1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
|
/*
* Copyright (C) 2010 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if ENABLE(WEB_AUDIO)
#include "Biquad.h"
#include "AudioUtilities.h"
#include "DenormalDisabler.h"
#include <algorithm>
#include <stdio.h>
#include <wtf/MathExtras.h>
#include <wtf/TZoneMallocInlines.h>
#if USE(ACCELERATE)
// Work around a bug where VForce.h forward declares std::complex in a way that's incompatible with libc++ complex.
#define __VFORCE_H
#include <Accelerate/Accelerate.h>
#endif
namespace WebCore {
WTF_MAKE_TZONE_ALLOCATED_IMPL(Biquad);
#if USE(ACCELERATE)
constexpr int kBufferSize = 1024;
#endif
Biquad::Biquad()
// Allocate enough space for the a-rate filter coefficients to handle a
// rendering quantum of 128 frames.
: m_b0(AudioUtilities::renderQuantumSize)
, m_b1(AudioUtilities::renderQuantumSize)
, m_b2(AudioUtilities::renderQuantumSize)
, m_a1(AudioUtilities::renderQuantumSize)
, m_a2(AudioUtilities::renderQuantumSize)
#if USE(ACCELERATE)
, m_inputBuffer(kBufferSize + 2) // Allocate two samples more for filter history
, m_outputBuffer(kBufferSize + 2) // Allocate two samples more for filter history
#endif
{
// Initialize as pass-thru (straight-wire, no filter effect)
setNormalizedCoefficients(0, 1, 0, 0, 1, 0, 0);
reset(); // clear filter memory
}
Biquad::~Biquad() = default;
void Biquad::process(std::span<const float> source, std::span<float> destination)
{
if (hasSampleAccurateValues()) {
size_t n = source.size();
// Create local copies of member variables
double x1 = m_x1;
double x2 = m_x2;
double y1 = m_y1;
double y2 = m_y2;
auto b0 = m_b0.span();
auto b1 = m_b1.span();
auto b2 = m_b2.span();
auto a1 = m_a1.span();
auto a2 = m_a2.span();
size_t sourceIndex = 0;
size_t destinationIndex = 0;
for (size_t k = 0; k < n; ++k) {
// FIXME: this can be optimized by pipelining the multiply adds...
float x = source[sourceIndex++];
float y = b0[k] * x + b1[k] * x1 + b2[k] * x2 - a1[k] * y1 - a2[k] * y2;
destination[destinationIndex++] = y;
// Update state variables
x2 = x1;
x1 = x;
y2 = y1;
y1 = y;
}
// Local variables back to member. Flush denormals here so we
// don't slow down the inner loop above.
m_x1 = DenormalDisabler::flushDenormalFloatToZero(x1);
m_x2 = DenormalDisabler::flushDenormalFloatToZero(x2);
m_y1 = DenormalDisabler::flushDenormalFloatToZero(y1);
m_y2 = DenormalDisabler::flushDenormalFloatToZero(y2);
// There is an assumption here that once we have sample accurate values we
// can never go back to not having sample accurate values. This is
// currently true in the way AudioParamTimline is implemented: once an
// event is inserted, sample accurate processing is always enabled.
//
// If so, then we never have to update the state variables for the MACOSX
// path. The structure of the state variable in these cases aren't well
// documented so it's not clear how to update them anyway.
return;
}
#if USE(ACCELERATE)
auto inputP = m_inputBuffer.span();
auto outputP = m_outputBuffer.span();
// Set up filter state. This is needed in case we're switching from
// filtering with variable coefficients (i.e., with automations) to
// fixed coefficients (without automations).
inputP[0] = m_x2;
inputP[1] = m_x1;
outputP[0] = m_y2;
outputP[1] = m_y1;
// Use vecLib if available
processFast(source, destination);
ASSERT(source.size() >= 2);
// Copy the last inputs and outputs to the filter memory variables.
