File: GridTrackSizingAlgorithm.h

package info (click to toggle)
webkit2gtk 2.48.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 429,764 kB
  • sloc: cpp: 3,697,587; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,295; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (397 lines) | stat: -rw-r--r-- 20,269 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
/*
 * Copyright (C) 2017 Igalia S.L.
 * Copyright (C) 2024 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
#pragma once

#include "Grid.h"
#include "GridBaselineAlignment.h"
#include "GridLayoutState.h"
#include "GridTrackSize.h"
#include "LayoutSize.h"
#include "RenderBoxInlines.h"
#include <wtf/StdMap.h>
#include <wtf/TZoneMalloc.h>

namespace WebCore {
class GridTrack;
}

namespace WTF {
template<typename T> struct IsDeprecatedWeakRefSmartPointerException;
template<> struct IsDeprecatedWeakRefSmartPointerException<WebCore::GridTrack> : std::true_type { };
}

namespace WebCore {

static const int infinity = -1;

enum class SizingOperation : uint8_t { TrackSizing, IntrinsicSizeComputation };

enum class TrackSizeComputationVariant : uint8_t {
    NotCrossingFlexibleTracks,
    CrossingFlexibleTracks,
};

enum class TrackSizeComputationPhase : uint8_t {
    ResolveIntrinsicMinimums,
    ResolveContentBasedMinimums,
    ResolveMaxContentMinimums,
    ResolveIntrinsicMaximums,
    ResolveMaxContentMaximums,
    MaximizeTracks,
};

enum class SpaceDistributionLimit : uint8_t  {
    UpToGrowthLimit,
    BeyondGrowthLimit,
};

class GridTrackSizingAlgorithmStrategy;
class GridItemWithSpan;

class GridTrack : public CanMakeWeakPtr<GridTrack> {
    WTF_MAKE_TZONE_ALLOCATED(GridTrack);
public:
    GridTrack() = default;

    LayoutUnit baseSize() const;
    LayoutUnit unclampedBaseSize() const;
    void setBaseSize(LayoutUnit);

    const LayoutUnit& growthLimit() const;
    bool growthLimitIsInfinite() const { return m_growthLimit == infinity; }
    void setGrowthLimit(LayoutUnit);

    bool infiniteGrowthPotential() const { return growthLimitIsInfinite() || m_infinitelyGrowable; }
    LayoutUnit growthLimitIfNotInfinite() const;

    const LayoutUnit& plannedSize() const { return m_plannedSize; }
    void setPlannedSize(LayoutUnit plannedSize) { m_plannedSize = plannedSize; }

    const LayoutUnit& tempSize() const { return m_tempSize; }
    void setTempSize(const LayoutUnit&);
    void growTempSize(const LayoutUnit&);

    bool infinitelyGrowable() const { return m_infinitelyGrowable; }
    void setInfinitelyGrowable(bool infinitelyGrowable) { m_infinitelyGrowable = infinitelyGrowable; }

    void setGrowthLimitCap(std::optional<LayoutUnit>);
    std::optional<LayoutUnit> growthLimitCap() const { return m_growthLimitCap; }

    const GridTrackSize& cachedTrackSize() const;
    void setCachedTrackSize(const GridTrackSize&);

private:
    bool isGrowthLimitBiggerThanBaseSize() const { return growthLimitIsInfinite() || m_growthLimit >= std::max(m_baseSize, 0_lu); }

    void ensureGrowthLimitIsBiggerThanBaseSize();

    LayoutUnit m_baseSize { 0 };
    LayoutUnit m_growthLimit { 0 };
    LayoutUnit m_plannedSize { 0 };
    LayoutUnit m_tempSize { 0 };
    std::optional<LayoutUnit> m_growthLimitCap;
    bool m_infinitelyGrowable { false };
    std::optional<GridTrackSize> m_cachedTrackSize;
};

class GridTrackSizingAlgorithm final {
    WTF_MAKE_TZONE_ALLOCATED(GridTrackSizingAlgorithm);
    friend class GridTrackSizingAlgorithmStrategy;
    friend class DefiniteSizeStrategy;

public:
    GridTrackSizingAlgorithm(const RenderGrid*, Grid&);
    ~GridTrackSizingAlgorithm();

    void run(GridTrackSizingDirection, unsigned numTracks, SizingOperation, std::optional<LayoutUnit> availableSpace, GridLayoutState&);
    void reset();

