1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
/*
* Copyright (C) 2010, Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if ENABLE(WEB_AUDIO)
#include "HRTFPanner.h"
#include "AudioBus.h"
#include "AudioUtilities.h"
#include "FFTConvolver.h"
#include "HRTFDatabase.h"
#include "HRTFDatabaseLoader.h"
#include <algorithm>
#include <wtf/MathExtras.h>
namespace WebCore {
// The value of 2 milliseconds is larger than the largest delay which exists in any HRTFKernel from the default HRTFDatabase (0.0136 seconds).
// We ASSERT the delay values used in process() with this value.
constexpr double MaxDelayTimeSeconds = 0.002;
HRTFPanner::HRTFPanner(float sampleRate, HRTFDatabaseLoader* databaseLoader)
: Panner(PanningModelType::HRTF)
, m_databaseLoader(databaseLoader)
, m_sampleRate(sampleRate)
, m_convolverL1(fftSizeForSampleRate(sampleRate))
, m_convolverR1(fftSizeForSampleRate(sampleRate))
, m_convolverL2(fftSizeForSampleRate(sampleRate))
, m_convolverR2(fftSizeForSampleRate(sampleRate))
, m_delayLineL(MaxDelayTimeSeconds, sampleRate)
, m_delayLineR(MaxDelayTimeSeconds, sampleRate)
, m_tempL1(AudioUtilities::renderQuantumSize)
, m_tempR1(AudioUtilities::renderQuantumSize)
, m_tempL2(AudioUtilities::renderQuantumSize)
, m_tempR2(AudioUtilities::renderQuantumSize)
{
ASSERT(databaseLoader);
}
HRTFPanner::~HRTFPanner() = default;
size_t HRTFPanner::fftSizeForSampleRate(float sampleRate)
{
// The HRTF impulse responses (loaded as audio resources) are 512
// sample-frames @44.1KHz. Currently, we truncate the impulse responses to
// half this size, but an FFT-size of twice impulse response size is needed
// (for convolution). So for sample rates around 44.1KHz an FFT size of 512
// is good. For different sample rates, the truncated response is resampled.
// The resampled length is used to compute the FFT size by choosing a power
// of two that is greater than or equal the resampled length. This power of
// two is doubled to get the actual FFT size.
const int truncatedImpulseLength = 256;
double sampleRateRatio = sampleRate / 44100;
double resampledLength = truncatedImpulseLength * sampleRateRatio;
// This is the size used for analysis frames in the HRTF kernel. The
// convolvers used by the kernel are twice this size.
int analysisFFTSize = 1 << static_cast<unsigned>(log2(resampledLength));
// Don't let the analysis size be smaller than the supported size
analysisFFTSize = std::max(analysisFFTSize, FFTFrame::minFFTSize());
int convolverFFTSize = 2 * analysisFFTSize;
// Make sure this size of convolver is supported.
ASSERT(convolverFFTSize <= FFTFrame::maxFFTSize());
return convolverFFTSize;
}
void HRTFPanner::reset()
{
m_convolverL1.reset();
m_convolverR1.reset();
m_convolverL2.reset();
m_convolverR2.reset();
m_delayLineL.reset();
m_delayLineR.reset();
}
int HRTFPanner::calculateDesiredAzimuthIndexAndBlend(double azimuth, double& azimuthBlend)
{
// Convert the azimuth angle from the range -180 -> +180 into the range 0 -> 360.
// The azimuth index may then be calculated from this positive value.
if (azimuth < 0)
azimuth += 360.0;
HRTFDatabase* database = m_databaseLoader->database();
ASSERT(database);
int numberOfAzimuths = database->numberOfAzimuths();
const double angleBetweenAzimuths = 360.0 / numberOfAzimuths;
// Calculate the azimuth index and the blend (0 -> 1) for interpolation.
double desiredAzimuthIndexFloat = azimuth / angleBetweenAzimuths;
int desiredAzimuthIndex = static_cast<int>(desiredAzimuthIndexFloat);
azimuthBlend = desiredAzimuthIndexFloat - static_cast<double>(desiredAzimuthIndex);
// We don't immediately start using this azimuth index, but instead approach this index from the last index we rendered at.
// This minimizes the clicks and graininess for moving sources which occur otherwise.
desiredAzimuthIndex = std::max(0, desiredAzimuthIndex);
desiredAzimuthIndex = std::min(numberOfAzimuths - 1, desiredAzimuthIndex);
return desiredAzimuthIndex;
}
void HRTFPanner::pan(double desiredAzimuth, double elevation, const AudioBus* inputBus, AudioBus* outputBus, size_t framesToProcess)
{
unsigned numInputChannels = inputBus ? inputBus->numberOfChannels() : 0;
bool isInputGood = inputBus && numInputChannels >= 1 && numInputChannels <= 2;
ASSERT(isInputGood);
bool isOutputGood = outputBus && outputBus->numberOfChannels() == 2 && framesToProcess <= outputBus->length();
ASSERT(isOutputGood);
if (!isInputGood || !isOutputGood) {
if (outputBus)
outputBus->zero();
return;
}
// This code only runs as long as the context is alive and after database has been loaded.