// This is needed because the next rendering quantum might be an
// automation which needs the history to continue correctly. Because
// source and destP can be the same block of memory, we can't read from
// source to get the last inputs. Fortunately, processFast has put the
// last inputs in input[0] and input[1].
m_x1 = inputP[1];
m_x2 = inputP[0];
m_y1 = destination[source.size() - 1];
m_y2 = destination[source.size() - 2];
#else
size_t n = source.size();
// Create local copies of member variables
double x1 = m_x1;
double x2 = m_x2;
double y1 = m_y1;
double y2 = m_y2;
double b0 = m_b0[0];
double b1 = m_b1[0];
double b2 = m_b2[0];
double a1 = m_a1[0];
double a2 = m_a2[0];
size_t sourceIndex = 0;
size_t destinationIndex = 0;
while (n--) {
// FIXME: this can be optimized by pipelining the multiply adds...
float x = source[sourceIndex++];
float y = b0 * x + b1 * x1 + b2 * x2 - a1 * y1 - a2 * y2;
destination[destinationIndex++] = y;
// Update state variables
x2 = x1;
x1 = x;
y2 = y1;
y1 = y;
}
// Local variables back to member. Flush denormals here so we
// don't slow down the inner loop above.
m_x1 = DenormalDisabler::flushDenormalFloatToZero(x1);
m_x2 = DenormalDisabler::flushDenormalFloatToZero(x2);
m_y1 = DenormalDisabler::flushDenormalFloatToZero(y1);
m_y2 = DenormalDisabler::flushDenormalFloatToZero(y2);
#endif
}
#if USE(ACCELERATE)
// Here we have optimized version using Accelerate.framework
void Biquad::processFast(std::span<const float> source, std::span<float> destination)
{
std::array<double, 5> filterCoefficients {
m_b0[0],
m_b1[0],
m_b2[0],
m_a1[0],
m_a2[0]
};
auto inputP = m_inputBuffer.span();
auto outputP = m_outputBuffer.span();
auto input2P = inputP.subspan(2);
auto output2P = outputP.subspan(2);
// Break up processing into smaller slices (kBufferSize) if necessary.
size_t n = source.size();
size_t sourceIndex = 0;
size_t destinationIndex = 0;
while (n > 0) {
int framesThisTime = n < kBufferSize ? n : kBufferSize;
// Copy input to input buffer
for (int i = 0; i < framesThisTime; ++i)
input2P[i] = source[sourceIndex++];
processSliceFast(inputP, outputP, std::span { filterCoefficients }, framesThisTime);
// Copy output buffer to output (converts float -> double).
for (int i = 0; i < framesThisTime; ++i)
destination[destinationIndex++] = static_cast<float>(output2P[i]);
n -= framesThisTime;
}
}
void Biquad::processSliceFast(std::span<double> source, std::span<double> destination, std::span<double> coefficients, size_t framesToProcess)
{
// Use double-precision for filter stability
vDSP_deq22D(source.data(), 1, coefficients.data(), destination.data(), 1, framesToProcess);
// Save history. Note that source and destination reference m_inputBuffer and m_outputBuffer respectively.
// These buffers are allocated (in the constructor) with space for two extra samples so it's OK to access
// array values two beyond framesToProcess.
source[0] = source[framesToProcess - 2 + 2];
source[1] = source[framesToProcess - 1 + 2];
destination[0] = destination[framesToProcess - 2 + 2];
destination[1] = destination[framesToProcess - 1 + 2];
}
#endif // USE(ACCELERATE)
void Biquad::reset()
{
#if USE(ACCELERATE)
// Two extra samples for filter history
auto inputP = m_inputBuffer.span();
inputP[0] = 0;
inputP[1] = 0;
auto outputP = m_outputBuffer.span();
outputP[0] = 0;
outputP[1] = 0;
#endif
m_x1 = m_x2 = m_y1 = m_y2 = 0;
}
void Biquad::setLowpassParams(size_t index, double cutoff, double resonance)
{
// Limit cutoff to 0 to 1.
