow && isInRightColumn;
bool isInBotomRightCorner = isInBottomRow && isInRightColumn;
constexpr auto leftOffset = -bytesPerPixel;
constexpr auto rightOffset = bytesPerPixel;
const auto aboveOffset = -size.width() * bytesPerPixel;
const auto belowOffset = size.width() * bytesPerPixel;
const auto aboveLeftOffset = aboveOffset + leftOffset;
const auto aboveRightOffset = aboveOffset + rightOffset;
const auto belowLeftOffset = belowOffset + leftOffset;
const auto belowRightOffset = belowOffset + rightOffset;
const int leftIndex = index + leftOffset;
const int rightIndex = index + rightOffset;
const int aboveIndex = index + aboveOffset;
const int belowIndex = index + belowOffset;
const int aboveLeftIndex = index + aboveLeftOffset;
const int aboveRightIndex = index + aboveRightOffset;
const int belowLeftIndex = index + belowLeftOffset;
const int belowRightIndex = index + belowRightOffset;
const auto areColorsRelated = [&bytes, bufferSize](int index1, int index2, int index3) {
constexpr auto maxDistanceThreshold = 8;
if (!isIndexInBounds(bufferSize, index1) || !isIndexInBounds(bufferSize, index1 + 3))
return false;
if (!isIndexInBounds(bufferSize, index2) || !isIndexInBounds(bufferSize, index2 + 3))
return false;
if (!isIndexInBounds(bufferSize, index3) || !isIndexInBounds(bufferSize, index3 + 3))
return false;
bool isColorNearBoundingColor1 = std::abs(static_cast<int>(bytes[index1]) - static_cast<int>(bytes[index2])) <= maxDistanceThreshold
&& std::abs(static_cast<int>(bytes[index1 + 1]) - static_cast<int>(bytes[index2 + 1])) <= maxDistanceThreshold
&& std::abs(static_cast<int>(bytes[index1 + 2]) - static_cast<int>(bytes[index2 + 2])) <= maxDistanceThreshold
&& std::abs(static_cast<int>(bytes[index1 + 3]) - static_cast<int>(bytes[index2 + 3])) <= maxDistanceThreshold;
bool isColorNearBoundingColor2 = std::abs(static_cast<int>(bytes[index3]) - static_cast<int>(bytes[index2])) <= maxDistanceThreshold
&& std::abs(static_cast<int>(bytes[index3 + 1]) - static_cast<int>(bytes[index2 + 1])) <= maxDistanceThreshold
&& std::abs(static_cast<int>(bytes[index3 + 2]) - static_cast<int>(bytes[index2 + 2])) <= maxDistanceThreshold
&& std::abs(static_cast<int>(bytes[index3 + 3]) - static_cast<int>(bytes[index2 + 3])) <= maxDistanceThreshold;
return isColorNearBoundingColor1 || isColorNearBoundingColor2;
};
const auto compareColorsAndSetBounds = [&areColorsRelated](const auto& bytes, auto& tightestBoundingColors, auto& tightestBoundingDiff, auto colorIndex, auto neighborIndex1, auto neighborIndex2) {
if (areColorsRelated(neighborIndex1, colorIndex, neighborIndex2)) {
if (setTightnessBounds(bytes, tightestBoundingDiff, neighborIndex1, colorIndex, neighborIndex2)) {
if (WTF::allOf(tightestBoundingDiff, [](auto& item) { return !item; })) {
tightestBoundingColors = {
{ bytes[colorIndex], bytes[colorIndex + 1], bytes[colorIndex + 2], bytes[colorIndex + 3] },
{ bytes[colorIndex], bytes[colorIndex + 1], bytes[colorIndex + 2], bytes[colorIndex + 3] }
};
} else {
tightestBoundingColors = {
{ bytes[neighborIndex1], bytes[neighborIndex1 + 1], bytes[neighborIndex1 + 2], bytes[neighborIndex1 + 3] },
{ bytes[neighborIndex2], bytes[neighborIndex2 + 1], bytes[neighborIndex2 + 2], bytes[neighborIndex2 + 3] }
};
}
}
}
return tightestBoundingColors;
};
std::pair<std::array<int, 4>, std::array<int, 4>> tightestBoundingColors {
{ 0, 0, 0, 0 },
{ 255, 255, 255, 255 }
};
std::array<int, 4> tightestBoundingDiff { 255, 255, 255, 255 };
if (isInTopLeftCorner || isInBottomLeftCorner || isInTopRightCorner || isInBotomRightCorner)
return tightestBoundingColors;
if (isInTopRow || isInBottomRow)
return compareColorsAndSetBounds(bytes, tightestBoundingColors, tightestBoundingDiff, index, leftIndex, rightIndex);
