1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
|
/*
* Copyright (C) 2014-2015 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "PathUtilities.h"
#include "AffineTransform.h"
#include "BorderData.h"
#include "FloatPoint.h"
#include "FloatRect.h"
#include "FloatRoundedRect.h"
#include "GeometryUtilities.h"
#include <math.h>
#include <wtf/MathExtras.h>
#include <wtf/TZoneMallocInlines.h>
namespace WebCore {
class FloatPointGraph {
WTF_MAKE_NONCOPYABLE(FloatPointGraph);
public:
FloatPointGraph() = default;
class Node : public FloatPoint {
WTF_MAKE_TZONE_ALLOCATED_INLINE(Node);
WTF_MAKE_NONCOPYABLE(Node);
public:
Node(FloatPoint point)
: FloatPoint(point)
{ }
const Vector<Node*>& nextPoints() const { return m_nextPoints; }
void addNextPoint(Node* node)
{
if (!m_nextPoints.contains(node))
m_nextPoints.append(node);
}
bool isVisited() const { return m_visited; }
void visit() { m_visited = true; }
void reset() { m_visited = false; m_nextPoints.clear(); }
private:
Vector<Node*> m_nextPoints;
bool m_visited { false };
};
typedef std::pair<Node*, Node*> Edge;
typedef Vector<Edge> Polygon;
Node* findOrCreateNode(FloatPoint);
void reset()
{
for (auto& node : m_allNodes)
node->reset();
}
private:
Vector<std::unique_ptr<Node>> m_allNodes;
};
FloatPointGraph::Node* FloatPointGraph::findOrCreateNode(FloatPoint point)
{
for (auto& testNode : m_allNodes) {
if (areEssentiallyEqual(*testNode, point))
return testNode.get();
}
m_allNodes.append(makeUnique<FloatPointGraph::Node>(point));
return m_allNodes.last().get();
}
static bool findLineSegmentIntersection(const FloatPointGraph::Edge& edgeA, const FloatPointGraph::Edge& edgeB, FloatPoint& intersectionPoint)
{
if (!findIntersection(*edgeA.first, *edgeA.second, *edgeB.first, *edgeB.second, intersectionPoint))
return false;
FloatPoint edgeAVec(*edgeA.second - *edgeA.first);
FloatPoint edgeBVec(*edgeB.second - *edgeB.first);
float dotA = edgeAVec.dot(toFloatPoint(intersectionPoint - *edgeA.first));
if (dotA < 0 || dotA > edgeAVec.lengthSquared())
return false;
float dotB = edgeBVec.dot(toFloatPoint(intersectionPoint - *edgeB.first));
if (dotB < 0 || dotB > edgeBVec.lengthSquared())
return false;
return true;
}
static bool addIntersectionPoints(Vector<FloatPointGraph::Polygon>& polys, FloatPointGraph& graph)
{
bool foundAnyIntersections = false;
Vector<FloatPointGraph::Edge> allEdges;
for (auto& poly : polys)
allEdges.appendVector(poly);
for (const FloatPointGraph::Edge& edgeA : allEdges) {
Vector<FloatPointGraph::Node*> intersectionPoints({edgeA.first, edgeA.second});
for (const FloatPointGraph::Edge& edgeB : allEdges) {
if (&edgeA == &edgeB)
continue;
FloatPoint intersectionPoint;
if (!findLineSegmentIntersection(edgeA, edgeB, intersectionPoint))
continue;
foundAnyIntersections = true;
intersectionPoints.append(graph.findOrCreateNode(intersectionPoint));
}
std::sort(intersectionPoints.begin(), intersectionPoints.end(), [edgeA](auto* a, auto* b) {
return FloatPoint(*edgeA.first - *b).lengthSquared() > FloatPoint(*edgeA.first - *a).lengthSquared();
});
for (unsigned pointIndex = 1; pointIndex < intersectionPoints.size(); pointIndex++)
intersectionPoints[pointIndex - 1]->addNextPoint(intersectionPoints[pointIndex]);
}
return foundAnyIntersections;
}
static FloatPointGraph::Polygon walkGraphAndExtractPolygon(FloatPointGraph::Node* startNode)
{
FloatPointGraph::Polygon outPoly;
FloatPointGraph::Node* currentNode = startNode;
FloatPointGraph::Node* previousNode = startNode;
do {
currentNode->visit();
FloatPoint currentVec(*previousNode - *currentNode);
currentVec.normalize();
// Walk the graph, at each node choosing the next non-visited
// point with the greatest internal angle.
