1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
|
/*
* Copyright (C) 2022 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "FlexLayout.h"
#include "FlexFormattingContext.h"
#include "FlexFormattingUtils.h"
#include "FlexRect.h"
#include "InlineFormattingContext.h"
#include "RenderStyleSetters.h"
#include "StyleContentAlignmentData.h"
#include "StyleSelfAlignmentData.h"
#include <wtf/FixedVector.h>
#include <wtf/ListHashSet.h>
namespace WebCore {
namespace Layout {
struct FlexBaseAndHypotheticalMainSize {
LayoutUnit flexBase { 0.f };
LayoutUnit hypotheticalMainSize { 0.f };
};
struct PositionAndMargins {
LayoutUnit margin() const { return marginStart + marginEnd; }
LayoutUnit position;
LayoutUnit marginStart;
LayoutUnit marginEnd;
};
FlexLayout::FlexLayout(FlexFormattingContext& flexFormattingContext)
: m_flexFormattingContext(flexFormattingContext)
{
}
FlexLayout::LogicalFlexItemRects FlexLayout::layout(const ConstraintsForFlexContent& flexContainerConstraints, const LogicalFlexItems& flexItems)
{
// This follows https://www.w3.org/TR/css-flexbox-1/#layout-algorithm
SizeList flexItemsMainSizeList(flexItems.size());
SizeList flexItemsCrossSizeList(flexItems.size());
LinesCrossSizeList flexLinesCrossSizeList;
auto lineRanges = LineRanges { };
auto performContentSizing = [&] {
auto needsMainAxisLayout = true;
while (needsMainAxisLayout) {
auto performMainAxisSizing = [&] {
// 9.2. (#3) Determine the flex base size and hypothetical main size of each item
auto flexBaseAndHypotheticalMainSizeList = flexBaseAndHypotheticalMainSizeForFlexItems(flexItems, flexContainerConstraints.isSizedUnderMinMax());
// 9.2. (#4) Determine the main size of the flex container
auto flexContainerInnerMainSize = this->flexContainerInnerMainSize(flexContainerConstraints.mainAxis());
// 9.3. (#5) Collect flex items into flex lines
lineRanges = computeFlexLines(flexItems, flexContainerInnerMainSize, flexBaseAndHypotheticalMainSizeList);
// 9.3. (#6) Resolve the flexible lengths of all the flex items to find their used main size
flexItemsMainSizeList = computeMainSizeForFlexItems(flexItems, lineRanges, flexContainerInnerMainSize, flexBaseAndHypotheticalMainSizeList);
};
performMainAxisSizing();
auto performCrossAxisSizing = [&] {
// 9.4. (#7) Determine the hypothetical cross size of each item
auto hypotheticalCrossSizeList = hypotheticalCrossSizeForFlexItems(flexItems, flexItemsMainSizeList);
// 9.4. (#8) Calculate the cross size of each flex line
flexLinesCrossSizeList = crossSizeForFlexLines(lineRanges, flexContainerConstraints.crossAxis(), flexItems, hypotheticalCrossSizeList);
// 9.4. (#9) Handle 'align-content: stretch
stretchFlexLines(flexLinesCrossSizeList, lineRanges.size(), flexContainerConstraints.crossAxis().availableSize);
// 9.4. (#10) Collapse visibility:collapse items
auto collapsedContentNeedsSecondLayout = collapseNonVisibleFlexItems();
if (collapsedContentNeedsSecondLayout)
return;
// 9.4. (#11) Determine the used cross size of each flex item
flexItemsCrossSizeList = computeCrossSizeForFlexItems(flexItems, lineRanges, flexLinesCrossSizeList, hypotheticalCrossSizeList);
needsMainAxisLayout = false;
};
performCrossAxisSizing();
}
};
performContentSizing();
auto mainPositionAndMargins = PositionAndMarginsList { flexItems.size() };
auto crossPositionAndMargins = PositionAndMarginsList { flexItems.size() };
auto linesCrossPositionList = LinesCrossPositionList { };
auto performContentAlignment = [&] {
// 9.5. (#12) Main-Axis Alignment
mainPositionAndMargins = handleMainAxisAlignment(flexContainerInnerMainSize(flexContainerConstraints.mainAxis()), lineRanges, flexItems, flexItemsMainSizeList);
// 9.6. (#13 - #16) Cross-Axis Alignment
crossPositionAndMargins = handleCrossAxisAlignmentForFlexItems(flexItems, lineRanges, flexItemsCrossSizeList, flexLinesCrossSizeList);
linesCrossPositionList = handleCrossAxisAlignmentForFlexLines(flexContainerConstraints.crossAxis().availableSize, lineRanges, flexLinesCrossSizeList);
};
performContentAlignment();
auto computeFlexItemRects = [&] {
auto flexRects = LogicalFlexItemRects { flexItems.size() };
auto mainAxisGapValue = FlexFormattingUtils::mainAxisGapValue(flexContainer(), flexContainerConstraints.mainAxis().availableSize.value_or(0_lu));
auto crossAxisGapValue = FlexFormattingUtils::crossAxisGapValue(flexContainer(), flexContainerConstraints.crossAxis().availableSize.value_or(0_lu));
for (size_t lineIndex = 0; lineIndex < lineRanges.size(); ++lineIndex) {
auto lineRange = lineRanges[lineIndex];
for (auto flexItemIndex = lineRange.begin(); flexItemIndex < lineRange.end(); ++flexItemIndex) {
auto flexItemMainPosition = mainPositionAndMargins[flexItemIndex].position + (flexItemIndex - lineRange.begin()) * mainAxisGapValue;
auto flexItemCrossPosition = linesCrossPositionList[lineIndex] + crossPositionAndMargins[flexItemIndex].position + lineIndex * crossAxisGapValue;
flexRects[flexItemIndex] = {
{ flexItemMainPosition, flexItemCrossPosition, flexItemsMainSizeList[flexItemIndex], flexItemsCrossSizeList[flexItemIndex] },
{ mainPositionAndMargins[flexItemIndex].marginStart, mainPositionAndMargins[flexItemIndex].marginEnd }, { crossPositionAndMargins[flexItemIndex].marginStart, crossPositionAndMargins[flexItemIndex].marginEnd }
};
}
}
return flexRects;
};
return computeFlexItemRects();
}
FlexLayout::FlexBaseAndHypotheticalMainSizeList FlexLayout::flexBaseAndHypotheticalMainSizeForFlexItems(const LogicalFlexItems& flexItems, bool isSizedUnderMinMaxConstraints) const
{
auto flexBaseAndHypotheticalMainSizeList = FlexBaseAndHypotheticalMainSizeList { };
for (auto& flexItem : flexItems) {
// 3. Determine the flex base size and hypothetical main size of each item:
auto computedFlexBase = [&]() -> LayoutUnit {
// A. If the item has a definite used flex basis, that's the flex base size.
