File: TableFormattingContext.cpp

package info (click to toggle)
webkit2gtk 2.48.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 429,764 kB
  • sloc: cpp: 3,697,587; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,295; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (565 lines) | stat: -rw-r--r-- 30,475 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
/*
 * Copyright (C) 2019 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"
#include "TableFormattingContext.h"

#include "BlockFormattingState.h"
#include "LayoutBox.h"
#include "LayoutBoxGeometry.h"
#include "LayoutChildIterator.h"
#include "LayoutContext.h"
#include "LayoutInitialContainingBlock.h"
#include "PlacedFloats.h"
#include "RenderStyleInlines.h"
#include "TableFormattingConstraints.h"
#include "TableFormattingState.h"
#include <wtf/TZoneMallocInlines.h>

namespace WebCore {
namespace Layout {

WTF_MAKE_TZONE_OR_ISO_ALLOCATED_IMPL(TableFormattingContext);

// https://www.w3.org/TR/css-tables-3/#table-layout-algorithm
TableFormattingContext::TableFormattingContext(const ElementBox& formattingContextRoot, TableFormattingState& tableFormattingState)
    : FormattingContext(formattingContextRoot, tableFormattingState.layoutState())
    , m_tableFormattingState(tableFormattingState)
    , m_tableFormattingGeometry(*this)
    , m_tableFormattingQuirks(*this)
{
}

void TableFormattingContext::layoutInFlowContent(const ConstraintsForInFlowContent& constraints)
{
    auto availableHorizontalSpace = constraints.horizontal().logicalWidth;
    auto availableVerticalSpace = downcast<ConstraintsForTableContent>(constraints).availableVerticalSpaceForContent();
    // 1. Compute width and height for the grid.
    computeAndDistributeExtraSpace(availableHorizontalSpace, availableVerticalSpace);
    // 2. Finalize cells.
    setUsedGeometryForCells(availableHorizontalSpace, availableVerticalSpace);
    // 3. Finalize rows.
    setUsedGeometryForRows(availableHorizontalSpace);
    // 4. Finalize sections.
    setUsedGeometryForSections(constraints);
}

LayoutUnit TableFormattingContext::usedContentHeight() const
{
    // Table has to have some section content, at least one <tbody>.
    auto top = BoxGeometry::marginBoxRect(geometryForBox(*root().firstInFlowChild())).top();
    auto bottom = BoxGeometry::marginBoxRect(geometryForBox(*root().lastInFlowChild())).bottom();
    return bottom - top;
}

void TableFormattingContext::setUsedGeometryForCells(LayoutUnit availableHorizontalSpace, std::optional<LayoutUnit> availableVerticalSpace)
{
    auto& grid = formattingState().tableGrid();
    auto& columnList = grid.columns().list();
    auto& rowList = grid.rows().list();
    auto& formattingGeometry = this->formattingGeometry();
    // Final table cell layout. At this point all percentage values can be resolved.
    auto sectionOffset = LayoutUnit { };
    auto* currentSection = &rowList.first().box().parent();
    for (auto& cell : grid.cells()) {
        auto& cellBox = cell->box();
        auto& cellBoxGeometry = formattingState().boxGeometry(cellBox);
        auto& section = rowList[cell->startRow()].box().parent();
        if (&section != currentSection) {
            currentSection = &section;
            // While the grid is a continuous flow of rows, in the display tree they are relative to their sections.
            sectionOffset = rowList[cell->startRow()].logicalTop();
        }
        // Internal table elements do not have margins.
        cellBoxGeometry.setHorizontalMargin({ });
        cellBoxGeometry.setVerticalMargin({ });

        cellBoxGeometry.setBorder(formattingGeometry.computedCellBorder(*cell));
        cellBoxGeometry.setPadding(formattingGeometry.computedPadding(cellBox, availableHorizontalSpace));
        cellBoxGeometry.setTop(rowList[cell->startRow()].logicalTop() - sectionOffset);
        cellBoxGeometry.setLeft(columnList[cell->startColumn()].usedLogicalLeft());
        cellBoxGeometry.setContentBoxWidth(formattingGeometry.horizontalSpaceForCellContent(*cell));