FloatPointGraph::Node* nextNode = nullptr;
float nextNodeAngle = 0;
for (auto* potentialNextNode : currentNode->nextPoints()) {
if (potentialNextNode == currentNode)
continue;
// If we can get back to the start, we should, ignoring the fact that we already visited it.
// Otherwise we'll head inside the shape.
if (potentialNextNode == startNode) {
nextNode = startNode;
break;
}
if (potentialNextNode->isVisited())
continue;
FloatPoint nextVec(*potentialNextNode - *currentNode);
nextVec.normalize();
float angle = acos(nextVec.dot(currentVec));
float crossZ = nextVec.x() * currentVec.y() - nextVec.y() * currentVec.x();
if (crossZ < 0)
angle = (2 * piFloat) - angle;
if (!nextNode || angle > nextNodeAngle) {
nextNode = potentialNextNode;
nextNodeAngle = angle;
}
}
// If we don't end up at a node adjacent to the starting node,
// something went wrong (there's probably a hole in the shape),
// so bail out. We'll use a bounding box instead.
if (!nextNode)
return FloatPointGraph::Polygon();
outPoly.append(std::make_pair(currentNode, nextNode));
previousNode = currentNode;
currentNode = nextNode;
} while (currentNode != startNode);
return outPoly;
}
static FloatPointGraph::Node* findUnvisitedPolygonStartPoint(Vector<FloatPointGraph::Polygon>& polys)
{
for (auto& poly : polys) {
for (auto& edge : poly) {
if (edge.first->isVisited() || edge.second->isVisited())
goto nextPolygon;
}
// FIXME: We should make sure we find an outside edge to start with.
return poly[0].first;
nextPolygon:
continue;
}
return nullptr;
}
static Vector<FloatPointGraph::Polygon> unitePolygons(Vector<FloatPointGraph::Polygon>& polys, FloatPointGraph& graph)
{
graph.reset();
// There are no intersections, so the polygons are disjoint (we already removed wholly-contained rects in an earlier step).
if (!addIntersectionPoints(polys, graph))
return polys;
Vector<FloatPointGraph::Polygon> unitedPolygons;
while (FloatPointGraph::Node* startNode = findUnvisitedPolygonStartPoint(polys)) {
FloatPointGraph::Polygon unitedPolygon = walkGraphAndExtractPolygon(startNode);
if (unitedPolygon.isEmpty())
return Vector<FloatPointGraph::Polygon>();
unitedPolygons.append(unitedPolygon);
}
return unitedPolygons;
}
static FloatPointGraph::Polygon edgesForRect(FloatRect rect, FloatPointGraph& graph)
{
auto minMin = graph.findOrCreateNode(rect.minXMinYCorner());
auto minMax = graph.findOrCreateNode(rect.minXMaxYCorner());
auto maxMax = graph.findOrCreateNode(rect.maxXMaxYCorner());
auto maxMin = graph.findOrCreateNode(rect.maxXMinYCorner());
return FloatPointGraph::Polygon({
std::make_pair(minMin, maxMin),
std::make_pair(maxMin, maxMax),
std::make_pair(maxMax, minMax),
std::make_pair(minMax, minMin)
});
}
static Vector<FloatPointGraph::Polygon> polygonsForRect(const Vector<FloatRect>& rects, FloatPointGraph& graph)
{
Vector<FloatRect> sortedRects = rects;
// FIXME: Replace it with 2 dimensional sort.