    // Required by RenderGrid. Try to minimize the exposed surface.
    const Grid& grid() const { return m_grid; }

    const RenderGrid* renderGrid() const { return m_renderGrid; };

    LayoutUnit minContentSize() const { return m_minContentSize; };
    LayoutUnit maxContentSize() const { return m_maxContentSize; };

    LayoutUnit baselineOffsetForGridItem(const RenderBox&, GridAxis) const;

    // The estimated grid area should be use pre-layout versus the grid area, which should be used once
    // layout is complete.
    std::optional<LayoutUnit> gridAreaBreadthForGridItem(const RenderBox&, GridTrackSizingDirection) const;
    std::optional<LayoutUnit> estimatedGridAreaBreadthForGridItem(const RenderBox&, GridTrackSizingDirection) const;

    void cacheBaselineAlignedItem(const RenderBox&, GridAxis, bool cachingRowSubgridsForRootGrid);
    void copyBaselineItemsCache(const GridTrackSizingAlgorithm&, GridAxis);
    void clearBaselineItemsCache();

    Vector<GridTrack>& tracks(GridTrackSizingDirection direction) { return direction == GridTrackSizingDirection::ForColumns ? m_columns : m_rows; }
    const Vector<GridTrack>& tracks(GridTrackSizingDirection direction) const { return direction == GridTrackSizingDirection::ForColumns ? m_columns : m_rows; }

    std::optional<LayoutUnit> freeSpace(GridTrackSizingDirection direction) const { return direction == GridTrackSizingDirection::ForColumns ? m_freeSpaceColumns : m_freeSpaceRows; }
    void setFreeSpace(GridTrackSizingDirection, std::optional<LayoutUnit>);

    std::optional<LayoutUnit> availableSpace(GridTrackSizingDirection direction) const { return direction == GridTrackSizingDirection::ForColumns ? m_availableSpaceColumns : m_availableSpaceRows; }
    void setAvailableSpace(GridTrackSizingDirection, std::optional<LayoutUnit>);

    LayoutUnit computeTrackBasedSize() const;

    bool hasAnyPercentSizedRowsIndefiniteHeight() const { return m_hasPercentSizedRowsIndefiniteHeight; }
    bool hasAnyFlexibleMaxTrackBreadth() const { return m_hasFlexibleMaxTrackBreadth; }
    bool hasAnyBaselineAlignmentItem() const { return !m_columnBaselineItemsMap.isEmpty() || !m_rowBaselineItemsMap.isEmpty(); }

#if ASSERT_ENABLED
    bool tracksAreWiderThanMinTrackBreadth() const;
#endif

private:
    using SpanLength = unsigned;

    void setup(GridTrackSizingDirection, unsigned numTracks, SizingOperation, std::optional<LayoutUnit> availableSpace);
    struct MasonryMinMaxTrackSize {
        LayoutUnit minContentSize;
        LayoutUnit maxContentSize;
        LayoutUnit minSize;
    };

    struct MasonryMinMaxTrackSizeWithGridSpan {
        MasonryMinMaxTrackSize trackSize;
        GridSpan gridSpan;
    };

    std::optional<LayoutUnit> availableSpace() const;
    bool isRelativeGridLengthAsAuto(const GridLength&, GridTrackSizingDirection) const;
    GridTrackSize calculateGridTrackSize(GridTrackSizingDirection, unsigned translatedIndex) const;
    const GridTrackSize& rawGridTrackSize(GridTrackSizingDirection, unsigned translatedIndex) const;

    // Helper methods for step 1. initializeTrackSizes().
    LayoutUnit initialBaseSize(const GridTrackSize&) const;
    LayoutUnit initialGrowthLimit(const GridTrackSize&, LayoutUnit baseSize) const;

    // Helper methods for step 2. resolveIntrinsicTrackSizes().
    void sizeTrackToFitNonSpanningItem(const GridSpan&, RenderBox& gridItem, GridTrack&, GridLayoutState&);
    void sizeTrackToFitSingleSpanMasonryGroup(const GridSpan&, MasonryMinMaxTrackSize&, GridTrack&);

    bool spanningItemCrossesFlexibleSizedTracks(const GridSpan&) const;

    using GridItemsSpanGroupRange = std::span<GridItemWithSpan>;
    template <TrackSizeComputationVariant variant, TrackSizeComputationPhase phase> void increaseSizesToAccommodateSpanningItems(GridItemsSpanGroupRange gridItemsWithSpan, GridLayoutState&);
    template <TrackSizeComputationVariant variant> void increaseSizesToAccommodateSpanningItems(GridItemsSpanGroupRange gridItemsWithSpan, GridLayoutState&);