cutoff = std::max(0.0, std::min(cutoff, 1.0));
if (cutoff == 1) {
// When cutoff is 1, the z-transform is 1.
setNormalizedCoefficients(index, 1, 0, 0, 1, 0, 0);
} else if (cutoff > 0) {
// Compute biquad coefficients for lowpass filter
resonance = pow(10.0, 0.05 * resonance);
double theta = piDouble * cutoff;
double alpha = sin(theta) / (2 * resonance);
double cosw = cos(theta);
double beta = (1 - cosw) / 2;
double b0 = beta;
double b1 = 2 * beta;
double b2 = beta;
double a0 = 1 + alpha;
double a1 = -2 * cosw;
double a2 = 1 - alpha;
setNormalizedCoefficients(index, b0, b1, b2, a0, a1, a2);
} else {
// When cutoff is zero, nothing gets through the filter, so set
// coefficients up correctly.
setNormalizedCoefficients(index, 0, 0, 0, 1, 0, 0);
}
}
void Biquad::setHighpassParams(size_t index, double cutoff, double resonance)
{
// Limit cutoff to 0 to 1.
cutoff = std::max(0.0, std::min(cutoff, 1.0));
if (cutoff == 1) {
// The z-transform is 0.
setNormalizedCoefficients(index, 0, 0, 0, 1, 0, 0);
} else if (cutoff > 0) {
// Compute biquad coefficients for highpass filter
resonance = pow(10.0, 0.05 * resonance);
double theta = piDouble * cutoff;
double alpha = sin(theta) / (2 * resonance);
double cosw = cos(theta);
double beta = (1 + cosw) / 2;
double b0 = beta;
double b1 = -(2 * beta);
double b2 = beta;
double a0 = 1 + alpha;
double a1 = -2 * cosw;
double a2 = 1 - alpha;
setNormalizedCoefficients(index, b0, b1, b2, a0, a1, a2);
} else {
// When cutoff is zero, we need to be careful because the above
// gives a quadratic divided by the same quadratic, with poles
// and zeros on the unit circle in the same place. When cutoff
// is zero, the z-transform is 1.
setNormalizedCoefficients(index, 1, 0, 0, 1, 0, 0);
}
}
void Biquad::setNormalizedCoefficients(size_t index, double b0, double b1, double b2, double a0, double a1, double a2)
{
double a0Inverse = 1 / a0;
m_b0[index] = b0 * a0Inverse;
m_b1[index] = b1 * a0Inverse;
m_b2[index] = b2 * a0Inverse;
m_a1[index] = a1 * a0Inverse;
m_a2[index] = a2 * a0Inverse;
}
void Biquad::setLowShelfParams(size_t index, double frequency, double dbGain)
{
// Clip frequencies to between 0 and 1, inclusive.
frequency = std::max(0.0, std::min(frequency, 1.0));
double A = pow(10.0, dbGain / 40);
if (frequency == 1) {
// The z-transform is a constant gain.
setNormalizedCoefficients(index, A * A, 0, 0, 1, 0, 0);
} else if (frequency > 0) {
double w0 = piDouble * frequency;
double S = 1; // filter slope (1 is max value)
double alpha = 0.5 * sin(w0) * sqrt((A + 1 / A) * (1 / S - 1) + 2);
double k = cos(w0);
double k2 = 2 * sqrt(A) * alpha;
double aPlusOne = A + 1;
double aMinusOne = A - 1;
double b0 = A * (aPlusOne - aMinusOne * k + k2);
double b1 = 2 * A * (aMinusOne - aPlusOne * k);
double b2 = A * (aPlusOne - aMinusOne * k - k2);
double a0 = aPlusOne + aMinusOne * k + k2;
double a1 = -2 * (aMinusOne + aPlusOne * k);
double a2 = aPlusOne + aMinusOne * k - k2;
setNormalizedCoefficients(index, b0, b1, b2, a0, a1, a2);
} else {
// When frequency is 0, the z-transform is 1.
