File: TextureMapperShaderProgram.cpp

package info (click to toggle)
webkit2gtk 2.48.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 429,764 kB
  • sloc: cpp: 3,697,587; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,295; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (705 lines) | stat: -rw-r--r-- 30,256 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
/*
 Copyright (C) 2012 Nokia Corporation and/or its subsidiary(-ies)
 Copyright (C) 2012 Igalia S.L.
 Copyright (C) 2011 Google Inc. All rights reserved.

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Library General Public
 License as published by the Free Software Foundation; either
 version 2 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 Library General Public License for more details.

 You should have received a copy of the GNU Library General Public License
 along with this library; see the file COPYING.LIB.  If not, write to
 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 Boston, MA 02110-1301, USA.
 */

#include "config.h"
#include "TextureMapperShaderProgram.h"

#if USE(TEXTURE_MAPPER)

#include "GLContext.h"
#include "Logging.h"
#include <wtf/text/StringBuilder.h>

namespace WebCore {

static inline bool compositingLogEnabled()
{
#if !LOG_DISABLED
    return LogCompositing.state == WTFLogChannelState::On;
#else
    return false;
#endif
}

#define STRINGIFY(...) #__VA_ARGS__

#define GLSL_DIRECTIVE(...) "#"#__VA_ARGS__"\n"

#define TEXTURE_SPACE_MATRIX_PRECISION_DIRECTIVE \
    GLSL_DIRECTIVE(ifdef GL_FRAGMENT_PRECISION_HIGH) \
        GLSL_DIRECTIVE(define TextureSpaceMatrixPrecision highp) \
    GLSL_DIRECTIVE(else) \
        GLSL_DIRECTIVE(define TextureSpaceMatrixPrecision mediump) \
    GLSL_DIRECTIVE(endif)


// Input/output variables definition for OpenGL ES < 3.2.
static const char* vertexTemplateLT320Vars =
    TEXTURE_SPACE_MATRIX_PRECISION_DIRECTIVE
    STRINGIFY(
        precision TextureSpaceMatrixPrecision float;
    )
    STRINGIFY(
        attribute vec4 a_vertex;
        varying vec2 v_texCoord;
        varying vec2 v_transformedTexCoord;
        varying float v_antialias;
        varying vec4 v_nonProjectedPosition;
    );

static const char* vertexTemplateCommon =
    STRINGIFY(
        uniform mat4 u_modelViewMatrix;
        uniform mat4 u_projectionMatrix;
        uniform mat4 u_textureSpaceMatrix;

        void noop(vec2 position) { }

        vec4 toViewportSpace(vec2 pos) { return u_modelViewMatrix * vec4(pos, 0., 1.); }

        // This function relies on the assumption that we get edge triangles with control points,
        // a control point being the nearest point to the coordinate that is on the edge.
        void applyAntialiasing(vec2 position)
        {
            const vec2 center = vec2(0.5, 0.5);
            const float antialiasInflationDistance = 1.;
            // We pass the control point as the zw coordinates of the vertex.
            // The control point is the point on the edge closest to the current position.
            vec2 controlPoint = a_vertex.zw;
            bool isCenter = distance(position, controlPoint) > 0.;
            if (isCenter) {
                // v_antialias needs to be 0 for the outer edge and 1. for the inner edge.
                // We make sure that the varying interpolates between 0 (outer edge), 1 (inner edge) and n > 1 (center).
                // Mathematically, v_antialias for the center is:
                //
                //    v_antialias = (viewportSpaceDistance + antialiasInflationDistance) / antialiasInflationDistance
                //
                // Because we use homogeneous coordinates for the viewport space, we use it for v_antialias, too.
                // The denominator is v_nonProjectedPosition.w. So. multiply the numerator by v_nonProjectedPosition.w:
                //
                //    v_antialias = (viewportSpaceDistance + antialiasInflationDistance) * v_nonProjectedPosition.w / antialiasInflationDistance