        if (cellBox.hasInFlowOrFloatingChild()) {
            // FIXME: This should probably be part of the invalidation state to indicate when we re-layout the cell multiple times as part of the multi-pass table algorithm.
            auto& placedFloatsForCellContent = layoutState().ensureBlockFormattingState(cellBox).placedFloats();
            placedFloatsForCellContent.clear();
            LayoutContext::createFormattingContext(cellBox, layoutState())->layoutInFlowContent(formattingGeometry.constraintsForInFlowContent(cellBox));
        }
        cellBoxGeometry.setContentBoxHeight(formattingGeometry.verticalSpaceForCellContent(*cell, availableVerticalSpace));

        auto computeIntrinsicVerticalPaddingForCell = [&] {
            auto cellLogicalHeight = rowList[cell->startRow()].logicalHeight();
            for (size_t rowIndex = cell->startRow() + 1; rowIndex < cell->endRow(); ++rowIndex)
                cellLogicalHeight += rowList[rowIndex].logicalHeight();
            cellLogicalHeight += (cell->rowSpan() - 1) * grid.verticalSpacing();
            // Intrinsic padding is the extra padding for the cell box when it is shorter than the row. Cell boxes have to
            // fill the available vertical space
            // e.g <td height=100px></td><td height=1px></td>
            // the second <td> ends up being 100px tall too with the extra intrinsic padding.

            // FIXME: Find out if it is ok to use the regular padding here to align the content box inside a tall cell or we need to
            // use some kind of intrinsic padding similar to RenderTableCell.
            auto paddingTop = cellBoxGeometry.paddingBefore();
            auto paddingBottom = cellBoxGeometry.paddingAfter();
            auto intrinsicPaddingTop = LayoutUnit { };
            auto intrinsicPaddingBottom = LayoutUnit { };

            switch (cellBox.style().verticalAlign()) {
            case VerticalAlign::Middle: {
                auto intrinsicVerticalPadding = std::max(0_lu, cellLogicalHeight - cellBoxGeometry.verticalMarginBorderAndPadding() - cellBoxGeometry.contentBoxHeight());
                intrinsicPaddingTop = intrinsicVerticalPadding / 2;
                intrinsicPaddingBottom = intrinsicVerticalPadding / 2;
                break;
            }
            case VerticalAlign::Baseline: {
                auto rowBaseline = LayoutUnit { rowList[cell->startRow()].baseline() };
                auto cellBaseline = LayoutUnit { cell->baseline() };
                intrinsicPaddingTop = std::max(0_lu, rowBaseline - cellBaseline - cellBoxGeometry.borderBefore());
                intrinsicPaddingBottom = std::max(0_lu, cellLogicalHeight - cellBoxGeometry.verticalMarginBorderAndPadding() - intrinsicPaddingTop - cellBoxGeometry.contentBoxHeight());
                break;
            }
            default:
                ASSERT_NOT_IMPLEMENTED_YET();
                break;
            }
            if (intrinsicPaddingTop && cellBox.hasInFlowOrFloatingChild()) {
                auto adjustCellContentWithInstrinsicPaddingBefore = [&] {
                    // Child boxes (and runs) are always in the coordinate system of the containing block's border box.
                    // The content box (where the child content lives) is inside the padding box, which is inside the border box.
                    // In order to compute the child box top/left position, we need to know both the padding and the border offsets.
                    // Normally by the time we start positioning the child content, we already have computed borders and padding for the containing block.
                    // This is different with table cells where the final padding offset depends on the content height as we use
                    // the padding box to vertically align the table cell content.
                    auto& formattingState = layoutState().formattingStateForFormattingContext(cellBox);
                    for (auto* child = cellBox.firstInFlowOrFloatingChild(); child; child = child->nextInFlowOrFloatingSibling()) {
                        if (child->isInlineTextBox())
                            continue;
                        formattingState.boxGeometry(*child).moveVertically(intrinsicPaddingTop);
                    }
                    if (cellBox.establishesInlineFormattingContext()) {
                        // FIXME: Adjust inline display content when applicable.
                        ASSERT_NOT_IMPLEMENTED_YET();
                    }
                };
                adjustCellContentWithInstrinsicPaddingBefore();
            }
            cellBoxGeometry.setVerticalPadding(BoxGeometry::VerticalEdges { paddingTop + intrinsicPaddingTop, paddingBottom + intrinsicPaddingBottom });
        };
        computeIntrinsicVerticalPaddingForCell();
    }
}

