1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
|
/*
* Copyright (C) 2011 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if ENABLE(WEB_AUDIO)
#include "SincResampler.h"
#include "AudioBus.h"
#include "AudioUtilities.h"
#include "VectorMath.h"
#include <wtf/Algorithms.h>
#include <wtf/MathExtras.h>
#include <wtf/TZoneMallocInlines.h>
#include <wtf/text/ParsingUtilities.h>
#if USE(ACCELERATE)
#include <Accelerate/Accelerate.h>
#elif CPU(X86_SSE2)
#include <xmmintrin.h>
#elif HAVE(ARM_NEON_INTRINSICS)
#include <arm_neon.h>
#endif
// Initial input buffer layout, dividing into regions r0 to r4 (note: r0, r3
// and r4 will move after the first load):
//
// |----------------|----------------------------------------------------------------|----------------|
//
// m_requestFrames
// <-------------------------------------------------------------------------------->
// r0 (during first load)
//
// kernelSize / 2 kernelSize / 2 kernelSize / 2 kernelSize / 2
// <---------------> <---------------> <---------------> <--------------->
// r1 r2 r3 r4
//
// m_blockSize == r4 - r2
// <--------------------------------------->
//
// m_requestFrames
// <------------------ ... ----------------->
// r0 (during second load)
//
// On the second request r0 slides to the right by kernelSize / 2 and r3, r4
// and m_blockSize are reinitialized via step (3) in the algorithm below.
//
// These new regions remain constant until a Flush() occurs. While complicated,
// this allows us to reduce jitter by always requesting the same amount from the
// provided callback.
// The Algorithm:
//
// 1) Allocate input_buffer of size: m_requestFrames + kernelSize; this ensures
// there's enough room to read m_requestFrames from the callback into region
// r0 (which will move between the first and subsequent passes).
//
// 2) Let r1, r2 each represent half the kernel centered around r0:
//
// r0 = m_inputBuffer + kernelSize / 2
// r1 = m_inputBuffer
// r2 = r0
//
// r0 is always m_requestFrames in size. r1, r2 are kernelSize / 2 in
// size. r1 must be zero initialized to avoid convolution with garbage (see
// step (5) for why).
//
// 3) Let r3, r4 each represent half the kernel right aligned with the end of
// r0 and choose m_blockSize as the distance in frames between r4 and r2:
//
// r3 = r0 + m_requestFrames - kernelSize
// r4 = r0 + m_requestFrames - kernelSize / 2
// m_blockSize = r4 - r2 = m_requestFrames - kernelSize / 2
//
// 4) Consume m_requestFrames frames into r0.
//
// 5) Position kernel centered at start of r2 and generate output frames until
// the kernel is centered at the start of r4 or we've finished generating
// all the output frames.
//
// 6) Wrap left over data from the r3 to r1 and r4 to r2.
//
// 7) If we're on the second load, in order to avoid overwriting the frames we
// just wrapped from r4 we need to slide r0 to the right by the size of
// r4, which is kernelSize / 2:
//
// r0 = r0 + kernelSize / 2 = m_inputBuffer + kernelSize
//
// r3, r4, and m_blockSize then need to be reinitialized, so goto (3).
//
// 8) Else, if we're not on the second load, goto (4).
//
// note: we're glossing over how the sub-sample handling works with m_virtualSourceIndex, etc.
namespace WebCore {
WTF_MAKE_TZONE_ALLOCATED_IMPL(SincResampler);
constexpr unsigned kernelSize { 32 };
constexpr unsigned numberOfKernelOffsets { 32 };
constexpr unsigned kernelStorageSize { kernelSize * (numberOfKernelOffsets + 1) };
static size_t calculateChunkSize(unsigned blockSize, double scaleFactor)
{
return blockSize / scaleFactor;
}
SincResampler::SincResampler(double scaleFactor, unsigned requestFrames, Function<void(std::span<float> buffer, size_t framesToProcess)>&& provideInput)
: m_scaleFactor(scaleFactor)
, m_kernelStorage(kernelStorageSize)
, m_requestFrames(requestFrames)
, m_provideInput(WTFMove(provideInput))
, m_inputBuffer(m_requestFrames + kernelSize) // See input buffer layout above.
, m_r1(m_inputBuffer.span())
, m_r2(m_inputBuffer.span().subspan(kernelSize / 2))
{
ASSERT(m_provideInput);
ASSERT(m_requestFrames > 0);
updateRegions(false);
ASSERT(m_blockSize > kernelSize);
initializeKernel();
}
void SincResampler::updateRegions(bool isSecondLoad)
{
// Setup various region pointers in the buffer (see diagram above). If we're
// on the second load we need to slide m_r0 to the right by kernelSize / 2.
m_r0 = m_inputBuffer.span().subspan(isSecondLoad ? kernelSize : kernelSize / 2);
m_r3 = m_r0.subspan(m_requestFrames - kernelSize);
m_r4 = m_r0.subspan(m_requestFrames - kernelSize / 2);
m_blockSize = std::distance(m_r2.begin(), m_r4.begin());
m_chunkSize = calculateChunkSize(m_blockSize, m_scaleFactor);
// m_r1 at the beginning of the buffer.