                vec4 controlPointInViewportCoordinates = toViewportSpace(controlPoint);
                // Calculate the distance after the reduction to common denominator.
                float viewportSpaceDistance = distance(v_nonProjectedPosition.xy * controlPointInViewportCoordinates.w, controlPointInViewportCoordinates.xy * v_nonProjectedPosition.w);
                // Calculate the distance multiplied by v_nonProjectedPosition.w.
                // FIXME: The case of controlPointInViewportCoordinates.w <= 0.
                if (controlPointInViewportCoordinates.w > 0.)
                    viewportSpaceDistance /= controlPointInViewportCoordinates.w;
                v_antialias = (viewportSpaceDistance + antialiasInflationDistance * v_nonProjectedPosition.w) / antialiasInflationDistance;
            } else {
                vec4 centerInViewportCoordinates = toViewportSpace(center);
                // Calculate the 2D direction from the center to the vertex in the viewport space (homogeneous coordinates).
                // Subtract after the reduction to common denominator, centerInViewportCoordinates.w * v_nonProjectedPosition.w.
                vec2 direction = v_nonProjectedPosition.xy * centerInViewportCoordinates.w - centerInViewportCoordinates.xy * v_nonProjectedPosition.w;
                if (length(direction) > 0.) {
                    float oldDistance = distance(v_nonProjectedPosition.xyz, centerInViewportCoordinates.xyz);
                    // Move the vertex toward the direction from the center to the vertex.
                    v_nonProjectedPosition += vec4(normalize(direction) * antialiasInflationDistance * v_nonProjectedPosition.w, 0., 0.);
                    float newDistance = distance(v_nonProjectedPosition.xyz, centerInViewportCoordinates.xyz);
                    // Move v_texCoord based on 3D distance inflation ratio.
                    v_texCoord += normalize(position - center) * (newDistance - oldDistance) / oldDistance;
                } 
                v_antialias = 0.;
            }
        }

        void main(void)
        {
            vec2 position = a_vertex.xy;

            v_texCoord = position;
            v_transformedTexCoord = (u_textureSpaceMatrix * vec4(position, 0., 1.)).xy;
            v_nonProjectedPosition = toViewportSpace(position);
            applyAntialiasingIfNeeded(position);
            gl_Position = u_projectionMatrix * v_nonProjectedPosition;
        }
    );

#define ANTIALIASING_TEX_COORD_DIRECTIVE \
    GLSL_DIRECTIVE(if defined(ENABLE_Antialiasing)) \
        GLSL_DIRECTIVE(define transformTexCoord fragmentTransformTexCoord) \
    GLSL_DIRECTIVE(else) \
        GLSL_DIRECTIVE(define transformTexCoord vertexTransformTexCoord) \
    GLSL_DIRECTIVE(endif)

#define ENABLE_APPLIER(Name) "#define ENABLE_"#Name"\n#define apply"#Name"IfNeeded apply"#Name"\n"
#define DISABLE_APPLIER(Name) "#define apply"#Name"IfNeeded noop\n"
#define BLUR_CONSTANTS \
    GLSL_DIRECTIVE(define GAUSSIAN_KERNEL_MAX_HALF_SIZE 6)


#define OES_EGL_IMAGE_EXTERNAL_DIRECTIVE \
    GLSL_DIRECTIVE(ifdef ENABLE_TextureExternalOES) \
        GLSL_DIRECTIVE(extension GL_OES_EGL_image_external : require) \
        GLSL_DIRECTIVE(define SamplerExternalOESType samplerExternalOES) \
        STRINGIFY( \
            precision mediump samplerExternalOES;\n \
        ) \
    GLSL_DIRECTIVE(else) \
        GLSL_DIRECTIVE(define SamplerExternalOESType sampler2D) \
    GLSL_DIRECTIVE(endif)

// The max number of stacked rounded rectangle clips allowed is 10, which is also the
// max number of transforms that we can get. We need 3 components for each rounded
// rectangle so we need 30 components to receive the 10 rectangles.
//
// Keep this is sync with the values defined in ClipStack.h
#define ROUNDED_RECT_CONSTANTS                       \
    GLSL_DIRECTIVE(define ROUNDED_RECT_MAX_RECTS 10) \
    GLSL_DIRECTIVE(define ROUNDED_RECT_ARRAY_SIZE 30) \
    GLSL_DIRECTIVE(define ROUNDED_RECT_INVERSE_TRANSFORM_ARRAY_SIZE 10)