std::sort(sortedRects.begin(), sortedRects.end(), [](FloatRect a, FloatRect b) {
return a.x() < b.x();
});
std::sort(sortedRects.begin(), sortedRects.end(), [](FloatRect a, FloatRect b) {
return a.y() < b.y();
});
Vector<FloatPointGraph::Polygon> rectPolygons;
rectPolygons.reserveInitialCapacity(sortedRects.size());
for (auto& rect : sortedRects) {
bool isContained = false;
for (auto& otherRect : sortedRects) {
if (&rect == &otherRect)
continue;
if (otherRect.contains(rect)) {
isContained = true;
break;
}
}
if (!isContained)
rectPolygons.append(edgesForRect(rect, graph));
}
return unitePolygons(rectPolygons, graph);
}
Vector<Path> PathUtilities::pathsWithShrinkWrappedRects(const Vector<FloatRect>& rects, float radius)
{
if (rects.isEmpty())
return { };
if (rects.size() > 20) {
Path path;
for (const auto& rect : rects)
path.addRoundedRect(rect, FloatSize(radius, radius));
return { WTFMove(path) };
}
FloatPointGraph graph;
Vector<FloatPointGraph::Polygon> polys = polygonsForRect(rects, graph);
if (polys.isEmpty()) {
Path path;
for (const auto& rect : rects)
path.addRoundedRect(rect, FloatSize(radius, radius));
return { WTFMove(path) };
}
return WTF::map(polys, [&](auto& poly) {
Path path;
for (unsigned i = 0; i < poly.size(); ++i) {
FloatPointGraph::Edge& toEdge = poly[i];
// Connect the first edge to the last.
FloatPointGraph::Edge& fromEdge = (i > 0) ? poly[i - 1] : poly[poly.size() - 1];
FloatPoint fromEdgeVec = toFloatPoint(*fromEdge.second - *fromEdge.first);
FloatPoint toEdgeVec = toFloatPoint(*toEdge.second - *toEdge.first);
// Clamp the radius to no more than half the length of either adjacent edge,
// because we want a smooth curve and don't want unequal radii.
float clampedRadius = std::min(radius, fromEdgeVec.length() / 2);
clampedRadius = std::min(clampedRadius, toEdgeVec.length() / 2);
FloatPoint fromEdgeNorm = fromEdgeVec;
fromEdgeNorm.normalize();
FloatPoint toEdgeNorm = toEdgeVec;
toEdgeNorm.normalize();
// Project the radius along the incoming and outgoing edge.
FloatSize fromOffset = clampedRadius * toFloatSize(fromEdgeNorm);
FloatSize toOffset = clampedRadius * toFloatSize(toEdgeNorm);
if (!i)
path.moveTo(*fromEdge.second - fromOffset);
else
path.addLineTo(*fromEdge.second - fromOffset);
path.addArcTo(*fromEdge.second, *toEdge.first + toOffset, clampedRadius);
}
path.closeSubpath();
return path;
});
}
Path PathUtilities::pathWithShrinkWrappedRects(const Vector<FloatRect>& rects, float radius)
{
Vector<Path> paths = pathsWithShrinkWrappedRects(rects, radius);
Path unionPath;
for (const auto& path : paths)
unionPath.addPath(path, AffineTransform());
return unionPath;
}
Path PathUtilities::pathWithShrinkWrappedRects(const Vector<FloatRect>& rects, const FloatRoundedRect::Radii& radii)
{
if (radii.isUniformCornerRadius())
return pathWithShrinkWrappedRects(rects, radii.topLeft().width());
// FIXME: This could potentially take non-uniform radii into account when running the
// shrink-wrap algorithm above, by averaging corner radii between adjacent edges.