if (auto definiteFlexBase = flexItem.mainAxis().definiteFlexBasis)
return *definiteFlexBase;
// B. If the flex item has...
if (flexItem.hasAspectRatio() && flexItem.hasContentFlexBasis() && flexItem.crossAxis().definiteSize) {
// The flex base size is calculated from its inner cross size and the flex item's intrinsic aspect ratio.
ASSERT_NOT_IMPLEMENTED_YET();
return { };
}
// C. If the used flex basis is content or depends on its available space, and the flex container is being sized under
// a min-content or max-content constraint, size the item under that constraint
auto flexBasisContentOrAvailableSpaceDependent = flexItem.hasContentFlexBasis() || flexItem.hasAvailableSpaceDependentFlexBasis();
if (flexBasisContentOrAvailableSpaceDependent && isSizedUnderMinMaxConstraints) {
// Compute flex item's main size.
ASSERT_NOT_IMPLEMENTED_YET();
return { };
}
// D. If the used flex basis is content or depends on its available space, the available main size is infinite,
// and the flex item's inline axis is parallel to the main axis, lay the item out using the rules for a box in an orthogonal flow.
// The flex base size is the item's max-content main size.
if (flexBasisContentOrAvailableSpaceDependent && flexItem.isOrhogonal()) {
// Lay the item out using the rules for a box in an orthogonal flow. The flex base size is the item's max-content main size.
ASSERT_NOT_IMPLEMENTED_YET();
return { };
}
// E Otherwise, size the item into the available space using its used flex basis in place of its main size,
// treating a value of content as max-content. If a cross size is needed to determine the main size (e.g. when the flex item’s main size
// is in its block axis) and the flex item’s cross size is auto and not definite, in this calculation use fit-content as the flex item’s cross size.
// The flex base size is the item’s resulting main size.
if (flexItem.isOrhogonal() && !flexItem.crossAxis().definiteSize) {
ASSERT_NOT_IMPLEMENTED_YET();
return { };
}
return formattingUtils().usedMaxContentSizeInMainAxis(flexItem);
};
auto flexBaseSize = computedFlexBase();
// The hypothetical main size is the item's flex base size clamped according to its used min and max main sizes (and flooring the content box size at zero).
auto hypotheticalMainSize = std::max(formattingUtils().usedMinimumSizeInMainAxis(flexItem), flexBaseSize);
if (auto usedMaximumMainSize = formattingUtils().usedMaximumSizeInMainAxis(flexItem))
hypotheticalMainSize = std::min(*usedMaximumMainSize, hypotheticalMainSize);
flexBaseAndHypotheticalMainSizeList.append({ flexBaseSize, hypotheticalMainSize });
}
return flexBaseAndHypotheticalMainSizeList;
}
LayoutUnit FlexLayout::flexContainerInnerMainSize(const ConstraintsForFlexContent::AxisGeometry& mainAxisGeometry) const
{
// 4. Determine the main size of the flex container using the rules of the formatting context in which it participates.
// FIXME: above.
return mainAxisGeometry.availableSize.value_or(LayoutUnit::max());
}
static LayoutUnit outerMainSize(const LogicalFlexItem& flexItem, LayoutUnit mainSize, std::optional<LayoutUnit> usedMargin = { })
{
auto outerMainSize = usedMargin.value_or(flexItem.mainAxis().margin());
if (flexItem.isContentBoxBased())
outerMainSize += flexItem.mainAxis().borderAndPadding;
outerMainSize += mainSize;
return outerMainSize;
}
static LayoutUnit outerCrossSize(const LogicalFlexItem& flexItem, LayoutUnit crossSize, std::optional<LayoutUnit> usedMargin = { })
{
auto outerCrossSize = usedMargin.value_or(flexItem.crossAxis().margin());
if (flexItem.isContentBoxBased())
outerCrossSize += flexItem.crossAxis().borderAndPadding;
outerCrossSize += crossSize;
return outerCrossSize;
}
FlexLayout::LineRanges FlexLayout::computeFlexLines(const LogicalFlexItems& flexItems, LayoutUnit flexContainerInnerMainSize, const FlexBaseAndHypotheticalMainSizeList& flexBaseAndHypotheticalMainSizeList) const
{
// Collect flex items into flex lines:
// If the flex container is single-line, collect all the flex items into a single flex line.
// Otherwise, starting from the first uncollected item, collect consecutive items one by one until the first time that the next collected
// item would not fit into the flex container's inner main size.
// If the very first uncollected item wouldn't fit, collect just it into the line.
