1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
|
/*
* Copyright (c) 2012-2024, Google Inc. All rights reserved.
* Copyright (c) 2012-2025, Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <limits.h>
#include <limits>
#include <math.h>
#include <stdlib.h>
#include <wtf/HashTraits.h>
#include <wtf/MathExtras.h>
#include <wtf/SaturatedArithmetic.h>
namespace WTF {
class TextStream;
}
namespace WebCore {
#ifdef NDEBUG
#define REPORT_OVERFLOW(doesOverflow) ((void)0)
#else
#define REPORT_OVERFLOW(doesOverflow) do \
if (!(doesOverflow)) { \
WTFReportError(__FILE__, __LINE__, WTF_PRETTY_FUNCTION, "!(%s)", #doesOverflow); \
} \
while (0)
#endif
inline constexpr int kLayoutUnitFractionalBits = 6;
inline constexpr int kFixedPointDenominator = 1 << kLayoutUnitFractionalBits;
inline constexpr int intMaxForLayoutUnit = INT_MAX / kFixedPointDenominator;
inline constexpr int intMinForLayoutUnit = INT_MIN / kFixedPointDenominator;
class LayoutUnit {
public:
constexpr LayoutUnit() : m_value(0) { }
LayoutUnit(const LayoutUnit&) = default;
LayoutUnit(int value) { setValue(value); }
LayoutUnit(unsigned short value) { setValue(value); }
LayoutUnit(unsigned value) { setValue(value); }
explicit LayoutUnit(unsigned long value)
{
m_value = clampTo<int>(value * kFixedPointDenominator);
}
explicit LayoutUnit(unsigned long long value)
{
m_value = clampTo<int>(value * kFixedPointDenominator);
}
explicit LayoutUnit(double value)
{
m_value = clampToInteger(value * kFixedPointDenominator);
}
LayoutUnit& operator=(const LayoutUnit&) = default;
LayoutUnit& operator=(const float& other) { return *this = LayoutUnit(other); }
friend bool operator==(LayoutUnit, LayoutUnit) = default;
static LayoutUnit fromFloatCeil(float value)
{
return fromRawValue(clampToInteger(ceilf(value * kFixedPointDenominator)));
}
static LayoutUnit fromFloatFloor(float value)
{
return fromRawValue(clampToInteger(floorf(value * kFixedPointDenominator)));
}
static LayoutUnit fromFloatRound(float value)
{
if (value >= 0)
return clamp(value + epsilon() / 2.0f);
return clamp(value - epsilon() / 2.0f);
}
static constexpr LayoutUnit fromRawValue(int value)
{
LayoutUnit v;
v.m_value = value;
return v;
}
constexpr int toInt() const { return m_value / kFixedPointDenominator; }
constexpr float toFloat() const { return static_cast<float>(m_value) / kFixedPointDenominator; }
constexpr double toDouble() const { return static_cast<double>(m_value) / kFixedPointDenominator; }
constexpr unsigned toUnsigned() const { REPORT_OVERFLOW(m_value >= 0); return toInt(); }
constexpr operator int() const { return toInt(); }
constexpr operator float() const { return toFloat(); }
constexpr operator double() const { return toDouble(); }
explicit constexpr operator bool() const { return m_value; }
LayoutUnit& operator++()
{
m_value += kFixedPointDenominator;
return *this;
}
constexpr int rawValue() const { return m_value; }
inline void setRawValue(int value) { m_value = value; }
void setRawValue(long long value)
{
REPORT_OVERFLOW(value > std::numeric_limits<int>::min() && value < std::numeric_limits<int>::max());
m_value = static_cast<int>(value);
}
LayoutUnit abs() const
{
return fromRawValue(::abs(m_value));
}
int ceil() const
{
if (UNLIKELY(m_value >= INT_MAX - kFixedPointDenominator + 1))
return intMaxForLayoutUnit;
if (m_value >= 0)
return (m_value + kFixedPointDenominator - 1) / kFixedPointDenominator;
return toInt();
}
int round() const
{
return toInt() + ((fraction().rawValue() + (kFixedPointDenominator / 2)) >> kLayoutUnitFractionalBits);
}
int floor() const
{
if (UNLIKELY(m_value <= INT_MIN + kFixedPointDenominator - 1))
return intMinForLayoutUnit;
return m_value >> kLayoutUnitFractionalBits;
}
float ceilToFloat() const
{
float floatValue = toFloat();
if (static_cast<int>(floatValue * kFixedPointDenominator) == m_value)
return floatValue;
if (floatValue > 0)
return nextafterf(floatValue, std::numeric_limits<float>::max());
return nextafterf(floatValue, std::numeric_limits<float>::min());
}
LayoutUnit fraction() const
{
// Add the fraction to the size (as opposed to the full location) to avoid overflows.
