File: TableLayout.cpp

package info (click to toggle)
webkit2gtk 2.48.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 429,764 kB
  • sloc: cpp: 3,697,587; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,295; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (460 lines) | stat: -rw-r--r-- 23,372 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
/*
 * Copyright (C) 2020 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"
#include "TableFormattingContext.h"

#include "LayoutBox.h"
#include "LayoutBoxGeometry.h"
#include "RenderStyleInlines.h"
#include "TableFormattingGeometry.h"

namespace WebCore {
namespace Layout {

// https://www.w3.org/TR/css-tables-3/#table-layout-algorithm
TableFormattingContext::TableLayout::TableLayout(const TableFormattingContext& formattingContext, const TableGrid& grid)
    : m_formattingContext(formattingContext)
    , m_grid(grid)
{
}

struct ColumnSpan {
    static size_t hasSpan(const TableGrid::Slot& slot) { return slot.hasColumnSpan(); }
    static size_t isSpanned(const TableGrid::Slot& slot) { return slot.isColumnSpanned(); }

    static size_t spanCount(const TableGridCell& cell) { return cell.columnSpan(); }
    static size_t startSpan(const TableGridCell& cell) { return cell.startColumn(); }
    static size_t endSpan(const TableGridCell& cell) { return cell.endColumn(); }

    static size_t index(size_t columnIndex, size_t /*rowIndex*/) { return columnIndex; }
    static size_t size(const TableGrid& grid) { return grid.columns().size(); }

    static LayoutUnit spacing(const TableGrid& grid) { return grid.horizontalSpacing(); }
};

struct RowSpan {
    static size_t hasSpan(const TableGrid::Slot& slot) { return slot.hasRowSpan(); }
    static size_t isSpanned(const TableGrid::Slot& slot) { return slot.isRowSpanned(); }

    static size_t spanCount(const TableGridCell& cell) { return cell.rowSpan(); }
    static size_t startSpan(const TableGridCell& cell) { return cell.startRow(); }
    static size_t endSpan(const TableGridCell& cell) { return cell.endRow(); }

    static size_t index(size_t /*columnIndex*/, size_t rowIndex) { return rowIndex; }
    static size_t size(const TableGrid& grid) { return grid.rows().size(); }

    static LayoutUnit spacing(const TableGrid& grid) { return grid.verticalSpacing(); }
};

struct GridSpace {
    bool isEmpty() const { return !preferredSize; }

    enum class Type {
        Percent,
        Fixed,
        Relative,
        Auto
    };
    Type type { Type::Auto };
    // Preferred width/height for column/row we start the distribution with (usually the minimum content width).
    float preferredSize { 0 };
    // The base space value for the distribution computation e.g [ 9 ] [ 1 ] values for 2 columns in the table means that if
    // we've go 100px flexible space to distribute, 90px and 10px go to the columns respectively.
    float flexBase { 0 };
    float minimumSize { 0 };
};

inline static GridSpace& operator-(GridSpace& a, const GridSpace& b)
{
    a.preferredSize = std::max(0.0f, a.preferredSize - b.preferredSize);
    a.flexBase = std::max(0.0f, a.flexBase - b.flexBase);
    return a;
}

inline static GridSpace& operator+=(GridSpace& a, const GridSpace& b)
{
    a.preferredSize += b.preferredSize;
    a.flexBase += b.flexBase;
    return a;
}

inline static GridSpace& operator-=(GridSpace& a, const GridSpace& b)
{
    return a - b;
}

inline static GridSpace& operator/(GridSpace& a, unsigned value)
{
    a.preferredSize /= value;
    a.flexBase /= value;
    return a;
}