void TableFormattingContext::setUsedGeometryForRows(LayoutUnit availableHorizontalSpace)
{
    auto& grid = formattingState().tableGrid();
    auto& rows = grid.rows().list();

    auto rowLogicalTop = grid.verticalSpacing();
    const ElementBox* previousRow = nullptr;
    for (size_t rowIndex = 0; rowIndex < rows.size(); ++rowIndex) {
        auto& row = rows[rowIndex];
        auto& rowBox = row.box();
        auto& rowBoxGeometry = formattingState().boxGeometry(rowBox);

        rowBoxGeometry.setPadding(formattingGeometry().computedPadding(rowBox, availableHorizontalSpace));
        // Internal table elements do not have margins.
        rowBoxGeometry.setHorizontalMargin({ });
        rowBoxGeometry.setVerticalMargin({ });

        auto computedRowBorder = [&] {
            auto border = formattingGeometry().computedBorder(rowBox);
            if (!grid.collapsedBorder())
                return border;
            // Border collapsing delegates borders to table/cells.
            border.horizontal = { };
            if (!rowIndex)
                border.vertical.before = { };
            if (rowIndex == rows.size() - 1)
                border.vertical.after = { };
            return border;
        }();
        if (computedRowBorder.height() > row.logicalHeight()) {
            // FIXME: This is an odd quirk when the row border overflows the row.
            // We don't paint row borders so it does not matter too much, but if we don't
            // set this fake border value, than we either end up with a negative content box
            // or with a wide frame box.
            // If it happens to cause issues in the display tree, we could also consider
            // a special frame box override, where padding box + border != frame box.
            computedRowBorder.vertical.before = { };
            computedRowBorder.vertical.after = { };
        }
        rowBoxGeometry.setContentBoxHeight(row.logicalHeight() - computedRowBorder.height());

        auto rowLogicalWidth = grid.columns().logicalWidth() + 2 * grid.horizontalSpacing();
        if (computedRowBorder.width() > rowLogicalWidth) {
            // See comment above.
            computedRowBorder.horizontal.start = { };
            computedRowBorder.horizontal.end = { };
        }
        rowBoxGeometry.setContentBoxWidth(rowLogicalWidth - computedRowBorder.width());
        rowBoxGeometry.setBorder(computedRowBorder);

        if (previousRow && &previousRow->parent() != &rowBox.parent()) {
            // This row is in a different section.
            rowLogicalTop = { };
        }
        rowBoxGeometry.setTop(rowLogicalTop);
        rowBoxGeometry.setLeft({ });

        rowLogicalTop += row.logicalHeight() + grid.verticalSpacing();
        previousRow = &rowBox;
    }

    auto& columns = grid.columns();
    Vector<InlineLayoutUnit> rowBaselines(rows.size(), 0);
    // Now that cells are laid out, let's compute the row baselines.
    for (size_t rowIndex = 0; rowIndex < rows.size(); ++rowIndex) {
        for (size_t columnIndex = 0; columnIndex < columns.size(); ++columnIndex) {
            auto& slot = *grid.slot({ columnIndex, rowIndex });
            if (slot.isRowSpanned())
                continue;
            if (slot.hasRowSpan())
                continue;
            auto& cell = slot.cell();
            rowBaselines[rowIndex] = std::max(rowBaselines[rowIndex], cell.baseline());
        }
    }
    for (size_t rowIndex = 0; rowIndex < rows.size(); ++rowIndex)
        rows[rowIndex].setBaseline(rowBaselines[rowIndex]);
}