// Common header for all versions. We define the matrices variables here to keep the precision
// directives scope: the first one applies to the matrices variables and the next one to the
// rest of them.
static const char* fragmentTemplateHeaderCommon =
    ANTIALIASING_TEX_COORD_DIRECTIVE
    BLUR_CONSTANTS
    ROUNDED_RECT_CONSTANTS
    OES_EGL_IMAGE_EXTERNAL_DIRECTIVE
    TEXTURE_SPACE_MATRIX_PRECISION_DIRECTIVE
    STRINGIFY(
        precision TextureSpaceMatrixPrecision float;
    )
    STRINGIFY(
        uniform mat4 u_textureSpaceMatrix;
        uniform mat4 u_textureColorSpaceMatrix;
    )
    STRINGIFY(
        precision mediump float;
    );

// Input/output variables definition for both OpenGL ES < 3.2.
static const char* fragmentTemplateLT320Vars =
    STRINGIFY(
        varying float v_antialias;
        varying vec2 v_texCoord;
        varying vec2 v_transformedTexCoord;
        varying vec4 v_nonProjectedPosition;
    );

static const char* fragmentTemplateCommon =
    STRINGIFY(
        uniform sampler2D s_sampler;
        uniform sampler2D s_samplerY;
        uniform sampler2D s_samplerU;
        uniform sampler2D s_samplerV;
        uniform sampler2D s_samplerA;
        uniform sampler2D s_contentTexture;
        uniform SamplerExternalOESType s_externalOESTexture;
        uniform float u_opacity;
        uniform float u_filterAmount;
        uniform mat4 u_yuvToRgb;
        uniform vec4 u_color;
        uniform vec2 u_texelSize;
        uniform float u_gaussianKernel[GAUSSIAN_KERNEL_MAX_HALF_SIZE];
        uniform float u_gaussianKernelOffset[GAUSSIAN_KERNEL_MAX_HALF_SIZE];
        uniform int u_gaussianKernelHalfSize;
        uniform vec2 u_blurDirection;
        uniform int u_roundedRectNumber;
        uniform vec4 u_roundedRect[ROUNDED_RECT_ARRAY_SIZE];
        uniform mat4 u_roundedRectInverseTransformMatrix[ROUNDED_RECT_INVERSE_TRANSFORM_ARRAY_SIZE];

        void noop(inout vec4 dummyParameter) { }
        void noop(inout vec4 dummyParameter, vec2 texCoord) { }
        void noop(inout vec2 dummyParameter) { }

        float antialias()
        {
            if (v_nonProjectedPosition.w <= 0.)
                return 1.;
            return smoothstep(0., 1., v_antialias / v_nonProjectedPosition.w);
        }

        vec2 fragmentTransformTexCoord()
        {
            vec4 clampedPosition = clamp(vec4(v_texCoord, 0., 1.), 0., 1.);
            return (u_textureSpaceMatrix * clampedPosition).xy;
        }

        vec2 vertexTransformTexCoord() { return v_transformedTexCoord; }

        void applyManualRepeat(inout vec2 pos) { pos = fract(pos); }

        void applyTextureRGB(inout vec4 color, vec2 texCoord) { color = u_textureColorSpaceMatrix * texture2D(s_sampler, texCoord); }

        void applyPremultiply(inout vec4 color) { color = vec4(color.rgb * color.a, color.a); }