ASSERT(m_r1.data() == m_inputBuffer.data());
// m_r1 left of m_r2, m_r4 left of m_r3 and size correct.
ASSERT(std::distance(m_r1.begin(), m_r2.begin()) == std::distance(m_r3.begin(), m_r4.begin()));
// m_r2 left of r3.
ASSERT(m_r2.begin() <= m_r3.begin());
}
void SincResampler::initializeKernel()
{
// Blackman window parameters.
double alpha = 0.16;
double a0 = 0.5 * (1.0 - alpha);
double a1 = 0.5;
double a2 = 0.5 * alpha;
// sincScaleFactor is basically the normalized cutoff frequency of the low-pass filter.
double sincScaleFactor = m_scaleFactor > 1.0 ? 1.0 / m_scaleFactor : 1.0;
// The sinc function is an idealized brick-wall filter, but since we're windowing it the
// transition from pass to stop does not happen right away. So we should adjust the
// lowpass filter cutoff slightly downward to avoid some aliasing at the very high-end.
// FIXME: this value is empirical and to be more exact should vary depending on kernelSize.
sincScaleFactor *= 0.9;
int n = kernelSize;
int halfSize = n / 2;
// Generates a set of windowed sinc() kernels.
// We generate a range of sub-sample offsets from 0.0 to 1.0.
for (unsigned offsetIndex = 0; offsetIndex <= numberOfKernelOffsets; ++offsetIndex) {
double subsampleOffset = static_cast<double>(offsetIndex) / numberOfKernelOffsets;
for (int i = 0; i < n; ++i) {
// Compute the sinc() with offset.
double s = sincScaleFactor * piDouble * (i - halfSize - subsampleOffset);
double sinc = !s ? 1.0 : sin(s) / s;
sinc *= sincScaleFactor;
// Compute Blackman window, matching the offset of the sinc().
double x = (i - subsampleOffset) / n;
double window = a0 - a1 * cos(2.0 * piDouble * x) + a2 * cos(4.0 * piDouble * x);
// Window the sinc() function and store at the correct offset.
m_kernelStorage[i + offsetIndex * kernelSize] = sinc * window;
}
}
}
void SincResampler::processBuffer(std::span<const float> source, std::span<float> destination, double scaleFactor)
{
RELEASE_ASSERT(destination.size() == static_cast<size_t>(source.size() / scaleFactor));
SincResampler resampler(scaleFactor, AudioUtilities::renderQuantumSize, [&source](std::span<float> buffer, size_t framesToProcess) mutable {
// Clamp to number of frames available and zero-pad.
size_t framesToCopy = std::min(source.size(), framesToProcess);
IGNORE_WARNINGS_BEGIN("restrict")
memcpySpan(buffer, source.first(framesToCopy));
IGNORE_WARNINGS_END
// Zero-pad if necessary.
if (framesToCopy < framesToProcess)
zeroSpan(buffer.subspan(framesToCopy, framesToProcess - framesToCopy));
skip(source, framesToCopy);
});
while (!destination.empty()) {
unsigned framesThisTime = std::min<size_t>(destination.size(), AudioUtilities::renderQuantumSize);
resampler.process(consumeSpan(destination, framesThisTime), framesThisTime);
}
}
void SincResampler::process(std::span<float> destination, size_t framesToProcess)
{
unsigned numberOfDestinationFrames = framesToProcess;
// Step (1)
// Prime the input buffer at the start of the input stream.
if (!m_isBufferPrimed) {
m_provideInput(m_r0, m_requestFrames);
m_isBufferPrimed = true;
}
// Step (2)
size_t destinationIndex = 0;
while (numberOfDestinationFrames) {
while (m_virtualSourceIndex < m_blockSize) {
// m_virtualSourceIndex lies in between two kernel offsets so figure out what they are.
int sourceIndexI = static_cast<int>(m_virtualSourceIndex);
double subsampleRemainder = m_virtualSourceIndex - sourceIndexI;
double virtualOffsetIndex = subsampleRemainder * numberOfKernelOffsets;
int offsetIndex = static_cast<int>(virtualOffsetIndex);
auto k1 = m_kernelStorage.span().subspan(offsetIndex * kernelSize);
auto k2 = k1.subspan(kernelSize);
// Ensure |k1|, |k2| are 16-byte aligned for SIMD usage. Should always be true so long as kernelSize is a multiple of 16.