void TableFormattingContext::setUsedGeometryForSections(const ConstraintsForInFlowContent& constraints)
{
    auto& grid = formattingState().tableGrid();
    auto& tableBox = root();
    auto sectionWidth = grid.columns().logicalWidth() + 2 * grid.horizontalSpacing();
    auto logicalTop = constraints.logicalTop();
    auto verticalSpacing = grid.verticalSpacing();
    auto paddingBefore = std::optional<LayoutUnit> { verticalSpacing };
    auto paddingAfter = verticalSpacing;
    for (auto& sectionBox : childrenOfType<ElementBox>(tableBox)) {
        auto& sectionBoxGeometry = formattingState().boxGeometry(sectionBox);
        // Section borders are either collapsed or ignored.
        sectionBoxGeometry.setBorder({ });
        // Use fake vertical padding to space out the sections.
        sectionBoxGeometry.setPadding(BoxGeometry::Edges { { }, { paddingBefore.value_or(0_lu), paddingAfter } });
        paddingBefore = std::nullopt;
        // Internal table elements do not have margins.
        sectionBoxGeometry.setHorizontalMargin({ });
        sectionBoxGeometry.setVerticalMargin({ });

        sectionBoxGeometry.setContentBoxWidth(sectionWidth);
        auto sectionContentHeight = LayoutUnit { };
        size_t rowCount = 0;
        for (auto& rowBox : childrenOfType<ElementBox>(sectionBox)) {
            sectionContentHeight += geometryForBox(rowBox).borderBoxHeight();
            ++rowCount;
        }
        sectionContentHeight += verticalSpacing * (rowCount - 1);
        sectionBoxGeometry.setContentBoxHeight(sectionContentHeight);
        sectionBoxGeometry.setLeft(constraints.horizontal().logicalLeft);
        sectionBoxGeometry.setTop(logicalTop);

        logicalTop += sectionBoxGeometry.borderBoxHeight();
    }
}

IntrinsicWidthConstraints TableFormattingContext::computedIntrinsicWidthConstraints()
{
    ASSERT(!root().isSizeContainmentBox());
    // Tables have a slightly different concept of shrink to fit. It's really only different with non-auto "width" values, where
    // a generic shrink-to fit block level box like a float box would be just sized to the computed value of "width", tables
    // can actually be stretched way over.
    auto& grid = formattingState().tableGrid();
    if (auto computedWidthConstraints = grid.widthConstraints())
        return *computedWidthConstraints;

    // Compute the minimum/maximum width of each column.
    auto computedWidthConstraints = computedPreferredWidthForColumns();
    grid.setWidthConstraints(computedWidthConstraints);
    return computedWidthConstraints;
}

IntrinsicWidthConstraints TableFormattingContext::computedPreferredWidthForColumns()
{
    auto& formattingState = this->formattingState();
    auto& grid = formattingState.tableGrid();
    ASSERT(!grid.widthConstraints());

    // Column preferred width computation as follows:
    // 1. Collect fixed column widths set by <colgroup>'s and <col>s
    // 2. Collect each cells' width constraints and adjust fixed width column values.
    // 3. Find the min/max width for each columns using the cell constraints and the <col> fixed widths but ignore column spans.
    // 4. Distribute column spanning cells min/max widths.
    // 5. Add them all up and return the computed min/max widths.
    // 2. Collect the fixed width <col>s.
    auto& columnList = grid.columns().list();
    auto& formattingGeometry = this->formattingGeometry();
    auto collectColsFixedWidth = [&] {
        for (auto& column : columnList) {
            auto fixedWidth = [&] () -> std::optional<LayoutUnit> {
                auto* columnBox = column.box();
                if (!columnBox) {
                    // Anonymous columns don't have associated layout boxes and can't have fixed col size.
                    return { };
                }
                if (auto width = columnBox->columnWidth())
                    return width;
                return formattingGeometry.computedColumnWidth(*columnBox);
            }();
        if (fixedWidth)
            column.setComputedLogicalWidth({ *fixedWidth, LengthType::Fixed });
        }
    };
    collectColsFixedWidth();

    auto hasColumnWithPercentWidth = false;
    auto hasColumnWithFixedWidth = false;
    Vector<std::optional<LayoutUnit>> maximumFixedColumnWidths(columnList.size());
    Vector<std::optional<float>> maximumPercentColumnWidths(columnList.size());

    auto collectCellsIntrinsicWidthConstraints = [&] {
        for (auto& cell : grid.cells()) {
            auto& cellBox = cell->box();
            ASSERT(cellBox.establishesBlockFormattingContext());