        vec3 yuvToRgb(float y, float u, float v)
        {
            vec4 rgb = vec4(y, u, v, 1.0) * u_yuvToRgb;
            return rgb.xyz;
        }
        void applyTextureYUV(inout vec4 color, vec2 texCoord)
        {
            float y = texture2D(s_samplerY, texCoord).r;
            float u = texture2D(s_samplerU, texCoord).r;
            float v = texture2D(s_samplerV, texCoord).r;
            vec4 data = vec4(yuvToRgb(y, u, v), 1.0);
            color = u_textureColorSpaceMatrix * data;
        }
        void applyTextureYUVA(inout vec4 color, vec2 texCoord)
        {
            float y = texture2D(s_samplerY, texCoord).r;
            float u = texture2D(s_samplerU, texCoord).r;
            float v = texture2D(s_samplerV, texCoord).r;
            float a = texture2D(s_samplerA, texCoord).r;
            vec4 data = vec4(yuvToRgb(y, u, v), a);
            color = u_textureColorSpaceMatrix * data;
        }
        void applyTextureNV12(inout vec4 color, vec2 texCoord)
        {
            float y = texture2D(s_samplerY, texCoord).r;
            vec2 uv = texture2D(s_samplerU, texCoord).rg;
            vec4 data = vec4(yuvToRgb(y, uv.x, uv.y), 1.0);
            color = u_textureColorSpaceMatrix * data;
        }
        void applyTextureNV21(inout vec4 color, vec2 texCoord)
        {
            float y = texture2D(s_samplerY, texCoord).r;
            vec2 uv = texture2D(s_samplerU, texCoord).gr;
            vec4 data = vec4(yuvToRgb(y, uv.x, uv.y), 1.0);
            color = u_textureColorSpaceMatrix * data;
        }
        void applyTexturePackedYUV(inout vec4 color, vec2 texCoord)
        {
            vec4 data = texture2D(s_sampler, texCoord);
            color = u_textureColorSpaceMatrix * vec4(yuvToRgb(data.b, data.g, data.r), data.a);
        }
        void applyOpacity(inout vec4 color) { color *= u_opacity; }
        void applyAntialiasing(inout vec4 color) { color *= antialias(); }

        void applyGrayscaleFilter(inout vec4 color)
        {
            float amount = 1.0 - u_filterAmount;
            color = vec4((0.2126 + 0.7874 * amount) * color.r + (0.7152 - 0.7152 * amount) * color.g + (0.0722 - 0.0722 * amount) * color.b,
                (0.2126 - 0.2126 * amount) * color.r + (0.7152 + 0.2848 * amount) * color.g + (0.0722 - 0.0722 * amount) * color.b,
                (0.2126 - 0.2126 * amount) * color.r + (0.7152 - 0.7152 * amount) * color.g + (0.0722 + 0.9278 * amount) * color.b,
                color.a);
        }

        void applySepiaFilter(inout vec4 color)
        {
            float amount = 1.0 - u_filterAmount;
            color = vec4((0.393 + 0.607 * amount) * color.r + (0.769 - 0.769 * amount) * color.g + (0.189 - 0.189 * amount) * color.b,
                (0.349 - 0.349 * amount) * color.r + (0.686 + 0.314 * amount) * color.g + (0.168 - 0.168 * amount) * color.b,
                (0.272 - 0.272 * amount) * color.r + (0.534 - 0.534 * amount) * color.g + (0.131 + 0.869 * amount) * color.b,
                color.a);
        }

        void applySaturateFilter(inout vec4 color)
        {
            color = vec4((0.213 + 0.787 * u_filterAmount) * color.r + (0.715 - 0.715 * u_filterAmount) * color.g + (0.072 - 0.072 * u_filterAmount) * color.b,
                (0.213 - 0.213 * u_filterAmount) * color.r + (0.715 + 0.285 * u_filterAmount) * color.g + (0.072 - 0.072 * u_filterAmount) * color.b,
                (0.213 - 0.213 * u_filterAmount) * color.r + (0.715 - 0.715 * u_filterAmount) * color.g + (0.072 + 0.928 * u_filterAmount) * color.b,
                color.a);
        }

        void applyHueRotateFilter(inout vec4 color)
        {
            float pi = 3.14159265358979323846;
            float c = cos(u_filterAmount * pi / 180.0);
            float s = sin(u_filterAmount * pi / 180.0);
            color = vec4(color.r * (0.213 + c * 0.787 - s * 0.213) + color.g * (0.715 - c * 0.715 - s * 0.715) + color.b * (0.072 - c * 0.072 + s * 0.928),
                color.r * (0.213 - c * 0.213 + s * 0.143) + color.g * (0.715 + c * 0.285 + s * 0.140) + color.b * (0.072 - c * 0.072 - s * 0.283),
                color.r * (0.213 - c * 0.213 - s * 0.787) +  color.g * (0.715 - c * 0.715 + s * 0.715) + color.b * (0.072 + c * 0.928 + s * 0.072),
                color.a);
        }

        float invert(float n, float a) { return (a - n) * u_filterAmount + n * (1.0 - u_filterAmount); }
        void applyInvertFilter(inout vec4 color)
        {
            color = vec4(invert(color.r, color.a), invert(color.g, color.a), invert(color.b, color.a), color.a);
        }