setNormalizedCoefficients(index, 1, 0, 0, 1, 0, 0);
}
}
void Biquad::setHighShelfParams(size_t index, double frequency, double dbGain)
{
// Clip frequencies to between 0 and 1, inclusive.
frequency = std::max(0.0, std::min(frequency, 1.0));
double A = pow(10.0, dbGain / 40);
if (frequency == 1) {
// The z-transform is 1.
setNormalizedCoefficients(index, 1, 0, 0, 1, 0, 0);
} else if (frequency > 0) {
double w0 = piDouble * frequency;
double S = 1; // filter slope (1 is max value)
double alpha = 0.5 * sin(w0) * sqrt((A + 1 / A) * (1 / S - 1) + 2);
double k = cos(w0);
double k2 = 2 * sqrt(A) * alpha;
double aPlusOne = A + 1;
double aMinusOne = A - 1;
double b0 = A * (aPlusOne + aMinusOne * k + k2);
double b1 = -2 * A * (aMinusOne + aPlusOne * k);
double b2 = A * (aPlusOne + aMinusOne * k - k2);
double a0 = aPlusOne - aMinusOne * k + k2;
double a1 = 2 * (aMinusOne - aPlusOne * k);
double a2 = aPlusOne - aMinusOne * k - k2;
setNormalizedCoefficients(index, b0, b1, b2, a0, a1, a2);
} else {
// When frequency = 0, the filter is just a gain, A^2.
setNormalizedCoefficients(index, A * A, 0, 0, 1, 0, 0);
}
}
void Biquad::setPeakingParams(size_t index, double frequency, double Q, double dbGain)
{
// Clip frequencies to between 0 and 1, inclusive.
frequency = std::max(0.0, std::min(frequency, 1.0));
// Don't let Q go negative, which causes an unstable filter.
Q = std::max(0.0, Q);
double A = pow(10.0, dbGain / 40);
if (frequency > 0 && frequency < 1) {
if (Q > 0) {
double w0 = piDouble * frequency;
double alpha = sin(w0) / (2 * Q);
double k = cos(w0);
double b0 = 1 + alpha * A;
double b1 = -2 * k;
double b2 = 1 - alpha * A;
double a0 = 1 + alpha / A;
double a1 = -2 * k;
double a2 = 1 - alpha / A;
setNormalizedCoefficients(index, b0, b1, b2, a0, a1, a2);
} else {
// When Q = 0, the above formulas have problems. If we look at
// the z-transform, we can see that the limit as Q->0 is A^2, so
// set the filter that way.
setNormalizedCoefficients(index, A * A, 0, 0, 1, 0, 0);
}
} else {
// When frequency is 0 or 1, the z-transform is 1.
setNormalizedCoefficients(index, 1, 0, 0, 1, 0, 0);
}
}
void Biquad::setAllpassParams(size_t index, double frequency, double Q)
{
// Clip frequencies to between 0 and 1, inclusive.
frequency = std::max(0.0, std::min(frequency, 1.0));
// Don't let Q go negative, which causes an unstable filter.
Q = std::max(0.0, Q);
if (frequency > 0 && frequency < 1) {
if (Q > 0) {
double w0 = piDouble * frequency;
double alpha = sin(w0) / (2 * Q);
double k = cos(w0);
double b0 = 1 - alpha;
double b1 = -2 * k;
double b2 = 1 + alpha;
double a0 = 1 + alpha;
double a1 = -2 * k;
double a2 = 1 - alpha;
setNormalizedCoefficients(index, b0, b1, b2, a0, a1, a2);
} else {
// When Q = 0, the above formulas have problems. If we look at
// the z-transform, we can see that the limit as Q->0 is -1, so
// set the filter that way.
setNormalizedCoefficients(index, -1, 0, 0, 1, 0, 0);
}
} else {
// When frequency is 0 or 1, the z-transform is 1.
setNormalizedCoefficients(index, 1, 0, 0, 1, 0, 0);
}
}
void Biquad::setNotchParams(size_t index, double frequency, double Q)
{
// Clip frequencies to between 0 and 1, inclusive.
frequency = std::max(0.0, std::min(frequency, 1.0));
// Don't let Q go negative, which causes an unstable filter.