// For this step, the size of a flex item is its outer hypothetical main size. (Note: This can be negative.)
if (isSingleLineFlexContainer())
return { { 0, flexBaseAndHypotheticalMainSizeList.size() } };
auto mainAxisGapValue = FlexFormattingUtils::mainAxisGapValue(flexContainer(), flexContainerInnerMainSize);
auto lineRanges = LineRanges { };
size_t lastWrapIndex = 0;
auto flexItemsMainSize = LayoutUnit { };
for (size_t flexItemIndex = 0; flexItemIndex < flexBaseAndHypotheticalMainSizeList.size(); ++flexItemIndex) {
auto flexItemHypotheticalOuterMainSize = outerMainSize(flexItems[flexItemIndex], flexBaseAndHypotheticalMainSizeList[flexItemIndex].hypotheticalMainSize);
auto numberOfFlexItemsOnLine = flexItemIndex - lastWrapIndex;
auto mainAxisGapSize = mainAxisGapValue * numberOfFlexItemsOnLine;
if (!numberOfFlexItemsOnLine || flexItemsMainSize + flexItemHypotheticalOuterMainSize + mainAxisGapSize <= flexContainerInnerMainSize) {
flexItemsMainSize += flexItemHypotheticalOuterMainSize;
continue;
}
lineRanges.append({ lastWrapIndex, flexItemIndex });
flexItemsMainSize = flexItemHypotheticalOuterMainSize;
lastWrapIndex = flexItemIndex;
}
lineRanges.append({ lastWrapIndex, flexBaseAndHypotheticalMainSizeList.size() });
return lineRanges;
}
FlexLayout::SizeList FlexLayout::computeMainSizeForFlexItems(const LogicalFlexItems& flexItems, const LineRanges& lineRanges, LayoutUnit flexContainerInnerMainSize, const FlexBaseAndHypotheticalMainSizeList& flexBaseAndHypotheticalMainSizeList) const
{
SizeList mainSizeList(flexItems.size());
Vector<bool> isInflexibleItemList(flexItems.size(), false);
for (size_t lineIndex = 0; lineIndex < lineRanges.size(); ++lineIndex) {
auto lineRange = lineRanges[lineIndex];
auto nonFrozenSet = ListHashSet<size_t> { };
auto availableMainSpaceForLineContent = mainAxisAvailableSpaceForItemAlignment(flexContainerInnerMainSize, lineRange.distance());
// 1. Determine the used flex factor. Sum the outer hypothetical main sizes of all items on the line.
// If the sum is less than the flex container's inner main size, use the flex grow factor for the rest of this algorithm;
// otherwise, use the flex shrink factor.
auto shouldUseFlexGrowFactor = [&] {
auto hypotheticalOuterMainSizes = LayoutUnit { };
for (auto flexItemIndex = lineRange.begin(); flexItemIndex < lineRange.end(); ++flexItemIndex) {
auto flexItemHypotheticalOuterMainSize = outerMainSize(flexItems[flexItemIndex], flexBaseAndHypotheticalMainSizeList[flexItemIndex].hypotheticalMainSize);
hypotheticalOuterMainSizes += flexItemHypotheticalOuterMainSize;
}
return hypotheticalOuterMainSizes < availableMainSpaceForLineContent;
}();
// 2. Size inflexible items. Freeze, setting its target main size to its hypothetical main size.
// any item that has a flex factor of zero
// if using the flex grow factor: any item that has a flex base size greater than its hypothetical main size
// if using the flex shrink factor: any item that has a flex base size smaller than its hypothetical main size
for (auto flexItemIndex = lineRange.begin(); flexItemIndex < lineRange.end(); ++flexItemIndex) {
auto shouldFreeze = [&] {
if (!flexItems[flexItemIndex].growFactor() && !flexItems[flexItemIndex].shrinkFactor())
return true;
auto flexBaseAndHypotheticalMainSize = flexBaseAndHypotheticalMainSizeList[flexItemIndex];
if (shouldUseFlexGrowFactor && flexBaseAndHypotheticalMainSize.flexBase > flexBaseAndHypotheticalMainSize.hypotheticalMainSize)
return true;
if (!shouldUseFlexGrowFactor && flexBaseAndHypotheticalMainSize.flexBase < flexBaseAndHypotheticalMainSize.hypotheticalMainSize)
return true;
return false;
};
if (shouldFreeze()) {
mainSizeList[flexItemIndex] = flexBaseAndHypotheticalMainSizeList[flexItemIndex].hypotheticalMainSize;
isInflexibleItemList[flexItemIndex] = true;
continue;
}
nonFrozenSet.add(flexItemIndex);
}
// 3. Calculate initial free space. Sum the outer sizes of all items on the line, and subtract this from the flex container's inner main size.
// For frozen items, use their outer target main size; for other items, use their outer flex base size.
auto computedFreeSpace = [&] {
auto lineContentMainSize = LayoutUnit { };
for (auto flexItemIndex = lineRange.begin(); flexItemIndex < lineRange.end(); ++flexItemIndex) {
auto flexItemOuterMainSize = outerMainSize(flexItems[flexItemIndex], nonFrozenSet.contains(flexItemIndex) ? flexBaseAndHypotheticalMainSizeList[flexItemIndex].flexBase : mainSizeList[flexItemIndex]);
lineContentMainSize += flexItemOuterMainSize;
}
return availableMainSpaceForLineContent - lineContentMainSize;
};
auto initialFreeSpace = computedFreeSpace();
auto minimumViolationList = Vector<size_t> { };
auto maximumViolationList = Vector<size_t> { };
minimumViolationList.reserveInitialCapacity(flexItems.size());
maximumViolationList.reserveInitialCapacity(flexItems.size());
// 4. Loop:
while (true) {
// a. Check for flexible items. If all the flex items on the line are frozen, free space has been distributed; exit this loop.
if (nonFrozenSet.isEmpty())
break;
// b. Calculate the remaining free space as for initial free space, above. If the sum of the unfrozen flex items' flex factors
// is less than one, multiply the initial free space by this sum. If the magnitude of this value is less than the magnitude of the
// remaining free space, use this as the remaining free space.
auto freeSpace = computedFreeSpace();
auto adjustFreeSpaceWithFlexFactors = [&] {
auto totalFlexFactor = 0.f;
for (auto nonFrozenIndex : nonFrozenSet)
totalFlexFactor += shouldUseFlexGrowFactor ? flexItems[nonFrozenIndex].growFactor() : flexItems[nonFrozenIndex].shrinkFactor();
if (totalFlexFactor < 1) {
auto freeSpaceCandidate = LayoutUnit { initialFreeSpace * totalFlexFactor };
if (freeSpaceCandidate.abs() < freeSpace.abs())
freeSpace = freeSpaceCandidate;
}
};
adjustFreeSpaceWithFlexFactors();
// c. Distribute free space proportional to the flex factors.