        void applyBrightnessFilter(inout vec4 color)
        {
            color = vec4(color.rgb * u_filterAmount, color.a);
        }

        float contrast(float n) { return (n - 0.5) * u_filterAmount + 0.5; }
        void applyContrastFilter(inout vec4 color)
        {
            color = vec4(contrast(color.r), contrast(color.g), contrast(color.b), color.a);
        }

        void applyOpacityFilter(inout vec4 color)
        {
            color *= u_filterAmount;
        }

        void applyTextureCopy(inout vec4 color, vec2 texCoord)
        {
            vec2 min = (u_textureSpaceMatrix * vec4(0., 0., 0., 1.)).xy + u_texelSize / 2.;
            vec2 max = (u_textureSpaceMatrix * vec4(1., 1., 0., 1.)).xy - u_texelSize / 2.;

            vec2 coord = clamp(texCoord, min, max);

            color = texture2D(s_sampler, coord);
        }

        void applyBlurFilter(inout vec4 color, vec2 texCoord)
        {
            vec2 step = u_blurDirection * u_texelSize;
            vec2 min = (u_textureSpaceMatrix * vec4(0., 0., 0., 1.)).xy + u_texelSize / 2.;
            vec2 max = (u_textureSpaceMatrix * vec4(1., 1., 0., 1.)).xy - u_texelSize / 2.;

            vec4 total = texture2D(s_sampler, texCoord) * u_gaussianKernel[0];

            for (int i = 1; i < GaussianKernelHalfSize; i++) {
                vec2 offset = step * u_gaussianKernelOffset[i];
                total += texture2D(s_sampler, clamp(texCoord + offset, min, max)) * u_gaussianKernel[i];
                total += texture2D(s_sampler, clamp(texCoord - offset, min, max)) * u_gaussianKernel[i];
            }

            color = total;
        }

        void applyAlphaBlur(inout vec4 color, vec2 texCoord)
        {
            vec2 step = u_blurDirection * u_texelSize;
            vec2 min = (u_textureSpaceMatrix * vec4(0., 0., 0., 1.)).xy + u_texelSize / 2.;
            vec2 max = (u_textureSpaceMatrix * vec4(1., 1., 0., 1.)).xy - u_texelSize / 2.;

            float total = texture2D(s_sampler, texCoord).a * u_gaussianKernel[0];

            for (int i = 1; i < GaussianKernelHalfSize; i++) {
                vec2 offset = step * u_gaussianKernelOffset[i];
                total += texture2D(s_sampler, clamp(texCoord + offset, min, max)).a * u_gaussianKernel[i];
                total += texture2D(s_sampler, clamp(texCoord - offset, min, max)).a * u_gaussianKernel[i];
            }

            color = vec4(0., 0., 0., total);
        }

        void applyAlphaToShadow(inout vec4 color, vec2 texCoord)
        {
            vec2 coord = clamp(texCoord, u_texelSize / 2., vec2(1., 1.) - u_texelSize / 2.);
            color *= u_color;
            color *= texture2D(s_sampler, coord).a;
        }

        vec4 sourceOver(vec4 src, vec4 dst) { return src + dst * (1. - src.a); }

        void applyContentTexture(inout vec4 color, vec2 texCoord)
        {
            vec4 contentColor = texture2D(s_contentTexture, texCoord);
            color = sourceOver(contentColor, color);
        }

        void applyTextureExternalOES(inout vec4 color, vec2 texCoord)
        {
            vec4 contentColor = texture2D(s_externalOESTexture, texCoord);
            color = sourceOver(contentColor, color);
        }

        void applySolidColor(inout vec4 color) { color *= u_color; }

        float ellipsisDist(vec2 p, vec2 radius)
        {
            if (radius == vec2(0, 0))
                return 0.0;

            vec2 p0 = p / radius;
            vec2 p1 = 2.0 * p0 / radius;

            return (dot(p0, p0) - 1.0) / length (p1);
        }

        float ellipsisCoverage(vec2 point, vec2 center, vec2 radius)
        {
            float d = ellipsisDist(point - center, radius);
            return clamp(0.5 - d, 0.0, 1.0);
        }