ASSERT(!(reinterpret_cast<uintptr_t>(k1.data()) & 0x0F));
ASSERT(!(reinterpret_cast<uintptr_t>(k2.data()) & 0x0F));
// Initialize input pointer based on quantized m_virtualSourceIndex.
auto inputP = m_r1.subspan(sourceIndexI);
// Figure out how much to weight each kernel's "convolution".
double kernelInterpolationFactor = virtualOffsetIndex - offsetIndex;
destination[destinationIndex++] = convolve(inputP, k1, k2, kernelInterpolationFactor);
// Advance the virtual index.
m_virtualSourceIndex += m_scaleFactor;
--numberOfDestinationFrames;
if (!numberOfDestinationFrames)
return;
}
// Wrap back around to the start.
ASSERT(m_virtualSourceIndex >= m_blockSize);
m_virtualSourceIndex -= m_blockSize;
// Step (3) Copy r3 to r1.
// This wraps the last input frames back to the start of the buffer.
memcpySpan(m_r1, m_r3.first(kernelSize));
// Step (4) -- Reinitialize regions if necessary.
if (m_r0.data() == m_r2.data())
updateRegions(true);
// Step (5)
// Refresh the buffer with more input.
m_provideInput(m_r0, m_requestFrames);
}
}
float SincResampler::convolve(std::span<const float> inputP, std::span<const float> k1, std::span<const float> k2, float kernelInterpolationFactor)
{
#if USE(ACCELERATE)
float sum1 = VectorMath::dotProduct(inputP.first(kernelSize), k1.first(kernelSize));
float sum2 = VectorMath::dotProduct(inputP.first(kernelSize), k2.first(kernelSize));
// Linearly interpolate the two "convolutions".
return (1.0f - kernelInterpolationFactor) * sum1 + kernelInterpolationFactor * sum2;
#elif CPU(X86_SSE2)
__m128 m_input;
__m128 m_sums1 = _mm_setzero_ps();
__m128 m_sums2 = _mm_setzero_ps();
// Based on |inputP| alignment, we need to use loadu or load.
if (reinterpret_cast<uintptr_t>(inputP.data()) & 0x0F) {
for (unsigned i = 0; i < kernelSize; i += 4) {
m_input = _mm_loadu_ps(inputP.subspan(i).data());
m_sums1 = _mm_add_ps(m_sums1, _mm_mul_ps(m_input, _mm_load_ps(k1.subspan(i).data())));
m_sums2 = _mm_add_ps(m_sums2, _mm_mul_ps(m_input, _mm_load_ps(k2.subspan(i).data())));
}
} else {
for (unsigned i = 0; i < kernelSize; i += 4) {
m_input = _mm_load_ps(inputP.subspan(i).data());
m_sums1 = _mm_add_ps(m_sums1, _mm_mul_ps(m_input, _mm_load_ps(k1.subspan(i).data())));
m_sums2 = _mm_add_ps(m_sums2, _mm_mul_ps(m_input, _mm_load_ps(k2.subspan(i).data())));
}
}
// Linearly interpolate the two "convolutions".
m_sums1 = _mm_mul_ps(m_sums1, _mm_set_ps1(1.0f - kernelInterpolationFactor));
m_sums2 = _mm_mul_ps(m_sums2, _mm_set_ps1(kernelInterpolationFactor));
m_sums1 = _mm_add_ps(m_sums1, m_sums2);
// Sum components together.
float result;
m_sums2 = _mm_add_ps(_mm_movehl_ps(m_sums1, m_sums1), m_sums1);
_mm_store_ss(&result, _mm_add_ss(m_sums2, _mm_shuffle_ps(m_sums2, m_sums2, 1)));
return result;
#elif HAVE(ARM_NEON_INTRINSICS)
float32x4_t m_input;
float32x4_t m_sums1 = vmovq_n_f32(0);
float32x4_t m_sums2 = vmovq_n_f32(0);
inputP = inputP.first(kernelSize);
while (!inputP.empty()) {
m_input = vld1q_f32(inputP.data());
skip(inputP, 4);
m_sums1 = vmlaq_f32(m_sums1, m_input, vld1q_f32(k1.data()));
skip(k1, 4);
m_sums2 = vmlaq_f32(m_sums2, m_input, vld1q_f32(k2.data()));
skip(k2, 4);
}
// Linearly interpolate the two "convolutions".
m_sums1 = vmlaq_f32(vmulq_f32(m_sums1, vmovq_n_f32(1.0 - kernelInterpolationFactor)), m_sums2, vmovq_n_f32(kernelInterpolationFactor));
// Sum components together.
float32x2_t m_half = vadd_f32(vget_high_f32(m_sums1), vget_low_f32(m_sums1));
return vget_lane_f32(vpadd_f32(m_half, m_half), 0);
#else
float sum1 = 0;
float sum2 = 0;
// Generate a single output sample.
for (size_t i = 0; i < kernelSize; ++i) {
sum1 += inputP[i] * k1[i];
sum2 += inputP[i] * k2[i];
}
// Linearly interpolate the two "convolutions".
return (1.0f - kernelInterpolationFactor) * sum1 + kernelInterpolationFactor * sum2;
#endif
}
} // namespace WebCore
#endif // ENABLE(WEB_AUDIO)
|