auto usedTotalFactor = 0.f;
for (auto nonFrozenIndex : nonFrozenSet)
usedTotalFactor += shouldUseFlexGrowFactor ? flexItems[nonFrozenIndex].growFactor() : flexItems[nonFrozenIndex].shrinkFactor() * flexBaseAndHypotheticalMainSizeList[nonFrozenIndex].flexBase;
for (auto nonFrozenIndex : nonFrozenSet) {
if (!usedTotalFactor || std::isinf(usedTotalFactor)) {
mainSizeList[nonFrozenIndex] = flexBaseAndHypotheticalMainSizeList[nonFrozenIndex].flexBase;
continue;
}
if (shouldUseFlexGrowFactor) {
// If using the flex grow factor
// Find the ratio of the item's flex grow factor to the sum of the flex grow factors of all unfrozen items on the line.
// Set the item's target main size to its flex base size plus a fraction of the remaining free space proportional to the ratio.
auto growFactor = flexItems[nonFrozenIndex].growFactor() / usedTotalFactor;
mainSizeList[nonFrozenIndex] = flexBaseAndHypotheticalMainSizeList[nonFrozenIndex].flexBase + freeSpace * growFactor;
continue;
}
// If using the flex shrink factor
// For every unfrozen item on the line, multiply its flex shrink factor by its inner flex base size, and note this as its scaled flex shrink factor.
// Find the ratio of the item's scaled flex shrink factor to the sum of the scaled flex shrink factors of all unfrozen items on the line.
// Set the item's target main size to its flex base size minus a fraction of the absolute value of the remaining free space proportional to the ratio.
// Note this may result in a negative inner main size; it will be corrected in the next step.
auto flexBaseSize = flexBaseAndHypotheticalMainSizeList[nonFrozenIndex].flexBase;
auto scaledShrinkFactor = flexItems[nonFrozenIndex].shrinkFactor() * flexBaseSize;
auto shrinkFactor = scaledShrinkFactor / usedTotalFactor;
mainSizeList[nonFrozenIndex] = flexBaseSize - std::abs(freeSpace * shrinkFactor);
}
// d. Fix min/max violations. Clamp each non-frozen item's target main size by its used min and max main sizes and floor
// its content-box size at zero. If the item's target main size was made smaller by this, it's a max violation.
// If the item's target main size was made larger by this, it's a min violation.
auto totalViolation = LayoutUnit { };
minimumViolationList.shrink(0);
maximumViolationList.shrink(0);
for (auto nonFrozenIndex : nonFrozenSet) {
auto unclampedMainSize = mainSizeList[nonFrozenIndex];
auto& flexItem = flexItems[nonFrozenIndex];
auto clampedMainSize = std::max(formattingUtils().usedMinimumSizeInMainAxis(flexItem), unclampedMainSize);
if (auto usedMaximumMainSize = formattingUtils().usedMaximumSizeInMainAxis(flexItem))
clampedMainSize = std::min(*usedMaximumMainSize, clampedMainSize);
// FIXME: ...and floor its content-box size at zero
totalViolation += (clampedMainSize - unclampedMainSize);
if (clampedMainSize < unclampedMainSize)
maximumViolationList.append(nonFrozenIndex);
else if (clampedMainSize > unclampedMainSize)
minimumViolationList.append(nonFrozenIndex);
mainSizeList[nonFrozenIndex] = clampedMainSize;
}
// e. Freeze over-flexed items. The total violation is the sum of the adjustments from the previous step
// ∑(clamped size - unclamped size). If the total violation is:
// Zero : Freeze all items.
// Positive: Freeze all the items with min violations.
// Negative: Freeze all the items with max violations.
if (!totalViolation)
nonFrozenSet.clear();
else if (totalViolation > 0) {
for (auto minimimViolationIndex : minimumViolationList)
nonFrozenSet.remove(minimimViolationIndex);
} else {
for (auto maximumViolationIndex : maximumViolationList)
nonFrozenSet.remove(maximumViolationIndex);
}
}
}
return mainSizeList;
}
FlexLayout::SizeList FlexLayout::hypotheticalCrossSizeForFlexItems(const LogicalFlexItems& flexItems, const SizeList& flexItemsMainSizeList)
{
SizeList hypotheticalCrossSizeList(flexItems.size());
for (size_t flexItemIndex = 0; flexItemIndex < flexItems.size(); ++flexItemIndex)
hypotheticalCrossSizeList[flexItemIndex] = formattingUtils().usedSizeInCrossAxis(flexItems[flexItemIndex], flexItemsMainSizeList[flexItemIndex]);
return hypotheticalCrossSizeList;
}
FlexLayout::LinesCrossSizeList FlexLayout::crossSizeForFlexLines(const LineRanges& lineRanges, const ConstraintsForFlexContent::AxisGeometry& crossAxis, const LogicalFlexItems& flexItems, const SizeList& flexItemsHypotheticalCrossSizeList) const
{
LinesCrossSizeList flexLinesCrossSizeList(lineRanges.size());
// If the flex container is single-line and has a definite cross size, the cross size of the flex line is the flex container's inner cross size.
if (isSingleLineFlexContainer() && crossAxis.availableSize) {
ASSERT(flexLinesCrossSizeList.size() == 1);
flexLinesCrossSizeList[0] = *crossAxis.availableSize;
return flexLinesCrossSizeList;
}
for (size_t lineIndex = 0; lineIndex < lineRanges.size(); ++lineIndex) {
auto maximumAscent = LayoutUnit { };
auto maximumDescent = LayoutUnit { };
auto maximumHypotheticalOuterCrossSize = LayoutUnit { };
for (size_t flexItemIndex = lineRanges[lineIndex].begin(); flexItemIndex < lineRanges[lineIndex].end(); ++flexItemIndex) {
// Collect all the flex items whose inline-axis is parallel to the main-axis, whose align-self is baseline, and whose cross-axis margins are both non-auto.