if (isInLeftColumn || isInRightColumn)
return compareColorsAndSetBounds(bytes, tightestBoundingColors, tightestBoundingDiff, index, aboveIndex, belowIndex);
compareColorsAndSetBounds(bytes, tightestBoundingColors, tightestBoundingDiff, index, leftIndex, rightIndex);
compareColorsAndSetBounds(bytes, tightestBoundingColors, tightestBoundingDiff, index, aboveIndex, belowIndex);
compareColorsAndSetBounds(bytes, tightestBoundingColors, tightestBoundingDiff, index, aboveLeftIndex, belowRightIndex);
compareColorsAndSetBounds(bytes, tightestBoundingColors, tightestBoundingDiff, index, aboveRightIndex, belowLeftIndex);
return tightestBoundingColors;
}
void CanvasNoiseInjection::postProcessDirtyCanvasBuffer(ImageBuffer* imageBuffer, NoiseInjectionHashSalt salt, CanvasNoiseInjectionPostProcessArea postProcessArea)
{
if (m_postProcessDirtyRect.isEmpty() && postProcessArea == CanvasNoiseInjectionPostProcessArea::DirtyRect)
return;
if (!imageBuffer)
return;
auto dirtyRect = postProcessArea == CanvasNoiseInjectionPostProcessArea::DirtyRect ? m_postProcessDirtyRect : IntRect(IntPoint::zero(), imageBuffer->truncatedLogicalSize());
PixelBufferFormat format { AlphaPremultiplication::Unpremultiplied, PixelFormat::RGBA8, imageBuffer->colorSpace() };
auto pixelBuffer = imageBuffer->getPixelBuffer(format, dirtyRect);
if (!is<ByteArrayPixelBuffer>(pixelBuffer))
return;
if (postProcessPixelBufferResults(*pixelBuffer, salt)) {
imageBuffer->putPixelBuffer(*pixelBuffer, { IntPoint::zero(), dirtyRect.size() }, dirtyRect.location());
m_postProcessDirtyRect = { };
}
}
static std::pair<int, int> lowerAndUpperBound(int component1, int component2, int component3)
{
if (component1 <= component3) {
if (component1 == component2 || component2 == component3)
return { component2, component2 };
if (component1 <= component2 && component2 <= component3)
return { component1, component3 };
if (component1 >= component2 && component2 <= component3)
return { component2, component1 };
if (component1 <= component2 && component2 >= component3)
return { component3, component2 };
} else if (component1 > component3) {
if (component1 < component2 && component2 > component3)
return { component3, component1 };
if (component1 > component2 && component2 < component3)
return { component2, component3 };
if (component1 < component2 && component2 > component3)
return { component1, component2 };
}
return { component2, component2 };
}
static void adjustNeighborColorBounds(std::array<int, 4>& neighborColor1, const std::array<int, 4>& color, std::array<int, 4>& neighborColor2)
{
auto [redLowerBound, redUpperBound] = lowerAndUpperBound(neighborColor1[0], color[0], neighborColor2[0]);
auto [greenLowerBound, greenUpperBound] = lowerAndUpperBound(neighborColor1[1], color[1], neighborColor2[1]);
auto [blueLowerBound, blueUpperBound] = lowerAndUpperBound(neighborColor1[2], color[2], neighborColor2[2]);
auto [alphaLowerBound, alphaUpperBound] = lowerAndUpperBound(neighborColor1[3], color[3], neighborColor2[3]);
neighborColor1[0] = redLowerBound;
neighborColor2[0] = redUpperBound;
neighborColor1[1] = greenLowerBound;
neighborColor2[1] = greenUpperBound;
neighborColor1[2] = blueLowerBound;
neighborColor2[2] = blueUpperBound;
neighborColor1[3] = alphaLowerBound;
neighborColor2[3] = alphaUpperBound;
}
bool CanvasNoiseInjection::postProcessPixelBufferResults(PixelBuffer& pixelBuffer, NoiseInjectionHashSalt salt) const
{
ASSERT(pixelBuffer.format().pixelFormat == PixelFormat::RGBA8);
constexpr int bytesPerPixel = 4;
auto bytes = pixelBuffer.bytes();
bool wasPixelBufferModified { false };
// Salt value 0 is used for testing.