            auto intrinsicWidth = formattingState.intrinsicWidthConstraintsForBox(cellBox);
            if (!intrinsicWidth) {
                intrinsicWidth = formattingGeometry.intrinsicWidthConstraintsForCellContent(*cell);
                formattingState.setIntrinsicWidthConstraintsForBox(cellBox, *intrinsicWidth);
            }
            auto cellPosition = cell->position();
            auto& cellStyle = cellBox.style();
            // Expand it with border and padding.
            auto horizontalBorderAndPaddingWidth = formattingGeometry.computedCellBorder(*cell).width()
                + formattingGeometry.fixedValue(cellStyle.paddingLeft()).value_or(0)
                + formattingGeometry.fixedValue(cellStyle.paddingRight()).value_or(0);
            intrinsicWidth->expand(horizontalBorderAndPaddingWidth);
            // Spanner cells put their intrinsic widths on the initial slots.
            grid.slot(cellPosition)->setWidthConstraints(*intrinsicWidth);

            auto cellLogicalWidth = cellStyle.logicalWidth();
            auto columnIndex = cellPosition.column;
            switch (cellLogicalWidth.type()) {
            case LengthType::Fixed: {
                auto fixedWidth = LayoutUnit { cellLogicalWidth.value() } + horizontalBorderAndPaddingWidth;
                maximumFixedColumnWidths[columnIndex] = std::max(maximumFixedColumnWidths[columnIndex].value_or(0_lu), fixedWidth);
                hasColumnWithFixedWidth = true;
                break;
            }
            case LengthType::Percent: {
                maximumPercentColumnWidths[columnIndex] = std::max(maximumPercentColumnWidths[columnIndex].value_or(0.f), cellLogicalWidth.percent());
                hasColumnWithPercentWidth = true;
                break;
            }
            case LengthType::Relative:
                ASSERT_NOT_IMPLEMENTED_YET();
                break;
            default:
                break;
            }
        }
    };
    collectCellsIntrinsicWidthConstraints();

    Vector<IntrinsicWidthConstraints> columnIntrinsicWidths(columnList.size());
    Vector<SlotPosition> spanningCellPositionList;
    size_t numberOfActualColumns = 0;
    auto computeColumnsIntrinsicWidthConstraints = [&] {
        // 3. Collect he min/max width for each column but ignore column spans for now.
        for (size_t columnIndex = 0; columnIndex < columnList.size(); ++columnIndex) {
            auto columnHasNonSpannedCell = false;
            for (size_t rowIndex = 0; rowIndex < grid.rows().size(); ++rowIndex) {
                auto& slot = *grid.slot({ columnIndex, rowIndex });
                if (slot.isColumnSpanned())
                    continue;
                columnHasNonSpannedCell = true;
                if (slot.hasColumnSpan()) {
                    spanningCellPositionList.append({ columnIndex, rowIndex });
                    continue;
                }
                auto widthConstraints = slot.widthConstraints();
                if (auto fixedColumnWidth = maximumFixedColumnWidths[columnIndex])
                    widthConstraints.maximum = std::max(*fixedColumnWidth, widthConstraints.minimum);

                columnIntrinsicWidths[columnIndex].minimum = std::max(widthConstraints.minimum, columnIntrinsicWidths[columnIndex].minimum);
                columnIntrinsicWidths[columnIndex].maximum = std::max(widthConstraints.maximum, columnIntrinsicWidths[columnIndex].maximum);
            }
            if (columnHasNonSpannedCell)
                ++numberOfActualColumns;
        }
    };
    computeColumnsIntrinsicWidthConstraints();