Q = std::max(0.0, Q);
if (frequency > 0 && frequency < 1) {
if (Q > 0) {
double w0 = piDouble * frequency;
double alpha = sin(w0) / (2 * Q);
double k = cos(w0);
double b0 = 1;
double b1 = -2 * k;
double b2 = 1;
double a0 = 1 + alpha;
double a1 = -2 * k;
double a2 = 1 - alpha;
setNormalizedCoefficients(index, b0, b1, b2, a0, a1, a2);
} else {
// When Q = 0, the above formulas have problems. If we look at
// the z-transform, we can see that the limit as Q->0 is 0, so
// set the filter that way.
setNormalizedCoefficients(index, 0, 0, 0, 1, 0, 0);
}
} else {
// When frequency is 0 or 1, the z-transform is 1.
setNormalizedCoefficients(index, 1, 0, 0, 1, 0, 0);
}
}
void Biquad::setBandpassParams(size_t index, double frequency, double Q)
{
// No negative frequencies allowed.
frequency = std::max(0.0, frequency);
// Don't let Q go negative, which causes an unstable filter.
Q = std::max(0.0, Q);
if (frequency > 0 && frequency < 1) {
double w0 = piDouble * frequency;
if (Q > 0) {
double alpha = sin(w0) / (2 * Q);
double k = cos(w0);
double b0 = alpha;
double b1 = 0;
double b2 = -alpha;
double a0 = 1 + alpha;
double a1 = -2 * k;
double a2 = 1 - alpha;
setNormalizedCoefficients(index, b0, b1, b2, a0, a1, a2);
} else {
// When Q = 0, the above formulas have problems. If we look at
// the z-transform, we can see that the limit as Q->0 is 1, so
// set the filter that way.
setNormalizedCoefficients(index, 1, 0, 0, 1, 0, 0);
}
} else {
// When the cutoff is zero, the z-transform approaches 0, if Q
// > 0. When both Q and cutoff are zero, the z-transform is
// pretty much undefined. What should we do in this case?
// For now, just make the filter 0. When the cutoff is 1, the
// z-transform also approaches 0.
setNormalizedCoefficients(index, 0, 0, 0, 1, 0, 0);
}
}
void Biquad::getFrequencyResponse(unsigned nFrequencies, std::span<const float> frequency, std::span<float> magResponse, std::span<float> phaseResponse)
{
// Evaluate the Z-transform of the filter at given normalized
// frequency from 0 to 1. (1 corresponds to the Nyquist
// frequency.)
//
// The z-transform of the filter is
//
// H(z) = (b0 + b1*z^(-1) + b2*z^(-2))/(1 + a1*z^(-1) + a2*z^(-2))
//
// Evaluate as
//
// b0 + (b1 + b2*z1)*z1
// --------------------
// 1 + (a1 + a2*z1)*z1
//
// with z1 = 1/z and z = exp(j*pi*frequency). Hence z1 = exp(-j*pi*frequency)
// Make local copies of the coefficients as a micro-optimization.
double b0 = m_b0[0];
double b1 = m_b1[0];
double b2 = m_b2[0];
double a1 = m_a1[0];
double a2 = m_a2[0];
for (unsigned k = 0; k < nFrequencies; ++k) {
if (frequency[k] < 0 || frequency[k] > 1) {
// Out-of-bounds frequencies should return NaN.