// Compute fraction using the mod operator to preserve the sign of the value as it may affect rounding.
return fromRawValue(rawValue() % kFixedPointDenominator);
}
bool mightBeSaturated() const
{
return rawValue() == std::numeric_limits<int>::max()
|| rawValue() == std::numeric_limits<int>::min();
}
static constexpr float epsilon() { return 1.0f / kFixedPointDenominator; }
static constexpr LayoutUnit max()
{
return fromRawValue(std::numeric_limits<int>::max());
}
static constexpr LayoutUnit min()
{
return fromRawValue(std::numeric_limits<int>::min());
}
// Versions of max/min that are slightly smaller/larger than max/min() to allow for roinding without overflowing.
static constexpr LayoutUnit nearlyMax()
{
return fromRawValue(std::numeric_limits<int>::max() - kFixedPointDenominator / 2);
}
static constexpr LayoutUnit nearlyMin()
{
return fromRawValue(std::numeric_limits<int>::min() + kFixedPointDenominator / 2);
}
static LayoutUnit clamp(double value)
{
return clampTo<LayoutUnit>(value, LayoutUnit::min(), LayoutUnit::max());
}
private:
static bool isInBounds(int value)
{
return ::abs(value) <= std::numeric_limits<int>::max() / kFixedPointDenominator;
}
static bool isInBounds(unsigned value)
{
return value <= static_cast<unsigned>(std::numeric_limits<int>::max()) / kFixedPointDenominator;
}
static bool isInBounds(double value)
{
return ::abs(value) <= std::numeric_limits<int>::max() / kFixedPointDenominator;
}
inline void setValue(int value)
{
if (value > intMaxForLayoutUnit)
m_value = std::numeric_limits<int>::max();
else if (value < intMinForLayoutUnit)
m_value = std::numeric_limits<int>::min();
else
m_value = value * kFixedPointDenominator;
}
inline void setValue(unsigned value)
{
if (value >= static_cast<unsigned>(intMaxForLayoutUnit))
m_value = std::numeric_limits<int>::max();
else
m_value = value * kFixedPointDenominator;
}
int m_value;
};
inline bool operator<=(const LayoutUnit& a, const LayoutUnit& b)
{
return a.rawValue() <= b.rawValue();
}
inline bool operator<=(const LayoutUnit& a, float b)
{
return a.toFloat() <= b;
}
inline bool operator<=(const LayoutUnit& a, int b)
{
return a <= LayoutUnit(b);
}
inline bool operator<=(const float a, const LayoutUnit& b)
{
return a <= b.toFloat();
}
inline bool operator<=(const int a, const LayoutUnit& b)
{
return LayoutUnit(a) <= b;
}
inline bool operator>=(const LayoutUnit& a, const LayoutUnit& b)
{
return a.rawValue() >= b.rawValue();
}
inline bool operator>=(const LayoutUnit& a, int b)
{
return a >= LayoutUnit(b);
}
inline bool operator>=(const float a, const LayoutUnit& b)
{
return a >= b.toFloat();
}
inline bool operator>=(const LayoutUnit& a, float b)
{
return a.toFloat() >= b;
}
inline bool operator>=(const int a, const LayoutUnit& b)
{
return LayoutUnit(a) >= b;
}
inline bool operator<(const LayoutUnit& a, const LayoutUnit& b)
{
return a.rawValue() < b.rawValue();
}
inline bool operator<(const LayoutUnit& a, int b)
{
return a < LayoutUnit(b);
}
inline bool operator<(const LayoutUnit& a, float b)
{
return a.toFloat() < b;
}
inline bool operator<(const LayoutUnit& a, double b)
{
return a.toDouble() < b;
}
inline bool operator<(const int a, const LayoutUnit& b)
{
return LayoutUnit(a) < b;
}
inline bool operator<(const float a, const LayoutUnit& b)
{
return a < b.toFloat();
}
inline bool operator>(const LayoutUnit& a, const LayoutUnit& b)
{
return a.rawValue() > b.rawValue();
}
inline bool operator>(const LayoutUnit& a, double b)
{
return a.toDouble() > b;
}
inline bool operator>(const LayoutUnit& a, float b)
{
return a.toFloat() > b;
}
inline bool operator>(const LayoutUnit& a, int b)
{
return a > LayoutUnit(b);
}
inline bool operator>(const int a, const LayoutUnit& b)