    auto resolveSpanningCells = [&] {
        // 4. Distribute the spanning min/max widths.
        for (auto spanningCellPosition : spanningCellPositionList) {
            auto& slot = *grid.slot(spanningCellPosition);
            auto& cell = slot.cell();
            ASSERT(slot.hasColumnSpan());
            auto widthConstraintsToDistribute = slot.widthConstraints();
            for (size_t columnSpanIndex = cell.startColumn(); columnSpanIndex < cell.endColumn(); ++columnSpanIndex)
                widthConstraintsToDistribute -= columnIntrinsicWidths[columnSpanIndex];
            // <table style="border-spacing: 50px"><tr><td colspan=2>long long text</td></tr><tr><td>lo</td><td>xt</td><tr></table>
            // [long long text]
            // [lo]        [xt]
            // While it looks like the spanning cell has to distribute all its spanning width, the border-spacing takes most of the space and
            // no distribution is needed at all.
            widthConstraintsToDistribute -= (cell.columnSpan() - 1) * grid.horizontalSpacing();
            // FIXME: Check if fixed width columns should be skipped here.
            widthConstraintsToDistribute.minimum = std::max(LayoutUnit { }, widthConstraintsToDistribute.minimum / cell.columnSpan());
            widthConstraintsToDistribute.maximum = std::max(LayoutUnit { }, widthConstraintsToDistribute.maximum / cell.columnSpan());
            if (widthConstraintsToDistribute.minimum || widthConstraintsToDistribute.maximum) {
                for (size_t columnSpanIndex = cell.startColumn(); columnSpanIndex < cell.endColumn(); ++columnSpanIndex)
                    columnIntrinsicWidths[columnSpanIndex] += widthConstraintsToDistribute;
            }
        }
    };
    resolveSpanningCells();

    // 5. The table min/max widths is just the accumulated column constraints with the percent adjustment.
    auto tableWidthConstraints = IntrinsicWidthConstraints { };
    for (auto& columnIntrinsicWidth : columnIntrinsicWidths)
        tableWidthConstraints += columnIntrinsicWidth;

    auto adjustColumnsWithPercentAndFixedWidthValues = [&] {
        // 6. Adjust the table max width with the percent column values if applicable.
        if (!hasColumnWithFixedWidth && !hasColumnWithPercentWidth)
            return;

        if (hasColumnWithFixedWidth && !hasColumnWithPercentWidth) {
            for (size_t columnIndex = 0; columnIndex < columnList.size(); ++columnIndex) {
                if (auto fixedWidth = maximumFixedColumnWidths[columnIndex])
                    columnList[columnIndex].setComputedLogicalWidth({ *fixedWidth, LengthType::Fixed });
            }
            return;
        } 

        auto remainingPercent = 100.0f;
        auto percentMaximumWidth = LayoutUnit { };
        auto nonPercentColumnsWidth = LayoutUnit { };
        // Resolve the percent values as follows
        // - the percent value is resolved against the column maximum width (fixed or content based) as if the max value represented the percentage value
        //   e.g 50% with the maximum width of 100px produces a resolved width of 200px for the column.
        // - find the largest resolved value across the columns and used that as the maximum width for the percent based columns.
        // - Compute the non-percent based columns width by using the remaining percent value (e.g 50% and 10% columns would leave 40% for the rest of the columns)
        for (size_t columnIndex = 0; columnIndex < columnList.size(); ++columnIndex) {
            auto nonPercentColumnWidth = columnIntrinsicWidths[columnIndex].maximum;
            if (auto fixedWidth = maximumFixedColumnWidths[columnIndex]) {
                columnList[columnIndex].setComputedLogicalWidth({ *fixedWidth, LengthType::Fixed });
                nonPercentColumnWidth = std::max(nonPercentColumnWidth, *fixedWidth);
            }
            if (!maximumPercentColumnWidths[columnIndex]) {
                nonPercentColumnsWidth += nonPercentColumnWidth;
                continue;
            }
            auto percent = std::min(*maximumPercentColumnWidths[columnIndex], remainingPercent);
            columnList[columnIndex].setComputedLogicalWidth({ percent, LengthType::Percent });
            percentMaximumWidth = std::max(percentMaximumWidth, LayoutUnit { nonPercentColumnWidth * 100.0f / percent });
            remainingPercent -= percent;
        }
        ASSERT(remainingPercent >= 0.f);
        auto adjustedMaximumWidth = percentMaximumWidth;
        if (remainingPercent)
            adjustedMaximumWidth = std::max(adjustedMaximumWidth, LayoutUnit { nonPercentColumnsWidth * 100.0f / remainingPercent });
        else {
            // When the table has percent width column(s) and they add up to (or over) 100%, the maximum width is computed to
            // only constrained by the available horizontal width.
            // This is a very odd transition of going from 99.9% to 100%, where 99.9% computes normally (see above)
            // but as soon as we hit the 100% mark, the table suddenly stretches all the way to the horizontal available space.
            // It may very well be an ancient bug we need to support (it maps to the epsilon value in AutoTableLayout::computeIntrinsicLogicalWidths which is to avoid division by zero).
            adjustedMaximumWidth = LayoutUnit::max();
        }
        tableWidthConstraints.maximum = std::max(tableWidthConstraints.maximum, adjustedMaximumWidth);
    };
    adjustColumnsWithPercentAndFixedWidthValues();