magResponse[k] = std::nanf("");
phaseResponse[k] = std::nanf("");
} else {
double omega = -piDouble * frequency[k];
std::complex<double> z = std::complex<double>(cos(omega), sin(omega));
std::complex<double> numerator = b0 + (b1 + b2 * z) * z;
std::complex<double> denominator = std::complex<double>(1, 0) + (a1 + a2 * z) * z;
std::complex<double> response = numerator / denominator;
magResponse[k] = static_cast<float>(std::abs(response));
phaseResponse[k] = static_cast<float>(atan2(imag(response), real(response)));
}
}
}
static double repeatedRootResponse(double n, double c1, double c2, double r, double logEPS)
{
// The response is h(n) = r^(n-2)*[c1*(n+1)*r^2+c2]. We're looking
// for n such that |h(n)| = eps. Equivalently, we want a root
// of the equation log(|h(n)|) - log(eps) = 0 or
//
// (n-2)*log(r) + log(|c1*(n+1)*r^2+c2|) - log(eps)
//
// This helps with finding a nuemrical solution because this
// approximately linearizes the response for large n.
return (n - 2) * std::log(r) + std::log(std::abs(c1 * (n + 1) * r * r + c2)) - logEPS;
}
// Regula Falsi root finder, Illinois variant
// (https://en.wikipedia.org/wiki/False_position_method#The_Illinois_algorithm).
//
// This finds a root of the repeated root response where the root is
// assumed to lie between |low| and |high|. The response is given by
// |c1|, |c2|, and |r| as determined by |RepeatedRootResponse|.
// |logEPS| is the log the the maximum allowed amplitude in the
// response.
static double rootFinder(double low, double high, double logEPS, double c1, double c2, double r)
{
// Desired accuray of the root (in frames). This doesn't need to be
// super-accurate, so half frame is good enough, and should be less
// than 1 because the algorithm may prematurely terminate.
constexpr double accuracyThreshold = 0.5;
// Max number of iterations to do. If we haven't converged by now,
// just return whatever we've found.
constexpr int maxIterations = 10;
int side = 0;
double root = 0;
double fLow = repeatedRootResponse(low, c1, c2, r, logEPS);
double fHigh = repeatedRootResponse(high, c1, c2, r, logEPS);
// The function values must be finite and have opposite signs!
ASSERT(std::isfinite(fLow));
ASSERT(std::isfinite(fHigh));
ASSERT(fLow * fHigh <= 0);
int iteration;
for (iteration = 0; iteration < maxIterations; ++iteration) {
root = (fLow * high - fHigh * low) / (fLow - fHigh);
if (std::abs(high - low) < accuracyThreshold * std::abs(high + low))
break;
double fr = repeatedRootResponse(root, c1, c2, r, logEPS);
ASSERT(std::isfinite(fr));
if (fr * fHigh > 0) {
// fr and fHigh have same sign. Copy root to fHigh
high = root;
fHigh = fr;
side = -1;
} else if (fLow * fr > 0) {
// fr and fLow have same sign. Copy root to fLow
low = root;
fLow = fr;
if (side == 1)
fHigh /= 2;
side = 1;
} else {
// fLow * fr looks like zero, so assume we've converged.
break;
}
}
// Want to know if the max number of iterations is ever exceeded so
// we can understand why that happened.
ASSERT(iteration < maxIterations);
return root;
}
double Biquad::tailFrame(size_t coefIndex, double maxFrame)
{
// The Biquad filter is given by
//
// H(z) = (b0 + b1/z + b2/z^2)/(1 + a1/z + a2/z^2).
//
// To compute the tail time, compute the impulse response, h(n), of
// H(z), which we can do analytically. From this impulse response,
// find the value n0 where |h(n)| <= eps for n >= n0.
//
// Assume first that the two poles of H(z) are not repeated, say r1
// and r2. Then, we can compute a partial fraction expansion of
// H(z):
//
// H(z) = (b0+b1/z+b2/z^2)/[(1-r1/z)*(1-r2/z)]
// = b0 + C2/(z-r2) - C1/(z-r1)
//
// where
// C2 = (b0*r2^2+b1*r2+b2)/(r2-r1)
// C1 = (b0*r1^2+b1*r1+b2)/(r2-r1)
//
// Expand H(z) then this in powers of 1/z gives:
//
// H(z) = b0 -(C2/r2+C1/r1) + sum(C2*r2^(i-1)/z^i + C1*r1^(i-1)/z^i)
//
// Thus, for n > 1 (we don't care about small n),
//
// h(n) = C2*r2^(n-1) + C1*r1^(n-1)
//
// We need to find n0 such that |h(n)| < eps for n > n0.