{
return LayoutUnit(a) > b;
}
inline bool operator>(const float a, const LayoutUnit& b)
{
return a > b.toFloat();
}
inline bool operator>(const double a, const LayoutUnit& b)
{
return a > b.toDouble();
}
inline bool operator==(const LayoutUnit& a, int b)
{
return a == LayoutUnit(b);
}
inline bool operator==(const int a, const LayoutUnit& b)
{
return LayoutUnit(a) == b;
}
inline bool operator==(const LayoutUnit& a, float b)
{
return a.toFloat() == b;
}
inline bool operator==(const float a, const LayoutUnit& b)
{
return a == b.toFloat();
}
// For multiplication that's prone to overflow, this bounds it to LayoutUnit::max() and ::min()
inline LayoutUnit boundedMultiply(const LayoutUnit& a, const LayoutUnit& b)
{
int64_t result = static_cast<int64_t>(a.rawValue()) * static_cast<int64_t>(b.rawValue()) / kFixedPointDenominator;
int32_t high = static_cast<int32_t>(result >> 32);
int32_t low = static_cast<int32_t>(result);
uint32_t saturated = (static_cast<uint32_t>(a.rawValue() ^ b.rawValue()) >> 31) + std::numeric_limits<int>::max();
// If the higher 32 bits does not match the lower 32 with sign extension the operation overflowed.
if (high != low >> 31)
result = saturated;
return LayoutUnit::fromRawValue(static_cast<int>(result));
}
inline LayoutUnit operator*(const LayoutUnit& a, const LayoutUnit& b)
{
return boundedMultiply(a, b);
}
inline double operator*(const LayoutUnit& a, double b)
{
return a.toDouble() * b;
}
inline float operator*(const LayoutUnit& a, float b)
{
return a.toFloat() * b;
}
inline LayoutUnit operator*(const LayoutUnit& a, int b)
{
return a * LayoutUnit(b);
}
inline LayoutUnit operator*(const LayoutUnit& a, unsigned short b)
{
return a * LayoutUnit(b);
}
inline LayoutUnit operator*(const LayoutUnit& a, unsigned b)
{
return a * LayoutUnit(b);
}
inline LayoutUnit operator*(const LayoutUnit& a, unsigned long b)
{
return a * LayoutUnit(b);
}
inline LayoutUnit operator*(const LayoutUnit& a, unsigned long long b)
{
return a * LayoutUnit(b);
}
inline LayoutUnit operator*(unsigned short a, const LayoutUnit& b)
{
return LayoutUnit(a) * b;
}
inline LayoutUnit operator*(unsigned a, const LayoutUnit& b)
{
return LayoutUnit(a) * b;
}
inline LayoutUnit operator*(unsigned long a, const LayoutUnit& b)
{
return LayoutUnit(a) * b;
}
inline LayoutUnit operator*(unsigned long long a, const LayoutUnit& b)
{
return LayoutUnit(a) * b;
}
inline LayoutUnit operator*(const int a, const LayoutUnit& b)
{
return LayoutUnit(a) * b;
}
inline float operator*(const float a, const LayoutUnit& b)
{
return a * b.toFloat();
}
inline double operator*(const double a, const LayoutUnit& b)
{
return a * b.toDouble();
}
inline LayoutUnit operator/(const LayoutUnit& a, const LayoutUnit& b)
{
long long rawVal = static_cast<long long>(kFixedPointDenominator) * a.rawValue() / b.rawValue();
return LayoutUnit::fromRawValue(clampTo<int>(rawVal));
}
inline float operator/(const LayoutUnit& a, float b)
{
return a.toFloat() / b;
}
inline double operator/(const LayoutUnit& a, double b)
{
return a.toDouble() / b;
}
inline LayoutUnit operator/(const LayoutUnit& a, int b)
{
return a / LayoutUnit(b);
}
inline LayoutUnit operator/(const LayoutUnit& a, unsigned short b)
{
return a / LayoutUnit(b);
}
inline LayoutUnit operator/(const LayoutUnit& a, unsigned b)
{
return a / LayoutUnit(b);
}
inline LayoutUnit operator/(const LayoutUnit& a, unsigned long b)
{
return a / LayoutUnit(b);
}
inline LayoutUnit operator/(const LayoutUnit& a, unsigned long long b)
{
return a / LayoutUnit(b);
}
inline float operator/(const float a, const LayoutUnit& b)
{
return a / b.toFloat();
}
inline double operator/(const double a, const LayoutUnit& b)
{