HRTFDatabase* database = m_databaseLoader->database();
ASSERT(database);
if (!database) {
outputBus->zero();
return;
}
// IRCAM HRTF azimuths values from the loaded database is reversed from the panner's notion of azimuth.
double azimuth = -desiredAzimuth;
bool isAzimuthGood = azimuth >= -180.0 && azimuth <= 180.0;
ASSERT(isAzimuthGood);
if (!isAzimuthGood) {
outputBus->zero();
return;
}
// Normally, we'll just be dealing with mono sources.
// If we have a stereo input, implement stereo panning with left source processed by left HRTF, and right source by right HRTF.
const AudioChannel* inputChannelL = inputBus->channelByType(AudioBus::ChannelLeft);
const AudioChannel* inputChannelR = numInputChannels > 1 ? inputBus->channelByType(AudioBus::ChannelRight) : 0;
// Get source and destination pointers.
auto sourceL = inputChannelL->span();
auto sourceR = numInputChannels > 1 ? inputChannelR->span() : sourceL;
auto destinationL = outputBus->channelByType(AudioBus::ChannelLeft)->mutableSpan();
auto destinationR = outputBus->channelByType(AudioBus::ChannelRight)->mutableSpan();
double azimuthBlend;
int desiredAzimuthIndex = calculateDesiredAzimuthIndexAndBlend(azimuth, azimuthBlend);
// Initially snap azimuth and elevation values to first values encountered.
if (!m_azimuthIndex1) {
m_azimuthIndex1 = desiredAzimuthIndex;
m_elevation1 = elevation;
}
if (!m_azimuthIndex2) {
m_azimuthIndex2 = desiredAzimuthIndex;
m_elevation2 = elevation;
}
// Cross-fade / transition over a period of around 45 milliseconds.
// This is an empirical value tuned to be a reasonable trade-off between
// smoothness and speed.
const double fadeFrames = sampleRate() <= 48000 ? 2048 : 4096;
// Check for azimuth and elevation changes, initiating a cross-fade if needed.
if (!m_crossfadeX && m_crossfadeSelection == CrossfadeSelection1) {
if (desiredAzimuthIndex != *m_azimuthIndex1 || elevation != m_elevation1) {
// Cross-fade from 1 -> 2
m_crossfadeIncr = 1 / fadeFrames;
m_azimuthIndex2 = desiredAzimuthIndex;
m_elevation2 = elevation;
}
}
if (m_crossfadeX == 1 && m_crossfadeSelection == CrossfadeSelection2) {
if (desiredAzimuthIndex != *m_azimuthIndex2 || elevation != m_elevation2) {
// Cross-fade from 2 -> 1
m_crossfadeIncr = -1 / fadeFrames;
m_azimuthIndex1 = desiredAzimuthIndex;
m_elevation1 = elevation;
}
}
// This algorithm currently requires that we process in power-of-two size chunks at least AudioUtilities::renderQuantumSize.
ASSERT(1UL << static_cast<int>(log2(framesToProcess)) == framesToProcess);
ASSERT(framesToProcess >= AudioUtilities::renderQuantumSize);
const unsigned framesPerSegment = AudioUtilities::renderQuantumSize;
const unsigned numberOfSegments = framesToProcess / framesPerSegment;
for (unsigned segment = 0; segment < numberOfSegments; ++segment) {
// Get the HRTFKernels and interpolated delays.
HRTFKernel* kernelL1;
HRTFKernel* kernelR1;
HRTFKernel* kernelL2;
HRTFKernel* kernelR2;
double frameDelayL1;
double frameDelayR1;
double frameDelayL2;
double frameDelayR2;
database->getKernelsFromAzimuthElevation(azimuthBlend, *m_azimuthIndex1, m_elevation1, kernelL1, kernelR1, frameDelayL1, frameDelayR1);
database->getKernelsFromAzimuthElevation(azimuthBlend, *m_azimuthIndex2, m_elevation2, kernelL2, kernelR2, frameDelayL2, frameDelayR2);
bool areKernelsGood = kernelL1 && kernelR1 && kernelL2 && kernelR2;
ASSERT(areKernelsGood);
if (!areKernelsGood) {
outputBus->zero();
return;
}
ASSERT(frameDelayL1 / sampleRate() < MaxDelayTimeSeconds && frameDelayR1 / sampleRate() < MaxDelayTimeSeconds);
ASSERT(frameDelayL2 / sampleRate() < MaxDelayTimeSeconds && frameDelayR2 / sampleRate() < MaxDelayTimeSeconds);
// Crossfade inter-aural delays based on transitions.