template <typename SpanType>
static Vector<LayoutUnit> distributeAvailableSpace(const TableGrid& grid, LayoutUnit availableSpace, NOESCAPE const Function<GridSpace(const TableGrid::Slot&, size_t)>& slotSpace)
{
    auto& columns = grid.columns();
    auto& rows = grid.rows();
    Vector<std::optional<GridSpace>> resolvedItems(SpanType::size(grid));
    auto collectNonSpanningCells = [&] {
        // 1. Collect the non-spanning spaces first. They are used for the final distribution as well as for distributing the spanning space.
        for (size_t columnIndex = 0; columnIndex < columns.size(); ++columnIndex) {
            for (size_t rowIndex = 0; rowIndex < rows.size(); ++rowIndex) {
                auto& slot = *grid.slot({ columnIndex, rowIndex });
                if (SpanType::hasSpan(slot) || SpanType::isSpanned(slot))
                    continue;
                auto index = SpanType::index(columnIndex, rowIndex);
                auto currentSpace = slotSpace(slot, index);
                if (!resolvedItems[index]) {
                    resolvedItems[index] = currentSpace;
                    continue;
                }
                auto& resolvedItem = resolvedItems[index];
                // FIXME: Add support for mixed column/row types e.g. first row first column is fixed, while second row first column is percent.
                ASSERT(resolvedItem->type == currentSpace.type);
                resolvedItem->preferredSize = std::max(resolvedItem->preferredSize, currentSpace.preferredSize);
                resolvedItem->flexBase = std::max(resolvedItem->flexBase, currentSpace.flexBase);
            }
        }
    };
    collectNonSpanningCells();

    auto collectAndDistributeSpanningCells = [&] {
        // 2. Collect the spanning cells.
        struct SpanningCell {
            SlotPosition position;
            GridSpace unresolvedSpace;
        };
        Vector<SpanningCell> spanningCells;
        for (size_t rowIndex = 0; rowIndex < rows.size(); ++rowIndex) {
            for (size_t columnIndex = 0; columnIndex < columns.size(); ++columnIndex) {
                auto& slot = *grid.slot({ columnIndex, rowIndex });
                if (SpanType::hasSpan(slot))
                    spanningCells.append({ { columnIndex, rowIndex }, slotSpace(slot, SpanType::index(columnIndex, rowIndex)) });
            }
        }
        // We need these spanning cells in the order of the number of columns/rows they span so that
        // we can resolve overlapping spans starting with the shorter ones e.g.
        // <td colspan=4>#a</td><td>#b</td>
        // <td colspan=2>#c</td><td colspan=3>#d</td>
        std::sort(spanningCells.begin(), spanningCells.end(), [&] (auto& a, auto& b) {
            return SpanType::spanCount(grid.slot(a.position)->cell()) < SpanType::spanCount(grid.slot(b.position)->cell());
        });

        // 3. Distribute the spanning cells' mimimum space across the columns/rows using the non-spanning spaces.
        // e.g. [ 1 ][ 5 ][ 1 ]
        //      [    9   ][ 1 ]
        // The initial widths are: [ 2 ][ 7 ][ 1 ]
        for (auto spanningCell : spanningCells) {
            auto& cell = grid.slot(spanningCell.position)->cell();
            auto unresolvedSpanningSpace = spanningCell.unresolvedSpace;
            if (!resolvedItems[SpanType::startSpan(cell)] || !resolvedItems[SpanType::endSpan(cell) - 1]) {
                // <td colspan=4>#a</td><td>#b</td>
                // <td colspan=2>#c</td><td colspan=3>#d</td>
                // Unresolved columns are: 1 2 3 4
                // 1. Take colspan=2 (shortest span) and resolve column 1 and 2
                // 2. Take colspan=3 and resolve column 3 and 4 (5 is resolved because it already has a non-spanning cell).
                // 3. colspan=4 needs no resolving because all the spanned columns (1 2 3 4) have already been resolved.
                auto unresolvedColumnCount = cell.columnSpan();
                for (auto spanIndex = SpanType::startSpan(cell); spanIndex < SpanType::endSpan(cell); ++spanIndex) {
                    if (!resolvedItems[spanIndex])
                        continue;
                    ASSERT(unresolvedColumnCount);
                    --unresolvedColumnCount;
                    unresolvedSpanningSpace -= *resolvedItems[spanIndex];
                }
                ASSERT(unresolvedColumnCount);
                auto equalSpaceForSpannedColumns = unresolvedSpanningSpace / unresolvedColumnCount;
                for (auto spanIndex = SpanType::startSpan(cell); spanIndex < SpanType::endSpan(cell); ++spanIndex) {
                    if (resolvedItems[spanIndex])
                        continue;
                    resolvedItems[spanIndex] = equalSpaceForSpannedColumns;
                }
            } else {
                // 1. Collect the non-spanning resolved spaces.
                // 2. Distribute the extra space among the spanned columns/rows based on the resolved space values.
                // e.g. spanning width: [   9   ]. Resolved widths for the spanned columns: [ 1 ] [ 2 ]
                // New resolved widths: [ 3 ] [ 6 ].
                auto resolvedSpanningSpace = GridSpace { };
                for (auto spanIndex = SpanType::startSpan(cell); spanIndex < SpanType::endSpan(cell); ++spanIndex)
                    resolvedSpanningSpace += *resolvedItems[spanIndex];
                if (resolvedSpanningSpace.preferredSize >= unresolvedSpanningSpace.preferredSize) {
                    // The spanning cell fits the spanned columns/rows just fine. Nothing to distribute.
                    continue;
                }
                auto spacing = SpanType::spacing(grid) * (SpanType::spanCount(cell) - 1);
                auto spaceToDistribute = unresolvedSpanningSpace - GridSpace { { }, spacing, spacing } - resolvedSpanningSpace;
                if (!spaceToDistribute.isEmpty()) {
                    auto columnsFlexBase = spaceToDistribute.flexBase / resolvedSpanningSpace.flexBase;
                    for (auto spanIndex = SpanType::startSpan(cell); spanIndex < SpanType::endSpan(cell); ++spanIndex)
                        *resolvedItems[spanIndex] += GridSpace { resolvedItems[spanIndex]->type, resolvedItems[spanIndex]->preferredSize * columnsFlexBase, resolvedItems[spanIndex]->flexBase * columnsFlexBase };
                }
            }
        }
    };
    collectAndDistributeSpanningCells();