return a / b.toDouble();
}
inline LayoutUnit operator/(const int a, const LayoutUnit& b)
{
return LayoutUnit(a) / b;
}
inline LayoutUnit operator/(unsigned short a, const LayoutUnit& b)
{
return LayoutUnit(a) / b;
}
inline LayoutUnit operator/(unsigned a, const LayoutUnit& b)
{
return LayoutUnit(a) / b;
}
inline LayoutUnit operator/(unsigned long a, const LayoutUnit& b)
{
return LayoutUnit(a) / b;
}
inline LayoutUnit operator/(unsigned long long a, const LayoutUnit& b)
{
return LayoutUnit(a) / b;
}
inline LayoutUnit operator+(const LayoutUnit& a, const LayoutUnit& b)
{
return LayoutUnit::fromRawValue(saturatedSum<int>(a.rawValue(), b.rawValue()));
}
inline LayoutUnit operator+(const LayoutUnit& a, int b)
{
return a + LayoutUnit(b);
}
inline float operator+(const LayoutUnit& a, float b)
{
return a.toFloat() + b;
}
inline double operator+(const LayoutUnit& a, double b)
{
return a.toDouble() + b;
}
inline LayoutUnit operator+(const int a, const LayoutUnit& b)
{
return LayoutUnit(a) + b;
}
inline float operator+(const float a, const LayoutUnit& b)
{
return a + b.toFloat();
}
inline double operator+(const double a, const LayoutUnit& b)
{
return a + b.toDouble();
}
inline LayoutUnit operator-(const LayoutUnit& a, const LayoutUnit& b)
{
return LayoutUnit::fromRawValue(saturatedDifference<int>(a.rawValue(), b.rawValue()));
}
inline LayoutUnit operator-(const LayoutUnit& a, int b)
{
return a - LayoutUnit(b);
}
inline LayoutUnit operator-(const LayoutUnit& a, unsigned b)
{
return a - LayoutUnit(b);
}
inline float operator-(const LayoutUnit& a, float b)
{
return a.toFloat() - b;
}
inline LayoutUnit operator-(const int a, const LayoutUnit& b)
{
return LayoutUnit(a) - b;
}
inline float operator-(const float a, const LayoutUnit& b)
{
return a - b.toFloat();
}
inline LayoutUnit operator-(const LayoutUnit& a)
{
// -min() is saturated to max().
if (a == LayoutUnit::min())
return LayoutUnit::max();
return LayoutUnit::fromRawValue(-a.rawValue());
}
// For returning the remainder after a division with integer results.
inline LayoutUnit intMod(const LayoutUnit& a, const LayoutUnit& b)
{
// This calculates the modulo so that: a = static_cast<int>(a / b) * b + intMod(a, b).
return LayoutUnit::fromRawValue(a.rawValue() % b.rawValue());
}
inline LayoutUnit operator%(const LayoutUnit& a, const LayoutUnit& b)
{
// This calculates the modulo so that: a = (a / b) * b + a % b.
long long rawVal = (static_cast<long long>(kFixedPointDenominator) * a.rawValue()) % b.rawValue();
return LayoutUnit::fromRawValue(rawVal / kFixedPointDenominator);
}
inline LayoutUnit operator%(const LayoutUnit& a, int b)
{
return a % LayoutUnit(b);
}
inline LayoutUnit operator%(int a, const LayoutUnit& b)
{
return LayoutUnit(a) % b;
}
inline LayoutUnit& operator+=(LayoutUnit& a, const LayoutUnit& b)
{
a.setRawValue(saturatedSum<int>(a.rawValue(), b.rawValue()));
return a;
}
inline LayoutUnit& operator+=(LayoutUnit& a, int b)
{
a = a + b;
return a;
}
inline LayoutUnit& operator+=(LayoutUnit& a, float b)
{
a = a + b;
return a;
}
inline float& operator+=(float& a, const LayoutUnit& b)
{
a = a + b;
return a;
}
inline LayoutUnit& operator-=(LayoutUnit& a, int b)
{
a = a - b;
return a;
}
inline LayoutUnit& operator-=(LayoutUnit& a, const LayoutUnit& b)
{
a.setRawValue(saturatedDifference<int>(a.rawValue(), b.rawValue()));
return a;
}
inline LayoutUnit& operator-=(LayoutUnit& a, float b)
{
a = a - b;
return a;
}
inline float& operator-=(float& a, const LayoutUnit& b)
{
a = a - b;
return a;
}
inline LayoutUnit& operator*=(LayoutUnit& a, const LayoutUnit& b)
{
a = a * b;
return a;
}
// operator*=(LayoutUnit& a, int b) is supported by the operator above plus LayoutUnit(int).