Path path;
for (auto& rect : rects)
path.addRoundedRect(FloatRoundedRect { rect, radii });
return path;
}
static std::pair<FloatPoint, FloatPoint> startAndEndPointsForCorner(const FloatPointGraph::Edge& fromEdge, const FloatPointGraph::Edge& toEdge, const FloatSize& radius)
{
FloatPoint startPoint;
FloatPoint endPoint;
FloatSize fromEdgeVector = *fromEdge.second - *fromEdge.first;
FloatSize toEdgeVector = *toEdge.second - *toEdge.first;
FloatPoint fromEdgeNorm = toFloatPoint(fromEdgeVector);
fromEdgeNorm.normalize();
FloatSize fromOffset = FloatSize(radius.width() * fromEdgeNorm.x(), radius.height() * fromEdgeNorm.y());
startPoint = *fromEdge.second - fromOffset;
FloatPoint toEdgeNorm = toFloatPoint(toEdgeVector);
toEdgeNorm.normalize();
FloatSize toOffset = FloatSize(radius.width() * toEdgeNorm.x(), radius.height() * toEdgeNorm.y());
endPoint = *toEdge.first + toOffset;
return std::make_pair(startPoint, endPoint);
}
enum class CornerType { TopLeft, TopRight, BottomRight, BottomLeft, Other };
static CornerType cornerType(const FloatPointGraph::Edge& fromEdge, const FloatPointGraph::Edge& toEdge)
{
auto fromEdgeVector = *fromEdge.second - *fromEdge.first;
auto toEdgeVector = *toEdge.second - *toEdge.first;
if (fromEdgeVector.height() < 0 && toEdgeVector.width() > 0)
return CornerType::TopLeft;
if (fromEdgeVector.width() > 0 && toEdgeVector.height() > 0)
return CornerType::TopRight;
if (fromEdgeVector.height() > 0 && toEdgeVector.width() < 0)
return CornerType::BottomRight;
if (fromEdgeVector.width() < 0 && toEdgeVector.height() < 0)
return CornerType::BottomLeft;
return CornerType::Other;
}
static CornerType cornerTypeForMultiline(const FloatPointGraph::Edge& fromEdge, const FloatPointGraph::Edge& toEdge, const Vector<FloatPoint>& corners)
{
auto corner = cornerType(fromEdge, toEdge);
if (corner == CornerType::TopLeft && corners.at(0) == *fromEdge.second)
return corner;
if (corner == CornerType::TopRight && corners.at(1) == *fromEdge.second)
return corner;
if (corner == CornerType::BottomRight && corners.at(2) == *fromEdge.second)
return corner;
if (corner == CornerType::BottomLeft && corners.at(3) == *fromEdge.second)
return corner;
return CornerType::Other;
}
static std::pair<FloatPoint, FloatPoint> controlPointsForBezierCurve(CornerType cornerType, const FloatPointGraph::Edge& fromEdge,
const FloatPointGraph::Edge& toEdge, const FloatSize& radius)
{
FloatPoint cp1;
FloatPoint cp2;
switch (cornerType) {
case CornerType::TopLeft: {
cp1 = FloatPoint(fromEdge.second->x(), fromEdge.second->y() + radius.height() * Path::circleControlPoint());
cp2 = FloatPoint(toEdge.first->x() + radius.width() * Path::circleControlPoint(), toEdge.first->y());
break;
}
case CornerType::TopRight: {
cp1 = FloatPoint(fromEdge.second->x() - radius.width() * Path::circleControlPoint(), fromEdge.second->y());
cp2 = FloatPoint(toEdge.first->x(), toEdge.first->y() + radius.height() * Path::circleControlPoint());
break;
}
case CornerType::BottomRight: {
cp1 = FloatPoint(fromEdge.second->x(), fromEdge.second->y() - radius.height() * Path::circleControlPoint());
cp2 = FloatPoint(toEdge.first->x() - radius.width() * Path::circleControlPoint(), toEdge.first->y());
break;
}
case CornerType::BottomLeft: {
cp1 = FloatPoint(fromEdge.second->x() + radius.width() * Path::circleControlPoint(), fromEdge.second->y());
cp2 = FloatPoint(toEdge.first->x(), toEdge.first->y() - radius.height() * Path::circleControlPoint());
break;
}
case CornerType::Other: {
ASSERT_NOT_REACHED();
break;
}
}
return std::make_pair(cp1, cp2);
}
static FloatRoundedRect::Radii adjustedRadiiForHuggingCurve(const FloatSize& topLeftRadius, const FloatSize& topRightRadius,
const FloatSize& bottomLeftRadius, const FloatSize& bottomRightRadius, float outlineOffset)
{
FloatRoundedRect::Radii radii;
// This adjusts the radius so that it follows the border curve even when offset is present.