    // Expand the preferred width with leading and trailing cell spacing (note that column spanners count as one cell).
    tableWidthConstraints += (numberOfActualColumns + 1) * grid.horizontalSpacing();
    return tableWidthConstraints;
}

void TableFormattingContext::computeAndDistributeExtraSpace(LayoutUnit availableHorizontalSpace, std::optional<LayoutUnit> availableVerticalSpace)
{
    // Compute and balance the column and row spaces.
    auto& grid = formattingState().tableGrid();
    auto& columns = grid.columns().list();
    auto tableLayout = this->tableLayout();

    // Columns first.
    auto distributedHorizontalSpaces = tableLayout.distributedHorizontalSpace(availableHorizontalSpace);
    ASSERT(distributedHorizontalSpaces.size() == columns.size());
    auto columnLogicalLeft = grid.horizontalSpacing();
    for (size_t columnIndex = 0; columnIndex < columns.size(); ++columnIndex) {
        auto& column = columns[columnIndex];
        column.setUsedLogicalLeft(columnLogicalLeft);
        column.setUsedLogicalWidth(distributedHorizontalSpaces[columnIndex]);
        columnLogicalLeft += distributedHorizontalSpaces[columnIndex] + grid.horizontalSpacing();
    }

    auto& formattingGeometry = this->formattingGeometry();
    // Rows second.
    auto& rows = grid.rows().list();
    for (size_t rowIndex = 0; rowIndex < rows.size(); ++rowIndex) {
        for (size_t columnIndex = 0; columnIndex < columns.size(); ++columnIndex) {
            auto& slot = *grid.slot({ columnIndex, rowIndex });
            if (slot.isRowSpanned())
                continue;
            auto layoutCellContent = [&](auto& cell) {
                auto& cellBox = cell.box();
                auto& cellBoxGeometry = formattingState().boxGeometry(cellBox);
                cellBoxGeometry.setBorder(formattingGeometry.computedCellBorder(cell));
                cellBoxGeometry.setPadding(formattingGeometry.computedPadding(cellBox, availableHorizontalSpace));
                cellBoxGeometry.setContentBoxWidth(formattingGeometry.horizontalSpaceForCellContent(cell));

                if (cellBox.hasInFlowOrFloatingChild())
                    LayoutContext::createFormattingContext(cellBox, layoutState())->layoutInFlowContent(formattingGeometry.constraintsForInFlowContent(cellBox));
                cellBoxGeometry.setContentBoxHeight(formattingGeometry.verticalSpaceForCellContent(cell, availableVerticalSpace));
            };
            layoutCellContent(slot.cell());
            if (slot.hasRowSpan())
                continue;
            // The minimum height of a row (without spanning-related height distribution) is defined as the height of an hypothetical
            // linebox containing the cells originating in the row.
            auto& cell = slot.cell();
            cell.setBaseline(formattingGeometry.usedBaselineForCell(cell.box()));
        }
    }

    auto distributedVerticalSpaces = tableLayout.distributedVerticalSpace(availableVerticalSpace);
    ASSERT(distributedVerticalSpaces.size() == rows.size());
    auto rowLogicalTop = grid.verticalSpacing();
    for (size_t rowIndex = 0; rowIndex < rows.size(); ++rowIndex) {
        auto& row = rows[rowIndex];
        row.setLogicalHeight(distributedVerticalSpaces[rowIndex]);
        row.setLogicalTop(rowLogicalTop);
        rowLogicalTop += distributedVerticalSpaces[rowIndex] + grid.verticalSpacing();
    }
}

}
}