inline LayoutUnit& operator*=(LayoutUnit& a, float b)
{
a = a * b;
return a;
}
inline float& operator*=(float& a, const LayoutUnit& b)
{
a = a * b;
return a;
}
inline LayoutUnit& operator/=(LayoutUnit& a, const LayoutUnit& b)
{
a = a / b;
return a;
}
// operator/=(LayoutUnit& a, int b) is supported by the operator above plus LayoutUnit(int).
inline LayoutUnit& operator/=(LayoutUnit& a, float b)
{
a = a / b;
return a;
}
inline float& operator/=(float& a, const LayoutUnit& b)
{
a = a / b;
return a;
}
WEBCORE_EXPORT WTF::TextStream& operator<<(WTF::TextStream&, const LayoutUnit&);
inline int roundToInt(LayoutUnit value)
{
return value.round();
}
inline int floorToInt(LayoutUnit value)
{
return value.floor();
}
inline float roundToDevicePixel(LayoutUnit value, float pixelSnappingFactor, bool needsDirectionalRounding = false)
{
double valueToRound = value.toDouble();
if (needsDirectionalRounding)
valueToRound -= LayoutUnit::epsilon() / (2 * kFixedPointDenominator);
if (valueToRound >= 0)
return round(valueToRound * pixelSnappingFactor) / pixelSnappingFactor;
// This adjusts directional rounding on negative halfway values. It produces the same direction for both negative and positive values.
// Instead of rounding negative halfway cases away from zero, we translate them to positive values before rounding.
// It helps snapping relative negative coordinates to the same position as if they were positive absolute coordinates.
unsigned translateOrigin = WTF::negate(value.rawValue());
return (round((valueToRound + translateOrigin) * pixelSnappingFactor) / pixelSnappingFactor) - translateOrigin;
}
inline float floorToDevicePixel(LayoutUnit value, float pixelSnappingFactor)
{
return floorf((value.rawValue() * pixelSnappingFactor) / kFixedPointDenominator) / pixelSnappingFactor;
}
inline float ceilToDevicePixel(LayoutUnit value, float pixelSnappingFactor)
{
return ceilf((value.rawValue() * pixelSnappingFactor) / kFixedPointDenominator) / pixelSnappingFactor;
}
inline int roundToInt(float value) { return roundToInt(LayoutUnit(value)); }
inline float roundToDevicePixel(float value, float pixelSnappingFactor, bool needsDirectionalRounding = false) { return roundToDevicePixel(LayoutUnit(value), pixelSnappingFactor, needsDirectionalRounding); }
inline float floorToDevicePixel(float value, float pixelSnappingFactor) { return floorToDevicePixel(LayoutUnit(value), pixelSnappingFactor); }
inline float ceilToDevicePixel(float value, float pixelSnappingFactor) { return ceilToDevicePixel(LayoutUnit(value), pixelSnappingFactor); }
inline LayoutUnit absoluteValue(const LayoutUnit& value)
{
return value.abs();
}
inline bool isIntegerValue(const LayoutUnit value)
{
return value.toInt() == value;
}
inline namespace StringLiterals {
inline LayoutUnit operator""_lu(unsigned long long value)
{
return LayoutUnit(value);
}
}
} // namespace WebCore
namespace WTF {
template<> struct DefaultHash<WebCore::LayoutUnit> {
static unsigned hash(const WebCore::LayoutUnit& p) { return DefaultHash<int>::hash(p.rawValue()); }
static bool equal(const WebCore::LayoutUnit& a, const WebCore::LayoutUnit& b) { return a == b; }
static constexpr bool safeToCompareToEmptyOrDeleted = true;
};
// The empty value is INT_MIN, the deleted value is INT_MAX. During the course of layout
// these values are typically only used to represent uninitialized values, so they are
// good candidates to represent the deleted and empty values in HashMaps as well.
template<> struct HashTraits<WebCore::LayoutUnit> : GenericHashTraits<WebCore::LayoutUnit> {
static constexpr bool emptyValueIsZero = false;
static WebCore::LayoutUnit emptyValue()
{
return WebCore::LayoutUnit::fromRawValue(std::numeric_limits<int>::min());
}
static void constructDeletedValue(WebCore::LayoutUnit& slot) { slot.setRawValue(std::numeric_limits<int>::max()); }
static bool isDeletedValue(WebCore::LayoutUnit value) { return value.rawValue() == std::numeric_limits<int>::max(); }
};
} // namespace WTF
|