        float roundedRectCoverage(vec2 p, vec4 bounds, vec2 topLeftRadii, vec2 topRightRadii, vec2 bottomLeftRadii, vec2 bottomRightRadii)
        {
            if (p.x < bounds.x || p.y < bounds.y || p.x >= bounds.z || p.y >= bounds.w)
                return 0.0;

            vec2 topLeftCenter = bounds.xy + topLeftRadii;
            vec2 topRightCenter = bounds.zy + (topRightRadii * vec2(-1, 1));
            vec2 bottomLeftCenter = bounds.xw + (bottomLeftRadii * vec2(1, -1));
            vec2 bottomRightCenter = bounds.zw + (bottomRightRadii * vec2(-1, -1));

            if (p.x < topLeftCenter.x && p.y < topLeftCenter.y)
                return ellipsisCoverage(p, topLeftCenter, topLeftRadii);

            if (p.x > topRightCenter.x && p.y < topRightCenter.y)
                return ellipsisCoverage(p, topRightCenter, topRightRadii);

            if (p.x < bottomLeftCenter.x && p.y > bottomLeftCenter.y)
                return ellipsisCoverage(p, bottomLeftCenter, bottomLeftRadii);

            if (p.x > bottomRightCenter.x && p.y > bottomRightCenter.y)
                return ellipsisCoverage(p, bottomRightCenter, bottomRightRadii);

            return 1.0;
        }

        void applyRoundedRectClip(inout vec4 color)
        {
            // This works by checking whether the fragment position, once the transform is applied,
            // is inside the defined rounded rectangle or not.
            //
            // We can't use gl_fragCoord for the fragment position because thats the projected point
            // and the projection screws the Z component. We need the real 3D position that comes from
            // the nonProjectedPosition variable.
            //
            // This implementation is not optimal, but it's done this way in order to overcome rpi3's
            // proprietary video driver limitations (see https://bugs.webkit.org/show_bug.cgi?id=219739).

            for (int rectIndex = 0; rectIndex < ROUNDED_RECT_MAX_RECTS; rectIndex++) {
                if (rectIndex >= u_roundedRectNumber)
                    break;

                vec4 fragCoord = u_roundedRectInverseTransformMatrix[rectIndex] * v_nonProjectedPosition;
                vec4 bounds = vec4(u_roundedRect[rectIndex * 3].xy, u_roundedRect[rectIndex * 3].xy + u_roundedRect[rectIndex * 3].zw);
                vec2 topLeftRadii = u_roundedRect[(rectIndex * 3) + 1].xy;
                vec2 topRightRadii = u_roundedRect[(rectIndex * 3) + 1].zw;
                vec2 bottomLeftRadii = u_roundedRect[(rectIndex * 3) + 2].xy;
                vec2 bottomRightRadii = u_roundedRect[(rectIndex * 3) + 2].zw;
                float coverage = roundedRectCoverage(fragCoord.xy, bounds, topLeftRadii, topRightRadii, bottomLeftRadii, bottomRightRadii);

                // Pixels outside the rect have coverage 0.0.
                // Pixels inside the rect have coverage 1.0.
                // Pixels on the border of the rounded parts have coverage between 0.0 and 1.0.

                // Discard the fragments that are outside the rect.
                if (coverage == 0.0)
                    discard;

                // By multiplying the color by the coverage, pixels on the border of the rounded corners get
                // a bit more transparent.
                // If blending is enabled, this does some antialiasing on the border pixels.
                // If blending is disabled it means that we're rendering a holepunch buffer, so the color
                // is always (0,0,0,0). In this case, multiplying by the coverage doesn't cause any effect
                // and no antialiasing is done.
                color *= coverage;
            }
        }

