1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
/*
* Copyright (C) 2008 Apple Inc. All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef UnitBezier_h
#define UnitBezier_h
#include <array>
#include <math.h>
namespace WebCore {
struct UnitBezier {
#define CUBIC_BEZIER_SPLINE_SAMPLES 11
static constexpr double kBezierEpsilon = 1e-7;
static constexpr int kMaxNewtonIterations = 4;
UnitBezier(double p1x, double p1y, double p2x, double p2y)
{
// Calculate the polynomial coefficients, implicit first and last control points are (0,0) and (1,1).
cx = 3.0 * p1x;
bx = 3.0 * (p2x - p1x) - cx;
ax = 1.0 - cx -bx;
cy = 3.0 * p1y;
by = 3.0 * (p2y - p1y) - cy;
ay = 1.0 - cy - by;
// End-point gradients are used to calculate timing function results
// outside the range [0, 1].
//
// There are four possibilities for the gradient at each end:
// (1) the closest control point is not horizontally coincident with regard to
// (0, 0) or (1, 1). In this case the line between the end point and
// the control point is tangent to the bezier at the end point.
// (2) the closest control point is coincident with the end point. In
// this case the line between the end point and the far control
// point is tangent to the bezier at the end point.
// (3) both internal control points are coincident with an endpoint. There
// are two special case that fall into this category:
// CubicBezier(0, 0, 0, 0) and CubicBezier(1, 1, 1, 1). Both are
// equivalent to linear.
// (4) the closest control point is horizontally coincident with the end
// point, but vertically distinct. In this case the gradient at the
// end point is Infinite. However, this causes issues when
// interpolating. As a result, we break down to a simple case of
// 0 gradient under these conditions.
if (p1x > 0)
startGradient = p1y / p1x;
else if (!p1y && p2x > 0)
startGradient = p2y / p2x;
else if (!p1y && !p2y)
startGradient = 1;
else
startGradient = 0;
if (p2x < 1)
endGradient = (p2y - 1) / (p2x - 1);
else if (p2y == 1 && p1x < 1)
endGradient = (p1y - 1) / (p1x - 1);
else if (p2y == 1 && p1y == 1)
endGradient = 1;
else
endGradient = 0;
double deltaT = 1.0 / (CUBIC_BEZIER_SPLINE_SAMPLES - 1);
for (int i = 0; i < CUBIC_BEZIER_SPLINE_SAMPLES; i++)
splineSamples[i] = sampleCurveX(i * deltaT);
}
double sampleCurveX(double t)
{
// `ax t^3 + bx t^2 + cx t' expanded using Horner's rule.
return ((ax * t + bx) * t + cx) * t;
}
double sampleCurveY(double t)
{
return ((ay * t + by) * t + cy) * t;
}
double sampleCurveDerivativeX(double t)
{
return (3.0 * ax * t + 2.0 * bx) * t + cx;
}
// Given an x value, find a parametric value it came from.
double solveCurveX(double x, double epsilon)
{
double t0 = 0.0;
double t1 = 0.0;
double t2 = x;
double x2 = 0.0;
double d2 = 0.0;
int i = 0;
// Linear interpolation of spline curve for initial guess.
double deltaT = 1.0 / (CUBIC_BEZIER_SPLINE_SAMPLES - 1);
for (i = 1; i < CUBIC_BEZIER_SPLINE_SAMPLES; i++) {
if (x <= splineSamples[i]) {
t1 = deltaT * i;
t0 = t1 - deltaT;
t2 = t0 + (t1 - t0) * (x - splineSamples[i - 1]) / (splineSamples[i] - splineSamples[i - 1]);
break;
}
}
// Perform a few iterations of Newton's method -- normally very fast.
// See https://en.wikipedia.org/wiki/Newton%27s_method.
double newtonEpsilon = std::min(kBezierEpsilon, epsilon);
for (i = 0; i < kMaxNewtonIterations; i++) {
x2 = sampleCurveX(t2) - x;
if (std::abs(x2) < newtonEpsilon)
return t2;
d2 = sampleCurveDerivativeX(t2);
if (std::abs(d2) < kBezierEpsilon)
break;
t2 = t2 - x2 / d2;
}
if (std::abs(x2) < epsilon)
return t2;
// Fall back to the bisection method for reliability.
while (t0 < t1) {
x2 = sampleCurveX(t2);
if (std::abs(x2 - x) < epsilon)
return t2;
if (x > x2)
t0 = t2;
else
t1 = t2;
t2 = (t1 + t0) * .5;
}
// Failure.
return t2;
}
double solve(double x, double epsilon)
{
if (x < 0.0)
return 0.0 + startGradient * x;
if (x > 1.0)
return 1.0 + endGradient * (x - 1.0);
return sampleCurveY(solveCurveX(x, epsilon));
}
private:
double ax;
double bx;
double cx;
double ay;
double by;
double cy;
double startGradient;
double endGradient;
std::array<double, CUBIC_BEZIER_SPLINE_SAMPLES> splineSamples;
};
}
#endif
|