auto& flexItem = flexItems[flexItemIndex];
if (!flexItem.isOrhogonal() && flexItem.style().alignSelf().position() == ItemPosition::Baseline && flexItem.crossAxis().hasNonAutoMargins()) {
// Find the largest of the distances between each item's baseline and its hypothetical outer cross-start edge,
// and the largest of the distances between each item's baseline and its hypothetical outer cross-end edge, and sum these two values.
maximumAscent = std::max(maximumAscent, flexItem.crossAxis().ascent);
maximumDescent = std::max(maximumDescent, flexItem.crossAxis().descent);
continue;
}
// Among all the items not collected by the previous step, find the largest outer hypothetical cross size.
auto flexItemOuterCrossSize = outerCrossSize(flexItem, flexItemsHypotheticalCrossSizeList[flexItemIndex]);
maximumHypotheticalOuterCrossSize = std::max(maximumHypotheticalOuterCrossSize, flexItemOuterCrossSize);
}
// The used cross-size of the flex line is the largest of the numbers found in the previous two steps and zero.
// If the flex container is single-line, then clamp the line's cross-size to be within the container's computed min and max cross sizes.
flexLinesCrossSizeList[lineIndex] = std::max(maximumHypotheticalOuterCrossSize, maximumAscent + maximumDescent);
if (isSingleLineFlexContainer()) {
auto minimumCrossSize = crossAxis.minimumSize.value_or(flexLinesCrossSizeList[lineIndex]);
auto maximumCrossSize = crossAxis.maximumSize.value_or(LayoutUnit::max());
flexLinesCrossSizeList[lineIndex] = std::min(maximumCrossSize, std::max(minimumCrossSize, flexLinesCrossSizeList[lineIndex]));
}
}
return flexLinesCrossSizeList;
}
void FlexLayout::stretchFlexLines(LinesCrossSizeList& flexLinesCrossSizeList, size_t numberOfLines, std::optional<LayoutUnit> crossAxisAvailableSpace) const
{
// Handle 'align-content: stretch'.
// If the flex container has a definite cross size, align-content is stretch, and the sum of the flex lines' cross sizes is less than the flex container's inner cross size,
// increase the cross size of each flex line by equal amounts such that the sum of their cross sizes exactly equals the flex container's inner cross size.
auto linesMayStretch = [&] {
auto alignContent = flexContainerStyle().alignContent();
if (alignContent.distribution() == ContentDistribution::Stretch)
return true;
return alignContent.distribution() == ContentDistribution::Default && alignContent.position() == ContentPosition::Normal;
};
if (!linesMayStretch() || !crossAxisAvailableSpace)
return;
auto linesCrossSize = [&] {
auto size = LayoutUnit { };
for (size_t lineIndex = 0; lineIndex < flexLinesCrossSizeList.size(); ++lineIndex)
size += flexLinesCrossSizeList[lineIndex];
return size;
}();
auto flexContainerUsedCrossSize = crossAxisAvailableSpaceForLineSizingAndAlignment(*crossAxisAvailableSpace, numberOfLines);
if (flexContainerUsedCrossSize <= linesCrossSize)
return;
auto extraSpace = (flexContainerUsedCrossSize - linesCrossSize) / numberOfLines;
for (size_t lineIndex = 0; lineIndex < flexLinesCrossSizeList.size(); ++lineIndex)
flexLinesCrossSizeList[lineIndex] += extraSpace;
}
bool FlexLayout::collapseNonVisibleFlexItems()
{
// Collapse visibility:collapse items. If any flex items have visibility: collapse,
// note the cross size of the line they're in as the item's strut size, and restart layout from the beginning.
// FIXME: Not supported yet.
return false;
}
FlexLayout::SizeList FlexLayout::computeCrossSizeForFlexItems(const LogicalFlexItems& flexItems, const LineRanges& lineRanges, const LinesCrossSizeList& flexLinesCrossSizeList, const SizeList& flexItemsHypotheticalCrossSizeList) const
{
SizeList crossSizeList(flexItems.size());
for (size_t lineIndex = 0; lineIndex < lineRanges.size(); ++lineIndex) {
for (auto flexItemIndex = lineRanges[lineIndex].begin(); flexItemIndex < lineRanges[lineIndex].end(); ++flexItemIndex) {
auto& flexItem = flexItems[flexItemIndex];
auto& crossAxis = flexItem.crossAxis();
auto& flexItemAlignSelf = flexItem.style().alignSelf();
auto alignValue = flexItemAlignSelf.position() != ItemPosition::Auto ? flexItemAlignSelf.position() : flexContainerStyle().alignItems().position();
// If a flex item has align-self: stretch, its computed cross size property is auto, and neither of its cross-axis margins are auto, the used outer cross size is the used cross size of its flex line,
// clamped according to the item's used min and max cross sizes. Otherwise, the used cross size is the item's hypothetical cross size.
if ((alignValue == ItemPosition::Stretch || alignValue == ItemPosition::Normal) && crossAxis.hasSizeAuto && crossAxis.hasNonAutoMargins()) {
auto stretchedInnerCrossSize = [&] {
auto stretchedInnerCrossSize = flexLinesCrossSizeList[lineIndex] - flexItems[flexItemIndex].crossAxis().margin();
if (flexItem.isContentBoxBased())
stretchedInnerCrossSize -= flexItem.crossAxis().borderAndPadding;
auto maximum = flexItem.crossAxis().maximumSize.value_or(stretchedInnerCrossSize);
auto minimum = flexItem.crossAxis().minimumSize.value_or(stretchedInnerCrossSize);
return std::min(maximum, std::max(minimum, stretchedInnerCrossSize));
};
crossSizeList[flexItemIndex] = stretchedInnerCrossSize();
// FIXME: This requires re-layout to get percentage-sized descendants updated.