    // 12.5 Resolve Intrinsic Track Sizing : Step 3
    // https://drafts.csswg.org/css-grid-2/#algo-spanning-items
    //
    // Take all grid items (definite and indefinite) that span 2 or more tracks, and distribute space to intrinsic tracks (non-flex).
    // The implementation diverges from increaseSizesToAccommodateSpanningItems(), because we are grouping items together that are the same span length.
    // This function is divided into two main sections:
    //
    // 1. Constructing the track items
    // This step takes the definite and indefinite items, and merges them into one large map to send over to the second step.
    // Since the indefinite items are grouped together from a prior computation, this step also need to create "fake" grid items that
    // will be considered in each track.
    //
    // 2. Distribute space to intrinsic tracks
    // This step behaves similar to increaseSizesToAccommodateSpanningItems() where we start at the lowest span length and distribute space to the tracks.
    // Then look at the next smallest span length, and repeat step 2 until we exhaust all grid items.
    template <TrackSizeComputationVariant variant> void increaseSizesToAccommodateSpanningItemsMasonry(StdMap<SpanLength, Vector<MasonryMinMaxTrackSizeWithGridSpan>>&);

    // 12.5 Resolve Intrinsic Track Sizing : Step 4
    // https://drafts.csswg.org/css-grid-2/#algo-spanning-items
    //
    // Take all grid items (definite and indefinite) that span 1 or tracks, and distribute space to only flex tracks.
    // The implementation diverges from increaseSizesToAccommodateSpanningItems(), because we are grouping items together that are the same span length.
    // This function is divided into two main sections:
    //
    // 1. Constructing the track items
    // This step takes the definite and indefinite items, and merges them into one large map to send over to the second step.
    // Since the indefinite items are grouped together from a prior computation, this step also need to create "fake" grid items that
    // will be considered in each track.
    //
    // 2. Distribute space to intrinsic tracks
    // This step behaves similar to increaseSizesToAccommodateSpanningItems() where we consider all track items at once instead of per span length.
    template <TrackSizeComputationVariant variant> void increaseSizesToAccommodateSpanningItemsMasonryWithFlex(Vector<MasonryMinMaxTrackSizeWithGridSpan>&);

    void convertIndefiniteItemsToDefiniteMasonry(const StdMap<SpanLength, MasonryMinMaxTrackSize>& gridTrackSpans, StdMap<SpanLength, Vector<MasonryMinMaxTrackSizeWithGridSpan>>&, Vector<MasonryMinMaxTrackSizeWithGridSpan>&);

    LayoutUnit itemSizeForTrackSizeComputationPhase(TrackSizeComputationPhase, RenderBox&, GridLayoutState&) const;
    LayoutUnit itemSizeForTrackSizeComputationPhaseMasonry(TrackSizeComputationPhase, const MasonryMinMaxTrackSize&) const;

    template <TrackSizeComputationVariant variant, TrackSizeComputationPhase phase> void distributeSpaceToTracks(Vector<WeakPtr<GridTrack>>& tracks, Vector<WeakPtr<GridTrack>>* growBeyondGrowthLimitsTracks, LayoutUnit& freeSpace) const;

    void computeBaselineAlignmentContext();
    void updateBaselineAlignmentContext(const RenderBox&, GridAxis);
    bool canParticipateInBaselineAlignment(const RenderBox&, GridAxis) const;
    bool participateInBaselineAlignment(const RenderBox&, GridAxis) const;

    bool isIntrinsicSizedGridArea(const RenderBox&, GridAxis) const;
    void computeGridContainerIntrinsicSizes();