if (!salt)
return true;
for (size_t i = 0; i < bytes.size_bytes(); i += bytesPerPixel) {
auto& redChannel = bytes[i];
auto& greenChannel = bytes[i + 1];
auto& blueChannel = bytes[i + 2];
auto& alphaChannel = bytes[i + 3];
bool isBlack { !redChannel && !greenChannel && !blueChannel };
if (!alphaChannel)
continue;
const auto clampedColorComponentOffset = [](int colorComponentOffset, int originalComponentValue, int minValue, int maxValue) {
if (originalComponentValue > maxValue)
maxValue = 255;
if (originalComponentValue < minValue)
minValue = 0;
if (colorComponentOffset + originalComponentValue > maxValue)
colorComponentOffset = maxValue - originalComponentValue;
else if (colorComponentOffset + originalComponentValue < minValue)
colorComponentOffset = minValue - originalComponentValue;
return colorComponentOffset;
};
std::array<int, 4> lowerBoundColor { 0, 0, 0, 0 };
std::array<int, 4> upperBoundColor { 255, 255, 255, 255 };
auto [neighborColor1, neighborColor2] = boundingNeighbors(i, bytes, pixelBuffer.size());
// +/- 1 is roughly ~0.5% of the 255 max value.
// +/- 3 is roughly ~1% of the 255 max value.
int maxNoiseValue = 3;
if (neighborColor1 != neighborColor2 && neighborColor1 != lowerBoundColor && neighborColor2 != upperBoundColor) {
maxNoiseValue = 1;
adjustNeighborColorBounds(neighborColor1, { redChannel, greenChannel, blueChannel, alphaChannel }, neighborColor2);
}
lowerBoundColor = neighborColor1;
upperBoundColor = neighborColor2;
const uint64_t pixelHash = computeHash(salt, redChannel, greenChannel, blueChannel, alphaChannel);
auto noiseValue = static_cast<int8_t>(((pixelHash * 2 * maxNoiseValue) / std::numeric_limits<uint32_t>::max()) - maxNoiseValue);
// If alpha is non-zero and the color channels are zero, then only tweak the alpha channel's value;
if (isBlack)
alphaChannel += clampedColorComponentOffset(noiseValue, alphaChannel, lowerBoundColor[3], upperBoundColor[3]);
else {
// If alpha and any of the color channels are non-zero, then tweak all of the channels;
redChannel += clampedColorComponentOffset(noiseValue, redChannel, lowerBoundColor[0], upperBoundColor[0]);
greenChannel += clampedColorComponentOffset(noiseValue, greenChannel, lowerBoundColor[1], upperBoundColor[1]);
blueChannel += clampedColorComponentOffset(noiseValue, blueChannel, lowerBoundColor[2], upperBoundColor[2]);
alphaChannel += clampedColorComponentOffset(noiseValue, alphaChannel, lowerBoundColor[3], upperBoundColor[3]);
}
wasPixelBufferModified = true;
}
return wasPixelBufferModified;
}
} // namespace WebCore
|