    Vector<LayoutUnit> distributedSpaces(resolvedItems.size());
    auto spaceToDistribute = 0.f;
    auto computeSpaceToDistribute = [&] {
        // 4. Distribute the extra space using the final resolved sizes.
        spaceToDistribute = availableSpace - (resolvedItems.size() + 1) * SpanType::spacing(grid);
        auto adjustabledSpace = GridSpace { };
        for (auto& resolvedItem : resolvedItems) {
            ASSERT(resolvedItem);
            adjustabledSpace += *resolvedItem;
        }
        spaceToDistribute -= adjustabledSpace.preferredSize;
    };
    computeSpaceToDistribute();

    // Let's start with the preferred size for each column.
    for (size_t columnIndex = 0; columnIndex < resolvedItems.size(); ++columnIndex)
        distributedSpaces[columnIndex] = LayoutUnit { resolvedItems[columnIndex]->preferredSize };

    auto distributeSpace = [&] {
        if (!spaceToDistribute)
            return;
        // Setup the priority lists. We use these when expanding/shrinking slots.
        Vector<size_t> autoColumnIndexes;
        Vector<size_t> relativeColumnIndexes;
        Vector<size_t> fixedColumnIndexes;
        Vector<size_t> percentColumnIndexes;

        for (size_t columnIndex = 0; columnIndex < resolvedItems.size(); ++columnIndex) {
            switch (resolvedItems[columnIndex]->type) {
            case GridSpace::Type::Percent:
                percentColumnIndexes.append(columnIndex);
                break;
            case GridSpace::Type::Fixed:
                fixedColumnIndexes.append(columnIndex);
                break;
            case GridSpace::Type::Relative:
                relativeColumnIndexes.append(columnIndex);
                break;
            case GridSpace::Type::Auto:
                autoColumnIndexes.append(columnIndex);
                break;
            default:
                ASSERT_NOT_REACHED();
                break;
            }
        }

        if (spaceToDistribute > 0) {
            // Each column can get some extra space.
            auto hasSpaceToDistribute = [&] {
                ASSERT(spaceToDistribute > -LayoutUnit::epsilon());
                return spaceToDistribute > LayoutUnit::epsilon();
            };

            auto expandSpace = [&](const auto& columnIndexes) {
                auto adjustabledSpace = GridSpace { };
                for (auto& columnIndex : columnIndexes)
                    adjustabledSpace += *resolvedItems[columnIndex];

                auto columnsFlexBase = adjustabledSpace.flexBase ? spaceToDistribute / adjustabledSpace.flexBase : 0.f;
                for (auto& columnIndex : columnIndexes) {
                    auto extraSpace = columnsFlexBase * resolvedItems[columnIndex]->flexBase;
                    distributedSpaces[columnIndex] += LayoutUnit { extraSpace };
                    spaceToDistribute -= extraSpace;
                    if (!hasSpaceToDistribute())
                        return;
                }
            };
            // We distribute the extra space among columns in the priority order as follows:
            expandSpace(fixedColumnIndexes);
            if (hasSpaceToDistribute())
                expandSpace(percentColumnIndexes);
            if (hasSpaceToDistribute())
                expandSpace(relativeColumnIndexes);
            if (hasSpaceToDistribute())
                expandSpace(autoColumnIndexes);
            ASSERT(!hasSpaceToDistribute());
            return;
        }
        // Can't accommodate the preferred width. Let's use the priority list to shrink columns.
        auto spaceNeeded = -spaceToDistribute;