auto adjustedRadius = [outlineOffset](const FloatSize& radius)
{
FloatSize expandSize;
if (radius.width() > outlineOffset)
expandSize.setWidth(std::min(outlineOffset, radius.width() - outlineOffset));
if (radius.height() > outlineOffset)
expandSize.setHeight(std::min(outlineOffset, radius.height() - outlineOffset));
FloatSize adjustedRadius = radius;
adjustedRadius.expand(expandSize.width(), expandSize.height());
// Do not go to negative radius.
return adjustedRadius.expandedTo(FloatSize(0, 0));
};
radii.setTopLeft(adjustedRadius(topLeftRadius));
radii.setTopRight(adjustedRadius(topRightRadius));
radii.setBottomRight(adjustedRadius(bottomRightRadius));
radii.setBottomLeft(adjustedRadius(bottomLeftRadius));
return radii;
}
static std::optional<FloatRect> rectFromPolygon(const FloatPointGraph::Polygon& poly)
{
if (poly.size() != 4)
return std::optional<FloatRect>();
std::optional<FloatPoint> topLeft;
std::optional<FloatPoint> bottomRight;
for (unsigned i = 0; i < poly.size(); ++i) {
const auto& toEdge = poly[i];
const auto& fromEdge = (i > 0) ? poly[i - 1] : poly[poly.size() - 1];
auto corner = cornerType(fromEdge, toEdge);
if (corner == CornerType::TopLeft) {
ASSERT(!topLeft);
topLeft = *fromEdge.second;
} else if (corner == CornerType::BottomRight) {
ASSERT(!bottomRight);
bottomRight = *fromEdge.second;
}
}
if (!topLeft || !bottomRight)
return std::optional<FloatRect>();
return FloatRect(topLeft.value(), bottomRight.value());
}
Path PathUtilities::pathWithShrinkWrappedRectsForOutline(const Vector<FloatRect>& rects, const BorderData& borderData,
float outlineOffset, WritingMode writingMode, float deviceScaleFactor)
{
FloatSize topLeftRadius { borderData.topLeftRadius().width.value(), borderData.topLeftRadius().height.value() };
FloatSize topRightRadius { borderData.topRightRadius().width.value(), borderData.topRightRadius().height.value() };
FloatSize bottomRightRadius { borderData.bottomRightRadius().width.value(), borderData.bottomRightRadius().height.value() };
FloatSize bottomLeftRadius { borderData.bottomLeftRadius().width.value(), borderData.bottomLeftRadius().height.value() };
auto roundedRect = [topLeftRadius, topRightRadius, bottomRightRadius, bottomLeftRadius, outlineOffset, deviceScaleFactor] (const FloatRect& rect)
{
auto radii = adjustedRadiiForHuggingCurve(topLeftRadius, topRightRadius, bottomLeftRadius, bottomRightRadius, outlineOffset);
radii.scale(calcBorderRadiiConstraintScaleFor(rect, radii));
RoundedRect roundedRect(LayoutRect(rect),
RoundedRect::Radii(LayoutSize(radii.topLeft()), LayoutSize(radii.topRight()), LayoutSize(radii.bottomLeft()), LayoutSize(radii.bottomRight())));
Path path;
path.addRoundedRect(roundedRect.pixelSnappedRoundedRectForPainting(deviceScaleFactor));
return path;
};
if (rects.size() == 1)
return roundedRect(rects.at(0));
FloatPointGraph graph;
const auto polys = polygonsForRect(rects, graph);
// Fall back to corner painting with no radius for empty and disjoint rectangles.