//
// Case 1: r1 and r2 are real and distinct, with |r1|>=|r2|.
//
// Then
//
// h(n) = C1*r1^(n-1)*(1 + C2/C1*(r2/r1)^(n-1))
//
// so
//
// |h(n)| = |C1|*|r1|^(n-1)*|1+C2/C1*(r2/r1)^(n-1)|
// <= |C1|*|r1|^(n-1)*[1 + |C2/C1|*|r2/r1|^(n-1)]
// <= |C1|*|r1|^(n-1)*[1 + |C2/C1|]
//
// so
//
// |h(n)| = |C1|*|r1|^(n-1)*|1+C2/C1*(r2/r1)^(n-1)|
// <= |C1|*|r1|^(n-1)*[1 + |C2/C1|*|r2/r1|^(n-1)]
// <= |C1|*|r1|^(n-1)*[1 + |C2/C1|]
//
// by using the triangle inequality and the fact that |r2|<=|r1|.
// And we want |h(n)|<=eps which is true if
//
// |C1|*|r1|^(n-1)*[1 + |C2/C1|] <= eps
//
// or
//
// n >= 1 + log(eps/C)/log(|r1|)
//
// where C = |C1|*[1+|C2/C1|] = |C1| + |C2|.
//
// Case 2: r1 and r2 are complex
//
// Thne we can write r1=r*exp(i*p) and r2=r*exp(-i*p). So,
//
// |h(n)| = |C2*r^(n-1)*exp(-i*p*(n-1)) + C1*r^(n-1)*exp(i*p*(n-1))|
// = |C1|*r^(n-1)*|1 + C2/C1*exp(-i*p*(n-1))/exp(i*n*(n-1))|
// <= |C1|*r^(n-1)*[1 + |C2/C1|]
//
// Again, this is easily solved to give
//
// n >= 1 + log(eps/C)/log(r)
//
// where C = |C1|*[1+|C2/C1|] = |C1| + |C2|.
//
// Case 3: Repeated roots, r1=r2=r.
//
// In this case,
//
// H(z) = (b0+b1/z+b2/z^2)/[(1-r/z)^2
//
// Expanding this in powers of 1/z gives:
//
// H(z) = C1*sum((i+1)*r^i/z^i) - C2 * sum(r^(i-2)/z^i) + b2/r^2
// = b2/r^2 + sum([C1*(i+1)*r^i + C2*r^(i-2)]/z^i)
// where
// C1 = (b0*r^2+b1*r+b2)/r^2
// C2 = b1*r+2*b2
//
// Thus, the impulse response is
//
// h(n) = C1*(n+1)*r^n + C2*r^(n-2)
// = r^(n-2)*[C1*(n+1)*r^2+C2]
//
// So
//
// |h(n)| = |r|^(n-2)*|C1*(n+1)*r^2+C2|
//
// To find n such that |h(n)| < eps, we need a numerical method in
// general, so there's no real reason to simplify this or use other
// approximations. Just solve |h(n)|=eps directly.
//
// Thus, for an set of filter coefficients, we can compute the tail
// time.
//
// If the maximum amplitude of the impulse response is less than
// this, we assume that we've reached the tail of the response.