} else
crossSizeList[flexItemIndex] = flexItemsHypotheticalCrossSizeList[flexItemIndex];
}
}
return crossSizeList;
}
FlexLayout::PositionAndMarginsList FlexLayout::handleMainAxisAlignment(LayoutUnit availableMainSpace, const LineRanges& lineRanges, const LogicalFlexItems& flexItems, const SizeList& flexItemsMainSizeList) const
{
// Distribute any remaining free space. For each flex line:
auto mainPositionAndMargins = PositionAndMarginsList { flexItems.size() };
for (auto lineRange : lineRanges) {
auto lineContentOuterMainSize = LayoutUnit { };
auto availableMainSpaceForLineContent = mainAxisAvailableSpaceForItemAlignment(availableMainSpace, lineRange.distance());
auto resolveMarginAuto = [&] {
// 1. If the remaining free space is positive and at least one main-axis margin on this line is auto, distribute the free space equally among these margins.
// Otherwise, set all auto margins to zero.
auto flexItemsWithMarginAuto = Vector<size_t> { };
size_t autoMarginCount = 0;
for (auto flexItemIndex = lineRange.begin(); flexItemIndex < lineRange.end(); ++flexItemIndex) {
auto& flexItem = flexItems[flexItemIndex];
auto marginStart = flexItem.mainAxis().marginStart;
auto marginEnd = flexItem.mainAxis().marginEnd;
if (!marginStart || !marginEnd) {
flexItemsWithMarginAuto.append(flexItemIndex);
if (!marginStart)
++autoMarginCount;
if (!marginEnd)
++autoMarginCount;
}
mainPositionAndMargins[flexItemIndex].marginStart = marginStart.value_or(0_lu);
mainPositionAndMargins[flexItemIndex].marginEnd = marginEnd.value_or(0_lu);
lineContentOuterMainSize += outerMainSize(flexItem, flexItemsMainSizeList[flexItemIndex], mainPositionAndMargins[flexItemIndex].margin());
}
auto spaceToDistrubute = availableMainSpaceForLineContent - lineContentOuterMainSize;
if (!autoMarginCount || spaceToDistrubute <= 0)
return;
lineContentOuterMainSize = availableMainSpaceForLineContent;
auto extraMarginSpace = spaceToDistrubute / autoMarginCount;
for (auto flexItemIndex : flexItemsWithMarginAuto) {
auto& flexItem = flexItems[flexItemIndex];
if (!flexItem.mainAxis().marginStart)
mainPositionAndMargins[flexItemIndex].marginStart = extraMarginSpace;
if (!flexItem.mainAxis().marginEnd)
mainPositionAndMargins[flexItemIndex].marginEnd = extraMarginSpace;
}
};
resolveMarginAuto();
auto& justifyContentValue = flexContainerStyle().justifyContent();
auto justifyContentDistribution = justifyContentValue.distribution();
auto justifyContentPosition = justifyContentValue.position();
auto setFallbackValuesIfApplicable = [&] {
auto itemCount = lineRange.distance();
auto hasOverflow = lineContentOuterMainSize > availableMainSpaceForLineContent;
if (!hasOverflow && itemCount > 1)
return;
switch (justifyContentDistribution) {
case ContentDistribution::SpaceBetween:
justifyContentPosition = hasOverflow ? ContentPosition::Start : ContentPosition::FlexStart;
break;
case ContentDistribution::SpaceEvenly:
case ContentDistribution::SpaceAround:
justifyContentPosition = hasOverflow ? ContentPosition::Start : ContentPosition::Center;
break;
default:
break;
}
justifyContentPosition = justifyContentValue.overflow() == OverflowAlignment::Safe && hasOverflow ? ContentPosition::Start : justifyContentPosition;
justifyContentDistribution = ContentDistribution::Default;
};
setFallbackValuesIfApplicable();
auto justifyContent = [&] {
// 2. Align the items along the main-axis per justify-content.
auto initialOffset = [&] {
// ContentDistribution::Default handles fallback to justifyContentPosition
if (justifyContentDistribution != ContentDistribution::Default) {
switch (justifyContentDistribution) {
case ContentDistribution::SpaceBetween:
return LayoutUnit { };
case ContentDistribution::SpaceAround:
return (availableMainSpaceForLineContent - lineContentOuterMainSize) / lineRange.distance() / 2;
case ContentDistribution::SpaceEvenly:
return (availableMainSpaceForLineContent - lineContentOuterMainSize) / (lineRange.distance() + 1);
default:
ASSERT_NOT_IMPLEMENTED_YET();
break;
}
}
switch (FlexFormattingUtils::logicalJustifyContentPosition(flexContainer(), justifyContentPosition)) {
case ContentPosition::Normal:
case ContentPosition::FlexStart:
return LayoutUnit { };
case ContentPosition::FlexEnd:
return availableMainSpaceForLineContent - lineContentOuterMainSize;
case ContentPosition::Center:
return availableMainSpaceForLineContent / 2 - lineContentOuterMainSize / 2;
case ContentPosition::Start:
if (FlexFormattingUtils::isMainReversedToContentDirection(flexContainer()))
return availableMainSpaceForLineContent - lineContentOuterMainSize;
return LayoutUnit { };
case ContentPosition::End:
if (FlexFormattingUtils::isMainReversedToContentDirection(flexContainer()))
return LayoutUnit { };
return availableMainSpaceForLineContent - lineContentOuterMainSize;
default:
ASSERT_NOT_IMPLEMENTED_YET();
break;
}
ASSERT_NOT_REACHED();
return LayoutUnit { };
};
auto gapBetweenItems = [&] {
switch (justifyContentDistribution) {
case ContentDistribution::Default:
return LayoutUnit { };
case ContentDistribution::SpaceBetween:
return std::max(0_lu, availableMainSpaceForLineContent - lineContentOuterMainSize) / (lineRange.distance() - 1);
case ContentDistribution::SpaceAround:
return std::max(0_lu, availableMainSpaceForLineContent - lineContentOuterMainSize) / lineRange.distance();
case ContentDistribution::SpaceEvenly:
return std::max(0_lu, availableMainSpaceForLineContent - lineContentOuterMainSize) / (lineRange.distance() + 1);
default:
ASSERT_NOT_IMPLEMENTED_YET();
break;
}
ASSERT_NOT_REACHED();
return LayoutUnit { };
};
auto flexItemOuterEnd = [&](auto flexItemIndex) {
auto flexIteOuterMainSize = outerMainSize(flexItems[flexItemIndex], flexItemsMainSizeList[flexItemIndex], mainPositionAndMargins[flexItemIndex].margin());
// Note that position here means border box position.