if (!polys.size() || polys.size() > 1)
return Path();
const auto& poly = polys.at(0);
// Fast path when poly has one rect only.
std::optional<FloatRect> rect = rectFromPolygon(poly);
if (rect)
return roundedRect(rect.value());
Path path;
// Multiline outline needs to match multiline border painting. Only first and last lines are getting rounded borders.
auto isLeftToRight = writingMode.isBidiLTR();
auto firstLineRect = isLeftToRight ? rects.at(0) : rects.at(rects.size() - 1);
auto lastLineRect = isLeftToRight ? rects.at(rects.size() - 1) : rects.at(0);
// Adjust radius so that it matches the box border.
auto firstLineRadii = FloatRoundedRect::Radii(topLeftRadius, topRightRadius, bottomLeftRadius, bottomRightRadius);
auto lastLineRadii = FloatRoundedRect::Radii(topLeftRadius, topRightRadius, bottomLeftRadius, bottomRightRadius);
firstLineRadii.scale(calcBorderRadiiConstraintScaleFor(firstLineRect, firstLineRadii));
lastLineRadii.scale(calcBorderRadiiConstraintScaleFor(lastLineRect, lastLineRadii));
topLeftRadius = firstLineRadii.topLeft();
bottomLeftRadius = firstLineRadii.bottomLeft();
topRightRadius = lastLineRadii.topRight();
bottomRightRadius = lastLineRadii.bottomRight();
// physical topLeft/topRight/bottomRight/bottomLeft
auto isHorizontal = writingMode.isHorizontal();
auto corners = Vector<FloatPoint>::from(
firstLineRect.minXMinYCorner(),
isHorizontal ? lastLineRect.maxXMinYCorner() : firstLineRect.maxXMinYCorner(),
lastLineRect.maxXMaxYCorner(),
isHorizontal ? firstLineRect.minXMaxYCorner() : lastLineRect.minXMaxYCorner()
);
for (unsigned i = 0; i < poly.size(); ++i) {
auto moveOrAddLineTo = [i, &path] (const FloatPoint& startPoint)
{
if (!i)
path.moveTo(startPoint);
else
path.addLineTo(startPoint);
};
const auto& toEdge = poly[i];
const auto& fromEdge = (i > 0) ? poly[i - 1] : poly[poly.size() - 1];
FloatSize radius;
auto corner = cornerTypeForMultiline(fromEdge, toEdge, corners);
switch (corner) {
case CornerType::TopLeft: {
radius = topLeftRadius;
break;
}
case CornerType::TopRight: {
radius = topRightRadius;
break;
}
case CornerType::BottomRight: {
radius = bottomRightRadius;
break;
}
case CornerType::BottomLeft: {
radius = bottomLeftRadius;
break;
}
case CornerType::Other: {
// Do not apply border radius on corners that normal border painting skips. (multiline content)
moveOrAddLineTo(*fromEdge.second);
continue;
}
}
auto [startPoint, endPoint] = startAndEndPointsForCorner(fromEdge, toEdge, radius);
moveOrAddLineTo(startPoint);
auto [cp1, cp2] = controlPointsForBezierCurve(corner, fromEdge, toEdge, radius);
path.addBezierCurveTo(cp1, cp2, endPoint);
}
path.closeSubpath();
return path;
}
}
|