    // Helper methods for step 4. Stretch flexible tracks.
    typedef UncheckedKeyHashSet<unsigned, DefaultHash<unsigned>, WTF::UnsignedWithZeroKeyHashTraits<unsigned>> TrackIndexSet;
    double computeFlexFactorUnitSize(const Vector<GridTrack>& tracks, double flexFactorSum, LayoutUnit& leftOverSpace, const Vector<unsigned, 8>& flexibleTracksIndexes, std::unique_ptr<TrackIndexSet> tracksToTreatAsInflexible = nullptr) const;
    void computeFlexSizedTracksGrowth(double flexFraction, Vector<LayoutUnit>& increments, LayoutUnit& totalGrowth) const;
    double findFrUnitSize(const GridSpan& tracksSpan, LayoutUnit leftOverSpace) const;


    void handleInfinityGrowthLimit();

    // Build up a map of min/max sizes for each span length for use during resolving intrinsic track sizes.
    // We also need to keep track of definite items separately, since they do not contribute to every track like indefinite items do.
    void computeDefiniteAndIndefiniteItemsForMasonry(StdMap<SpanLength, MasonryMinMaxTrackSize>&, StdMap<SpanLength, Vector<MasonryMinMaxTrackSizeWithGridSpan>>&, Vector<MasonryMinMaxTrackSizeWithGridSpan>&, GridLayoutState&);
    bool shouldExcludeGridItemForMasonryTrackSizing(const RenderBox& gridItem, unsigned trackIndex, GridSpan itemSpan) const;
    // Track sizing algorithm steps. Note that the "Maximize Tracks" step is done
    // entirely inside the strategies, that's why we don't need an additional
    // method at this level.
    void initializeTrackSizes();
    void resolveIntrinsicTrackSizes(GridLayoutState&);

    // Masonry Implementation of https://drafts.csswg.org/css-grid-2/#algo-content.
    // To implement Masonry performanently, we need to abandon the traditional Grid approach of treating
    // each item individually and start grouping items based on their span. A grid item has 3 major values we care about
    // the minContentSize, maxContentSize, and minSize. These values can be aggregated together and then the max will be chosen.
    // The main three scenarios we need to focus on are items that only span 1 track, items that span multiple tracks without crossing a flex track,
    // and items that span multiple tracks with crossing a flex track.
    //
    // Further details on the optimization can be found at https://fantasai.inkedblade.net/style/specs/masonry/performance.
    void resolveIntrinsicTrackSizesMasonry(GridLayoutState&);
    void stretchFlexibleTracks(std::optional<LayoutUnit> freeSpace, GridLayoutState&);
    void stretchAutoTracks();

    void accumulateIntrinsicSizesForTrack(GridTrack&, unsigned trackIndex, GridIterator&, Vector<GridItemWithSpan>& itemsSortedByIncreasingSpan, Vector<GridItemWithSpan>& itemsCrossingFlexibleTracks, SingleThreadWeakHashSet<RenderBox>& itemsSet, LayoutUnit currentAccumulatedMbp, GridLayoutState&);

    bool copyUsedTrackSizesForSubgrid();

    // State machine.
    void advanceNextState();
    bool isValidTransition() const;

    bool isDirectionInMasonryDirection() const;

    // Data.
    bool wasSetup() const { return !!m_strategy; }
    bool m_needsSetup { true };
    bool m_hasPercentSizedRowsIndefiniteHeight { false };
    bool m_hasFlexibleMaxTrackBreadth { false };
    std::optional<LayoutUnit> m_availableSpaceRows;
    std::optional<LayoutUnit> m_availableSpaceColumns;

    std::optional<LayoutUnit> m_freeSpaceColumns;
    std::optional<LayoutUnit> m_freeSpaceRows;

    // We need to keep both alive in order to properly size grids with orthogonal
    // writing modes.
    Vector<GridTrack> m_columns;
    Vector<GridTrack> m_rows;
    Vector<unsigned> m_contentSizedTracksIndex;
    Vector<unsigned> m_flexibleSizedTracksIndex;
    Vector<unsigned> m_autoSizedTracksForStretchIndex;

    GridTrackSizingDirection m_direction;
    SizingOperation m_sizingOperation;

    Grid& m_grid;

    const RenderGrid* m_renderGrid;
    std::unique_ptr<GridTrackSizingAlgorithmStrategy> m_strategy;

    // The track sizing algorithm is used for both layout and intrinsic size
    // computation. We're normally just interested in intrinsic inline sizes
    // (a.k.a widths in most of the cases) for the computeIntrinsicLogicalWidths()
    // computations. That's why we don't need to keep around different values for
    // rows/columns.
    LayoutUnit m_minContentSize;
    LayoutUnit m_maxContentSize;

    enum class SizingState : uint8_t {
        ColumnSizingFirstIteration,
        RowSizingFirstIteration,
        RowSizingExtraIterationForSizeContainment,
        ColumnSizingSecondIteration,
        RowSizingSecondIteration
    };
    SizingState m_sizingState;