// Currently, this means that the impulse is less than 1 bit of a
// 16-bit PCM value.
constexpr double maxTailAmplitude = 1 / 32768.0;
// Find the roots of 1+a1/z+a2/z^2 = 0. Or equivalently,
// z^2+a1*z+a2 = 0. From the quadratic formula the roots are
// (-a1+/-sqrt(a1^2-4*a2))/2.
double a1 = m_a1[coefIndex];
double a2 = m_a2[coefIndex];
double b0 = m_b0[coefIndex];
double b1 = m_b1[coefIndex];
double b2 = m_b2[coefIndex];
double discrim = a1 * a1 - 4 * a2;
if (discrim > 0) {
// Compute the real roots so that r1 has the largest magnitude.
double rplus = (-a1 + std::sqrt(discrim)) / 2;
double rminus = (-a1 - std::sqrt(discrim)) / 2;
double r1 = std::abs(rplus) >= std::abs(rminus) ? rplus : rminus;
// Use the fact that a2 = r1*r2
double r2 = a2 / r1;
double c1 = (b0 * r1 * r1 + b1 * r1 + b2) / (r2 - r1);
double c2 = (b0 * r2 * r2 + b1 * r2 + b2) / (r2 - r1);
ASSERT(std::isfinite(r1));
ASSERT(std::isfinite(r2));
ASSERT(std::isfinite(c1));
ASSERT(std::isfinite(c2));
// It's possible for maxTailAmplitude to be greater than c1 + c2.
// This may produce a negative tail frame. Just clamp the tail
// frame to 0.
double tailFrame = clampTo(1 + std::log(maxTailAmplitude / (std::abs(c1) + std::abs(c2))) / std::log(std::abs(r1)), 0);
ASSERT(std::isfinite(tailFrame));
return tailFrame;
}
if (discrim < 0) {
// Two complex roots.
// One root is -a1/2 + i*sqrt(-discrim)/2.
double x = -a1 / 2;
double y = std::sqrt(-discrim) / 2;
std::complex<double> r1(x, y);
std::complex<double> r2(x, -y);
double r = std::hypot(x, y);
ASSERT(std::isfinite(r));
double tailFrame = 0;
// It's possible for r to be 1. (LPF with Q very large can cause this.)
if (r == 1)
tailFrame = maxFrame;
else {
double c1 = std::abs((b0 * r1 * r1 + b1 * r1 + b2) / (r2 - r1));
double c2 = std::abs((b0 * r2 * r2 + b1 * r2 + b2) / (r2 - r1));
ASSERT(std::isfinite(c1));
ASSERT(std::isfinite(c2));
tailFrame = 1 + std::log(maxTailAmplitude / (c1 + c2)) / std::log(r);
if (!c1 && !c2) {
// If c1 = c2 = 0, then H(z) = b0. Hence, there's no tail
// because this is just a wire from input to output.
tailFrame = 0;
} else {
// Otherwise, check that the tail has finite length. Not
// strictly necessary, but we want to know if this ever
// happens.
ASSERT(std::isfinite(tailFrame));
}
}
return tailFrame;
}
// Repeated roots. This should be pretty rare because all the
// coefficients need to be just the right values to get a
// discriminant of exactly zero.
double r = -a1 / 2;
double tailFrame = 0;
if (!r) {
// Double pole at 0. This just delays the signal by 2 frames,
// so set the tail frame to 2.
tailFrame = 2;
} else {
double c1 = (b0 * r * r + b1 * r + b2) / (r * r);
double c2 = b1 * r + 2 * b2;
ASSERT(std::isfinite(c1));
ASSERT(std::isfinite(c2));
// It can happen that c1=c2=0. This basically means that H(z) =
// constant, which is the limiting case for several of the
// biquad filters.
if (!c1 && !c2)
tailFrame = 0;
else {
// The function c*(n+1)*r^n is not monotonic, but it's easy to
// find the max point since the derivative is
// c*r^n*(1+(n+1)*log(r)). This has a root at
// -(1+log(r))/log(r). so we can start our search from that
// point to maxFrames.
double low = std::clamp(-(1 + std::log(r)) / std::log(r), 1.0, static_cast<double>(maxFrame - 1));
double high = maxFrame;
ASSERT(std::isfinite(low));
ASSERT(std::isfinite(high));
tailFrame = rootFinder(low, high, std::log(maxTailAmplitude), c1, c2, r);
}
}
return tailFrame;
}
} // namespace WebCore
#endif // ENABLE(WEB_AUDIO)
|