auto flexItemEnd = flexIteOuterMainSize - mainPositionAndMargins[flexItemIndex].marginStart;
return mainPositionAndMargins[flexItemIndex].position + flexItemEnd;
};
auto startIndex = lineRange.begin();
mainPositionAndMargins[startIndex].position = initialOffset() + mainPositionAndMargins[startIndex].marginStart;
auto previousFlexItemOuterEnd = flexItemOuterEnd(startIndex);
auto gap = gapBetweenItems();
for (auto index = startIndex + 1; index < lineRange.end(); ++index) {
mainPositionAndMargins[index].position = previousFlexItemOuterEnd + gap + mainPositionAndMargins[index].marginStart;
previousFlexItemOuterEnd = flexItemOuterEnd(index);
}
};
justifyContent();
}
return mainPositionAndMargins;
}
FlexLayout::PositionAndMarginsList FlexLayout::handleCrossAxisAlignmentForFlexItems(const LogicalFlexItems& flexItems, const LineRanges& lineRanges, const SizeList& flexItemsCrossSizeList, const LinesCrossSizeList& flexLinesCrossSizeList) const
{
auto crossPositionAndMargins = PositionAndMarginsList { flexItems.size() };
for (size_t lineIndex = 0; lineIndex < lineRanges.size(); ++lineIndex) {
auto lineRange = lineRanges[lineIndex];
auto resolveMarginAuto = [&] {
for (auto flexItemIndex = lineRange.begin(); flexItemIndex < lineRange.end(); ++flexItemIndex) {
auto& flexItem = flexItems[flexItemIndex];
auto marginStart = flexItem.crossAxis().marginStart;
auto marginEnd = flexItem.crossAxis().marginEnd;
// Resolve cross-axis auto margins. If a flex item has auto cross-axis margins:
if (!marginStart || !marginEnd) {
auto flexItemOuterCrossSize = outerCrossSize(flexItem, flexItemsCrossSizeList[flexItemIndex]);
auto extraCrossSpace = flexLinesCrossSizeList[lineIndex] - flexItemOuterCrossSize;
// If its outer cross size (treating those auto margins as zero) is less than the cross size of its flex line, distribute
// the difference in those sizes equally to the auto margins.
// Otherwise, if the block-start or inline-start margin (whichever is in the cross axis) is auto, set it to zero.
// Set the opposite margin so that the outer cross size of the item equals the cross size of its flex line.
if (extraCrossSpace > 0) {
if (!marginStart && !marginEnd) {
marginStart = extraCrossSpace / 2;
marginEnd = extraCrossSpace / 2;
} else if (!marginStart)
marginStart = extraCrossSpace;
else
marginEnd = extraCrossSpace;
} else {
auto marginCrossSpace = flexLinesCrossSizeList[lineIndex] - flexItemOuterCrossSize;
auto setMargins = [&](auto startValue, auto endValue) {
marginStart = startValue;
marginEnd = endValue;
};
!marginStart ? setMargins(0_lu, marginCrossSpace) : setMargins(marginCrossSpace, 0_lu);
}
}
crossPositionAndMargins[flexItemIndex].marginStart = *marginStart;
crossPositionAndMargins[flexItemIndex].marginEnd = *marginEnd;
}
};
resolveMarginAuto();
auto alignSelf = [&] {
// Align all flex items along the cross-axis per align-self, if neither of the item's cross-axis margins are auto.
for (auto flexItemIndex = lineRange.begin(); flexItemIndex < lineRange.end(); ++flexItemIndex) {
auto& flexItem = flexItems[flexItemIndex];
auto flexItemOuterCrossSize = outerCrossSize(flexItem, flexItemsCrossSizeList[flexItemIndex], crossPositionAndMargins[flexItemIndex].margin());
auto flexItemOuterCrossPosition = LayoutUnit { };
auto& flexItemAlign = flexItem.style().alignSelf().position() != ItemPosition::Auto ? flexItem.style().alignSelf() : flexContainerStyle().alignItems();
auto alignSelfPosition = flexItemAlign.position();
auto setFallbackValuesIfApplicable = [&] {
if (flexItemOuterCrossSize > flexLinesCrossSizeList[lineIndex] && flexItemAlign.overflow() == OverflowAlignment::Safe)
alignSelfPosition = ItemPosition::FlexStart;
};
setFallbackValuesIfApplicable();
switch (alignSelfPosition) {
case ItemPosition::Stretch:
case ItemPosition::Normal:
// This is taken care of at 9.4.11 see computeCrossSizeForFlexItems.
flexItemOuterCrossPosition = { };
break;
case ItemPosition::Center:
flexItemOuterCrossPosition = flexLinesCrossSizeList[lineIndex] / 2 - flexItemOuterCrossSize / 2;
break;
case ItemPosition::Start:
case ItemPosition::SelfStart:
case ItemPosition::FlexStart:
flexItemOuterCrossPosition = { };
break;
case ItemPosition::End:
case ItemPosition::SelfEnd:
case ItemPosition::FlexEnd:
flexItemOuterCrossPosition = flexLinesCrossSizeList[lineIndex] - flexItemOuterCrossSize;
break;
default:
ASSERT_NOT_IMPLEMENTED_YET();
break;
}
crossPositionAndMargins[flexItemIndex].position = flexItemOuterCrossPosition + crossPositionAndMargins[flexItemIndex].marginStart;
}
};
alignSelf();
}
return crossPositionAndMargins;
}
FlexLayout::LinesCrossPositionList FlexLayout::handleCrossAxisAlignmentForFlexLines(std::optional<LayoutUnit> crossAxisAvailableSpace, const LineRanges& lineRanges, LinesCrossSizeList& flexLinesCrossSizeList) const
{
// If the cross size property is a definite size, use that, clamped by the used min and max cross sizes of the flex container.