        auto needsMoreSpace = [&] {
            ASSERT(spaceNeeded > -LayoutUnit::epsilon());
            return spaceNeeded > LayoutUnit::epsilon();
        };

        auto shrinkSpace = [&](const auto& columnIndexes) {
            auto adjustabledSpace = GridSpace { };
            for (auto& columnIndex : columnIndexes)
                adjustabledSpace += *resolvedItems[columnIndex];

            auto columnsFlexBase = adjustabledSpace.flexBase ? spaceNeeded / adjustabledSpace.flexBase : 0.f;
            for (auto& columnIndex : columnIndexes) {
                auto& resolvedItem = *resolvedItems[columnIndex];
                auto spaceToRemove = std::min(resolvedItem.preferredSize - resolvedItem.minimumSize, columnsFlexBase * resolvedItem.flexBase);
                spaceToRemove = std::min(spaceToRemove, spaceNeeded);
                distributedSpaces[columnIndex] -= spaceToRemove;
                spaceNeeded -= spaceToRemove;
                if (!needsMoreSpace())
                    return;
            }
        };
        shrinkSpace(autoColumnIndexes);
        if (needsMoreSpace())
            shrinkSpace(relativeColumnIndexes);
        if (needsMoreSpace())
            shrinkSpace(fixedColumnIndexes);
        if (needsMoreSpace())
            shrinkSpace(percentColumnIndexes);
        ASSERT(!needsMoreSpace());
    };
    distributeSpace();

    return distributedSpaces;
}

TableFormattingContext::TableLayout::DistributedSpaces TableFormattingContext::TableLayout::distributedHorizontalSpace(LayoutUnit availableHorizontalSpace)
{
    auto hasEnoughAvailableSpaceForMaximumWidth = availableHorizontalSpace >= m_grid.widthConstraints()->maximum;
    return distributeAvailableSpace<ColumnSpan>(m_grid, availableHorizontalSpace, [&] (const TableGrid::Slot& slot, size_t columnIndex) {
        auto& column = m_grid.columns().list()[columnIndex];
        auto columnWidth = std::optional<float> { };
        auto type = GridSpace::Type::Auto;

        auto& computedLogicalWidth = column.computedLogicalWidth();
        switch (computedLogicalWidth.type()) {
        case LengthType::Fixed:
            columnWidth = computedLogicalWidth.value();
            type = GridSpace::Type::Fixed;
            break;
        case LengthType::Percent:
            columnWidth = computedLogicalWidth.value() * availableHorizontalSpace / 100.0f;
            type = GridSpace::Type::Percent;
            break;
        case LengthType::Relative:
            ASSERT_NOT_IMPLEMENTED_YET();
            break;
        default:
            break;
        }

        float minimumContentWidth = slot.widthConstraints().minimum;
        float maximumContentWidth = slot.widthConstraints().maximum;
        auto preferredWidth = std::max(minimumContentWidth, columnWidth.value_or(maximumContentWidth));
        if (!hasEnoughAvailableSpaceForMaximumWidth) {
            // maximum width > available horizontal space
            // preferred width: it's always at least as wide as the minimum content width and if column fixed width is set then the greater of the two.
            // base value for adjustable space distribution for a cell: preferred width - minimum content width
            // total adjustable horizontal space: available horizontal space - preferred width(s)
            // column extra width: total adjustable space / base value for distribution for all columns * base value for distribution for this column
            // column final width: preferred width + extra width
            // e.g
            // <table style="width: 120px">
            //   <td style="width: 80px;">some content</td>
            //   <td style="width: 20px;">some content></td>
            // </table>
            // maximum width (160px) > available horizontal space (120)
            // "some content" -> minimum content width is 50px 
            // preferred widths: 80px and 50px
            // base values for distribution: 30px and 0px
            // total adjustable space: 120px - 80px - 50px = -10px <- Note the negative available space with over-constrained values.
            // columns extra widths: -10px / (30px + 0px) * 30px = -10px and -10px / (30px + 0px) * 0px = 0px
            // columns final widths: 70px and 50px (first column is narrower than its preferred width and the second is as wide as the minimum content width)
            return GridSpace { type, preferredWidth, preferredWidth - minimumContentWidth, minimumContentWidth };
        }