    GridBaselineAlignment m_baselineAlignment;
    using BaselineItemsCache = UncheckedKeyHashMap<SingleThreadWeakRef<const RenderBox>, bool>;
    BaselineItemsCache m_columnBaselineItemsMap;
    BaselineItemsCache m_rowBaselineItemsMap;

    SingleThreadWeakHashSet<RenderGrid> m_rowSubgridsWithBaselineAlignedItems;

    // This is a RAII class used to ensure that the track sizing algorithm is
    // executed as it is supposed to be, i.e., first resolve columns and then
    // rows. Only if required a second iteration is run following the same order,
    // first columns and then rows.
    class StateMachine {
    public:
        StateMachine(GridTrackSizingAlgorithm&);
        ~StateMachine();

    private:
        GridTrackSizingAlgorithm& m_algorithm;
    };
};

class GridTrackSizingAlgorithmStrategy {
    WTF_MAKE_TZONE_ALLOCATED(GridTrackSizingAlgorithmStrategy);
public:
    virtual LayoutUnit minContentContributionForGridItem(RenderBox&, GridLayoutState&) const;
    LayoutUnit maxContentContributionForGridItem(RenderBox&, GridLayoutState&) const;
    LayoutUnit minContributionForGridItem(RenderBox&, GridLayoutState&) const;

    virtual ~GridTrackSizingAlgorithmStrategy() = default;

    virtual void maximizeTracks(Vector<GridTrack>&, std::optional<LayoutUnit>& freeSpace) = 0;
    virtual double findUsedFlexFraction(Vector<unsigned>& flexibleSizedTracksIndex, GridTrackSizingDirection, std::optional<LayoutUnit> initialFreeSpace, GridLayoutState&) const = 0;
    virtual bool recomputeUsedFlexFractionIfNeeded(double& flexFraction, LayoutUnit& totalGrowth) const = 0;
    virtual LayoutUnit freeSpaceForStretchAutoTracksStep() const = 0;
    virtual bool isComputingSizeContainment() const = 0;
    virtual bool isComputingInlineSizeContainment() const = 0;
    virtual bool isComputingSizeOrInlineSizeContainment() const = 0;

protected:
    GridTrackSizingAlgorithmStrategy(GridTrackSizingAlgorithm& algorithm)
        : m_algorithm(algorithm) { }

    virtual LayoutUnit minLogicalSizeForGridItem(RenderBox&, const Length& gridItemMinSize, std::optional<LayoutUnit> availableSize) const;
    virtual void layoutGridItemForMinSizeComputation(RenderBox&, bool overrideSizeHasChanged) const = 0;

    LayoutUnit logicalHeightForGridItem(RenderBox&, GridLayoutState&) const;
    bool updateOverridingContainingBlockContentSizeForGridItem(RenderBox&, GridTrackSizingDirection, std::optional<LayoutUnit> = std::nullopt) const;

    // GridTrackSizingAlgorithm accessors for subclasses.
    LayoutUnit computeTrackBasedSize() const { return m_algorithm.computeTrackBasedSize(); }
    GridTrackSizingDirection direction() const { return m_algorithm.m_direction; }
    GridTrackSizingAlgorithm::SizingState sizingState() const { return m_algorithm.m_sizingState; }
    double findFrUnitSize(const GridSpan& tracksSpan, LayoutUnit leftOverSpace) const { return m_algorithm.findFrUnitSize(tracksSpan, leftOverSpace); }
    void distributeSpaceToTracks(Vector<WeakPtr<GridTrack>>& tracks, LayoutUnit& availableLogicalSpace) const { m_algorithm.distributeSpaceToTracks<TrackSizeComputationVariant::NotCrossingFlexibleTracks, TrackSizeComputationPhase::MaximizeTracks>(tracks, nullptr, availableLogicalSpace); }
    const RenderGrid* renderGrid() const { return m_algorithm.m_renderGrid; }
    std::optional<LayoutUnit> availableSpace() const { return m_algorithm.availableSpace(); }

    GridTrackSizingAlgorithm& m_algorithm;
};

} // namespace WebCore