        void main(void)
        {
            vec4 color = vec4(1., 1., 1., 1.);
            vec2 texCoord = transformTexCoord();
            applyManualRepeatIfNeeded(texCoord);
            applyTextureRGBIfNeeded(color, texCoord);
            applyTextureYUVIfNeeded(color, texCoord);
            applyTextureYUVAIfNeeded(color, texCoord);
            applyTextureNV12IfNeeded(color, texCoord);
            applyTextureNV21IfNeeded(color, texCoord);
            applyTexturePackedYUVIfNeeded(color, texCoord);
            applyPremultiplyIfNeeded(color);
            applySolidColorIfNeeded(color);
            applyAlphaBlurIfNeeded(color, texCoord);
            applyAlphaToShadowIfNeeded(color, texCoord);
            applyContentTextureIfNeeded(color, texCoord);
            applyAntialiasingIfNeeded(color);
            applyOpacityIfNeeded(color);
            applyGrayscaleFilterIfNeeded(color);
            applySepiaFilterIfNeeded(color);
            applySaturateFilterIfNeeded(color);
            applyHueRotateFilterIfNeeded(color);
            applyInvertFilterIfNeeded(color);
            applyBrightnessFilterIfNeeded(color);
            applyContrastFilterIfNeeded(color);
            applyOpacityFilterIfNeeded(color);
            applyTextureCopyIfNeeded(color, texCoord);
            applyBlurFilterIfNeeded(color, texCoord);
            applyTextureExternalOESIfNeeded(color, texCoord);
            applyRoundedRectClipIfNeeded(color);
            gl_FragColor = color;
        }
    );

Ref<TextureMapperShaderProgram> TextureMapperShaderProgram::create(TextureMapperShaderProgram::Options options)
{
#define SET_APPLIER_FROM_OPTIONS(Applier) \
    optionsApplierBuilder.append(\
        (options & TextureMapperShaderProgram::Applier) ? unsafeSpan(ENABLE_APPLIER(Applier)) : unsafeSpan(DISABLE_APPLIER(Applier)))

    unsigned glVersion = GLContext::current()->version();

    StringBuilder optionsApplierBuilder;
    SET_APPLIER_FROM_OPTIONS(TextureRGB);
    SET_APPLIER_FROM_OPTIONS(TextureYUV);
    SET_APPLIER_FROM_OPTIONS(TextureYUVA);
    SET_APPLIER_FROM_OPTIONS(TextureNV12);
    SET_APPLIER_FROM_OPTIONS(TextureNV21);
    SET_APPLIER_FROM_OPTIONS(TexturePackedYUV);
    SET_APPLIER_FROM_OPTIONS(SolidColor);
    SET_APPLIER_FROM_OPTIONS(Opacity);
    SET_APPLIER_FROM_OPTIONS(Antialiasing);
    SET_APPLIER_FROM_OPTIONS(GrayscaleFilter);
    SET_APPLIER_FROM_OPTIONS(SepiaFilter);
    SET_APPLIER_FROM_OPTIONS(SaturateFilter);
    SET_APPLIER_FROM_OPTIONS(HueRotateFilter);
    SET_APPLIER_FROM_OPTIONS(BrightnessFilter);
    SET_APPLIER_FROM_OPTIONS(ContrastFilter);
    SET_APPLIER_FROM_OPTIONS(InvertFilter);
    SET_APPLIER_FROM_OPTIONS(OpacityFilter);
    SET_APPLIER_FROM_OPTIONS(TextureCopy);
    SET_APPLIER_FROM_OPTIONS(BlurFilter);
    SET_APPLIER_FROM_OPTIONS(AlphaBlur);
    SET_APPLIER_FROM_OPTIONS(AlphaToShadow);
    SET_APPLIER_FROM_OPTIONS(ContentTexture);
    SET_APPLIER_FROM_OPTIONS(ManualRepeat);
    SET_APPLIER_FROM_OPTIONS(TextureExternalOES);
    SET_APPLIER_FROM_OPTIONS(RoundedRectClip);
    SET_APPLIER_FROM_OPTIONS(Premultiply);

    StringBuilder vertexShaderBuilder;

    // Append the options.
    vertexShaderBuilder.append(optionsApplierBuilder.toString());

    // Append the appropriate input/output variable definitions.
    vertexShaderBuilder.append(unsafeSpan(vertexTemplateLT320Vars));

    // Append the common code.
    vertexShaderBuilder.append(unsafeSpan(vertexTemplateCommon));

    StringBuilder fragmentShaderBuilder;