        // maximum width <= available horizontal space
        // preferred width: it's usually the maximum content width but at least as wide as the minimum content width (or the column fixed width)
        // base value for adjustable space distribution for a cell: preferred width (again usually the maximum content width)
        // total adjustable horizontal space: available horizontal space - preferred width(s)
        // column extra width: total adjustable space / base value for distribution for all columns * base value for distribution for this column
        // column final width: preferred width + extra width
        // e.g
        // <table style="width: 2600px">
        //   <td style="width: 40px;"><div style="width: 200px;"></div></td>
        //   <td style="width: 300px;"><div style="width: 100px;"></div></td>
        // </table>
        // maximum width (500px) < available horizontal space (2600px)
        // preferred widths: 200px and 300px
        // base values for distribution: 200px and 300px
        // total adjustable space: 2600px - 500px = 2100px
        // columns extra widths: 2100px / 500px * 200px = 840px and 2100px / 500px * 300px = 1260px
        // columns final widths: 1040px and 1560px
        return GridSpace { type, preferredWidth, preferredWidth, minimumContentWidth };
    });
}

TableFormattingContext::TableLayout::DistributedSpaces TableFormattingContext::TableLayout::distributedVerticalSpace(std::optional<LayoutUnit> availableVerticalSpace)
{
    auto& rows = m_grid.rows();
    auto& columns = m_grid.columns();

    Vector<LayoutUnit> rowHeight(rows.size());
    auto tableUsedHeight = LayoutUnit { };
    // 2. Collect initial, baseline aligned row heights.
    for (size_t rowIndex = 0; rowIndex < rows.size(); ++rowIndex) {
        auto maximumColumnAscent = InlineLayoutUnit { };
        auto maximumColumnDescent = InlineLayoutUnit { };
        // Initial minimum height is the computed height if available <tr style="height: 100px"><td></td></tr>
        rowHeight[rowIndex] = formattingContext().formattingGeometry().computedHeight(rows.list()[rowIndex].box(), availableVerticalSpace).value_or(0_lu);
        for (size_t columnIndex = 0; columnIndex < columns.size(); ++columnIndex) {
            auto& slot = *m_grid.slot({ columnIndex, rowIndex });
            if (slot.isRowSpanned())
                continue;
            if (slot.hasRowSpan())
                continue;
            // The minimum height of a row (without spanning-related height distribution) is defined as the height of an hypothetical
            // linebox containing the cells originating in the row.
            auto& cell = slot.cell();
            auto& cellBox = cell.box();
            auto height = formattingContext().geometryForBox(cellBox).borderBoxHeight();
            if (cellBox.style().verticalAlign() == VerticalAlign::Baseline) {
                maximumColumnAscent = std::max(maximumColumnAscent, cell.baseline());
                maximumColumnDescent = std::max(maximumColumnDescent, height - cell.baseline());
                rowHeight[rowIndex] = std::max(rowHeight[rowIndex], LayoutUnit { maximumColumnAscent + maximumColumnDescent });
            } else
                rowHeight[rowIndex] = std::max(rowHeight[rowIndex], height);
        }
        tableUsedHeight += rowHeight[rowIndex];
    }
    // FIXME: Collect spanning row maximum heights.

    tableUsedHeight += (rows.size() + 1) * m_grid.verticalSpacing();
    auto availableSpace = std::max(availableVerticalSpace.value_or(0_lu), tableUsedHeight);
    // Distribute extra space if the table is supposed to be taller than the sum of the row heights.
    return distributeAvailableSpace<RowSpan>(m_grid, availableSpace, [&] (const TableGrid::Slot& slot, size_t rowIndex) {
        if (slot.hasRowSpan()) {
            auto borderBoxHeight = formattingContext().geometryForBox(slot.cell().box()).borderBoxHeight();
            return GridSpace { { }, borderBoxHeight, borderBoxHeight, borderBoxHeight };
        }
        auto& rows = m_grid.rows();
        auto computedRowHeight = formattingContext().formattingGeometry().computedHeight(rows.list()[rowIndex].box(), { });
        auto height = std::max<float>(rowHeight[rowIndex], computedRowHeight.value_or(0_lu));
        return GridSpace { { }, height, height, height };
    });
}

}
}