double frameDelayL = (1 - m_crossfadeX) * frameDelayL1 + m_crossfadeX * frameDelayL2;
double frameDelayR = (1 - m_crossfadeX) * frameDelayR1 + m_crossfadeX * frameDelayR2;
// Calculate the source and destination pointers for the current segment.
unsigned offset = segment * framesPerSegment;
auto segmentSourceL = sourceL.subspan(offset, framesPerSegment);
auto segmentSourceR = sourceR.subspan(offset, framesPerSegment);
auto segmentDestinationL = destinationL.subspan(offset, framesPerSegment);
auto segmentDestinationR = destinationR.subspan(offset, framesPerSegment);
// First run through delay lines for inter-aural time difference.
m_delayLineL.setDelayFrames(frameDelayL);
m_delayLineR.setDelayFrames(frameDelayR);
m_delayLineL.process(segmentSourceL, segmentDestinationL);
m_delayLineR.process(segmentSourceR, segmentDestinationR);
bool needsCrossfading = m_crossfadeIncr;
// Have the convolvers render directly to the final destination if we're not cross-fading.
auto convolutionDestinationL1 = needsCrossfading ? m_tempL1.span() : segmentDestinationL;
auto convolutionDestinationR1 = needsCrossfading ? m_tempR1.span() : segmentDestinationR;
auto convolutionDestinationL2 = needsCrossfading ? m_tempL2.span() : segmentDestinationL;
auto convolutionDestinationR2 = needsCrossfading ? m_tempR2.span() : segmentDestinationR;
// Now do the convolutions.
// Note that we avoid doing convolutions on both sets of convolvers if we're not currently cross-fading.
if (m_crossfadeSelection == CrossfadeSelection1 || needsCrossfading) {
m_convolverL1.process(kernelL1->fftFrame(), segmentDestinationL, convolutionDestinationL1);
m_convolverR1.process(kernelR1->fftFrame(), segmentDestinationR, convolutionDestinationR1);
}
if (m_crossfadeSelection == CrossfadeSelection2 || needsCrossfading) {
m_convolverL2.process(kernelL2->fftFrame(), segmentDestinationL, convolutionDestinationL2);
m_convolverR2.process(kernelR2->fftFrame(), segmentDestinationR, convolutionDestinationR2);
}
if (needsCrossfading) {
// Apply linear cross-fade.
float x = m_crossfadeX;
float incr = m_crossfadeIncr;
for (unsigned i = 0; i < framesPerSegment; ++i) {
segmentDestinationL[i] = (1 - x) * convolutionDestinationL1[i] + x * convolutionDestinationL2[i];
segmentDestinationR[i] = (1 - x) * convolutionDestinationR1[i] + x * convolutionDestinationR2[i];
x += incr;
}
// Update cross-fade value from local.
m_crossfadeX = x;
if (m_crossfadeIncr > 0 && std::abs(m_crossfadeX - 1) < m_crossfadeIncr) {
// We've fully made the crossfade transition from 1 -> 2.
m_crossfadeSelection = CrossfadeSelection2;
m_crossfadeX = 1;
m_crossfadeIncr = 0;
} else if (m_crossfadeIncr < 0 && std::abs(m_crossfadeX) < -m_crossfadeIncr) {
// We've fully made the crossfade transition from 2 -> 1.
m_crossfadeSelection = CrossfadeSelection1;
m_crossfadeX = 0;
m_crossfadeIncr = 0;
}
}
}
}
void HRTFPanner::panWithSampleAccurateValues(std::span<double> azimuth, std::span<double> elevation, const AudioBus* inputBus, AudioBus* outputBus, size_t framesToProcess)
{
// Sample-accurate (a-rate) HRTF panner is not implemented, just k-rate. Just
// grab the current azimuth/elevation and use that.
//
// We are assuming that the inherent smoothing in the HRTF processing is good
// enough, and we don't want to increase the complexity of the HRTF panner by
// 15-20 times. (We need to compute one output sample for each possibly
// different impulse response. That N^2. Previously, we used an FFT to do
// them all at once for a complexity of N/log2(N). Hence, N/log2(N) times
// more complex.)
pan(azimuth[0], elevation[0], inputBus, outputBus, framesToProcess);
}
double HRTFPanner::tailTime() const
{
// Because HRTFPanner is implemented with a DelayKernel and a FFTConvolver, the tailTime of the HRTFPanner
// is the sum of the tailTime of the DelayKernel and the tailTime of the FFTConvolver, which is MaxDelayTimeSeconds
// and fftSize() / 2, respectively.
return MaxDelayTimeSeconds + (fftSize() / 2) / static_cast<double>(sampleRate());
}
double HRTFPanner::latencyTime() const
{
// The latency of a FFTConvolver is also fftSize() / 2, and is in addition to its tailTime of the
// same value.
return (fftSize() / 2) / static_cast<double>(sampleRate());
}
bool HRTFPanner::requiresTailProcessing() const
{
// Always return true since the tail and latency are never zero.
return true;
}
} // namespace WebCore
#endif // ENABLE(WEB_AUDIO)
|