// Otherwise, use the sum of the flex lines' cross sizes, clamped by the used min and max cross sizes of the flex container.
auto flexLinesCrossSize = [&] {
auto linesCrossSize = LayoutUnit { };
for (auto crossSize : flexLinesCrossSizeList)
linesCrossSize += crossSize;
return linesCrossSize;
}();
auto isSingleLineFlexContainer = this->isSingleLineFlexContainer() || lineRanges.size() == 1;
auto flexContainerUsedCrossSize = crossAxisAvailableSpaceForLineSizingAndAlignment(crossAxisAvailableSpace.value_or(0_lu), lineRanges.size());
// Align all flex lines per align-content.
auto distributableCrossSpace = flexContainerUsedCrossSize - flexLinesCrossSize;
auto initialOffset = [&]() -> LayoutUnit {
auto& alignContentValue = flexContainerStyle().alignContent();
auto alignContentPosition = alignContentValue.position();
auto alignContentDistribution = alignContentValue.distribution();
auto setFallbackValuesIfApplicable = [&] {
auto hasOverflow = distributableCrossSpace < 0;
if (!hasOverflow && !isSingleLineFlexContainer)
return;
switch (alignContentDistribution) {
case ContentDistribution::SpaceBetween:
alignContentPosition = hasOverflow ? ContentPosition::Start : ContentPosition::FlexStart;
break;
case ContentDistribution::SpaceEvenly:
case ContentDistribution::SpaceAround:
alignContentPosition = hasOverflow ? ContentPosition::Start : ContentPosition::Center;
break;
case ContentDistribution::Stretch:
alignContentPosition = ContentPosition::FlexStart;
break;
default:
break;
}
alignContentPosition = alignContentValue.overflow() == OverflowAlignment::Safe && hasOverflow ? ContentPosition::Start : alignContentPosition;
alignContentDistribution = ContentDistribution::Default;
};
setFallbackValuesIfApplicable();
auto flipStartEndContentPositionIfApplicable = [&] {
auto isWrapReversed = FlexFormattingUtils::areFlexLinesReversedInCrossAxis(flexContainer());
if (alignContentPosition == ContentPosition::Start)
alignContentPosition = isWrapReversed ? ContentPosition::FlexEnd : ContentPosition::FlexStart;
else if (alignContentPosition == ContentPosition::End)
alignContentPosition = isWrapReversed ? ContentPosition::FlexStart : ContentPosition::FlexEnd;
};
flipStartEndContentPositionIfApplicable();
switch (alignContentPosition) {
case ContentPosition::FlexStart:
return { };
case ContentPosition::Center:
return flexContainerUsedCrossSize / 2 - flexLinesCrossSize / 2;
case ContentPosition::FlexEnd:
return flexContainerUsedCrossSize - flexLinesCrossSize;
default:
switch (alignContentDistribution) {
case ContentDistribution::Default:
return { };
case ContentDistribution::SpaceBetween:
case ContentDistribution::Stretch:
return { };
case ContentDistribution::SpaceAround:
return distributableCrossSpace / lineRanges.size() / 2;
case ContentDistribution::SpaceEvenly:
return distributableCrossSpace / (lineRanges.size() + 1);
default:
ASSERT_NOT_REACHED();
return { };
}
}
};
LinesCrossPositionList linesCrossPositionList(lineRanges.size());
linesCrossPositionList[0] = initialOffset();
if (isSingleLineFlexContainer)
return linesCrossPositionList;
auto gap = [&]() -> LayoutUnit {
if (distributableCrossSpace <= 0)
return { };
switch (flexContainerStyle().alignContent().distribution()) {
case ContentDistribution::SpaceBetween:
return distributableCrossSpace / (lineRanges.size() - 1);
case ContentDistribution::SpaceAround:
return distributableCrossSpace / lineRanges.size();
case ContentDistribution::Stretch: {
// Lines stretch to take up the remaining space. If the leftover free-space is negative,
// this value is identical to flex-start. Otherwise, the free-space is split equally between all of the lines,
// increasing their cross size.
auto extraCrossSpaceForEachLine = distributableCrossSpace / flexLinesCrossSizeList.size();
for (size_t lineIndex = 0; lineIndex < flexLinesCrossSizeList.size(); ++lineIndex)
flexLinesCrossSizeList[lineIndex] += extraCrossSpaceForEachLine;
return { };
}
case ContentDistribution::SpaceEvenly:
return distributableCrossSpace / (lineRanges.size() + 1);
default:
return { };
}
}();
for (size_t lineIndex = 1; lineIndex < lineRanges.size(); ++lineIndex)
linesCrossPositionList[lineIndex] = (linesCrossPositionList[lineIndex - 1] + flexLinesCrossSizeList[lineIndex - 1]) + gap;
return linesCrossPositionList;
}
LayoutUnit FlexLayout::mainAxisAvailableSpaceForItemAlignment(LayoutUnit mainAxisAvailableSpace, size_t numberOfFlexItems) const
{
if (numberOfFlexItems == 1)
return mainAxisAvailableSpace;
return mainAxisAvailableSpace - (FlexFormattingUtils::mainAxisGapValue(flexContainer(), mainAxisAvailableSpace) * (numberOfFlexItems - 1));
}
LayoutUnit FlexLayout::crossAxisAvailableSpaceForLineSizingAndAlignment(LayoutUnit crossAxisAvailableSpace, size_t numberOfFlexLines) const
{
if (numberOfFlexLines == 1)
return crossAxisAvailableSpace;
return crossAxisAvailableSpace - (FlexFormattingUtils::crossAxisGapValue(flexContainer(), crossAxisAvailableSpace) * (numberOfFlexLines - 1));
}
const ElementBox& FlexLayout::flexContainer() const
{
return m_flexFormattingContext.root();
}
const FlexFormattingContext& FlexLayout::formattingContext() const
{
return m_flexFormattingContext;
}
const FlexFormattingUtils& FlexLayout::formattingUtils() const
{
return formattingContext().formattingUtils();
}
}
}
|