    // Append the options.
    fragmentShaderBuilder.append(optionsApplierBuilder.toString());

    if (glVersion >= 300)
        fragmentShaderBuilder.append(unsafeSpan(GLSL_DIRECTIVE(define GaussianKernelHalfSize u_gaussianKernelHalfSize)));
    else
        fragmentShaderBuilder.append(unsafeSpan(GLSL_DIRECTIVE(define GaussianKernelHalfSize GAUSSIAN_KERNEL_MAX_HALF_SIZE)));

    // Append the common header.
    fragmentShaderBuilder.append(unsafeSpan(fragmentTemplateHeaderCommon));

    // Append the appropriate input/output variable definitions.
    fragmentShaderBuilder.append(unsafeSpan(fragmentTemplateLT320Vars));

    // Append the common code.
    fragmentShaderBuilder.append(unsafeSpan(fragmentTemplateCommon));

    return adoptRef(*new TextureMapperShaderProgram(vertexShaderBuilder.toString(), fragmentShaderBuilder.toString()));
}

#if !LOG_DISABLED
static CString getShaderLog(GLuint shader)
{
    GLint logLength = 0;
    glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &logLength);
    if (!logLength)
        return { };

    Vector<GLchar> info(logLength);
    GLsizei infoLength = 0;
    glGetShaderInfoLog(shader, logLength, &infoLength, info.data());

    size_t stringLength = std::max(infoLength, 0);
    return std::span<const char> { info.data(), stringLength };
}

static CString getProgramLog(GLuint program)
{
    GLint logLength = 0;
    glGetProgramiv(program, GL_INFO_LOG_LENGTH, &logLength);
    if (!logLength)
        return { };

    Vector<GLchar> info(logLength);
    GLsizei infoLength = 0;
    glGetProgramInfoLog(program, logLength, &infoLength, info.data());

    size_t stringLength = std::max(infoLength, 0);
    return std::span<const char> { info.data(), stringLength };
}
#endif

TextureMapperShaderProgram::TextureMapperShaderProgram(const String& vertex, const String& fragment)
{
    m_vertexShader = glCreateShader(GL_VERTEX_SHADER);
    {
        CString vertexCString = vertex.utf8();
        const char* data = vertexCString.data();
        int length = vertexCString.length();
        glShaderSource(m_vertexShader, 1, &data, &length);
    }
    glCompileShader(m_vertexShader);

    m_fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);
    {
        CString fragmentCString = fragment.utf8();
        const char* data = fragmentCString.data();
        int length = fragmentCString.length();
        glShaderSource(m_fragmentShader, 1, &data, &length);
    }
    glCompileShader(m_fragmentShader);

    m_id = glCreateProgram();
    glAttachShader(m_id, m_vertexShader);
    glAttachShader(m_id, m_fragmentShader);
    glLinkProgram(m_id);

    if (!compositingLogEnabled() || glGetError() == GL_NO_ERROR)
        return;

    LOG(Compositing, "Vertex shader log: %s\n", getShaderLog(m_vertexShader).data());
    LOG(Compositing, "Fragment shader log: %s\n", getShaderLog(m_fragmentShader).data());
    LOG(Compositing, "Program log: %s\n", getProgramLog(m_id).data());
}

TextureMapperShaderProgram::~TextureMapperShaderProgram()
{
    if (!m_id)
        return;

    glDetachShader(m_id, m_vertexShader);
    glDeleteShader(m_vertexShader);
    glDetachShader(m_id, m_fragmentShader);
    glDeleteShader(m_fragmentShader);
    glDeleteProgram(m_id);
}

void TextureMapperShaderProgram::setMatrix(GLuint location, const TransformationMatrix& matrix)
{
    auto floatMatrix = matrix.toColumnMajorFloatArray();
    glUniformMatrix4fv(location, 1, false, floatMatrix.data());
}

GLuint TextureMapperShaderProgram::getLocation(VariableID variable, ASCIILiteral name, VariableType type)
{
    auto addResult = m_variables.ensure(variable,
        [this, &name, type] {
            switch (type) {
            case UniformVariable:
                return glGetUniformLocation(m_id, name);
            case AttribVariable:
                return glGetAttribLocation(m_id, name);
            }
            ASSERT_NOT_REACHED();
            return 0;
        });
    return addResult.iterator->value;
}

} // namespace WebCore

#endif // USE(TEXTURE_MAPPER)