1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
|
/*
* Copyright (C) 2014 Frédéric Wang (fred.wang@free.fr). All rights reserved.
* Copyright (C) 2016 Igalia S.L.
* Copyright (C) 2016-2021 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "RenderMathMLToken.h"
#if ENABLE(MATHML)
#include "MathMLElement.h"
#include "MathMLNames.h"
#include "MathMLTokenElement.h"
#include "PaintInfo.h"
#include "RenderBoxInlines.h"
#include "RenderBoxModelObjectInlines.h"
#include "RenderElement.h"
#include "RenderIterator.h"
#include "RenderStyleInlines.h"
#include <wtf/StdLibExtras.h>
#include <wtf/TZoneMallocInlines.h>
namespace WebCore {
using namespace MathMLNames;
WTF_MAKE_TZONE_OR_ISO_ALLOCATED_IMPL(RenderMathMLToken);
RenderMathMLToken::RenderMathMLToken(Type type, MathMLTokenElement& element, RenderStyle&& style)
: RenderMathMLBlock(type, element, WTFMove(style))
{
}
RenderMathMLToken::RenderMathMLToken(Type type, Document& document, RenderStyle&& style)
: RenderMathMLBlock(type, document, WTFMove(style))
{
}
RenderMathMLToken::~RenderMathMLToken() = default;
MathMLTokenElement& RenderMathMLToken::element()
{
return static_cast<MathMLTokenElement&>(nodeForNonAnonymous());
}
void RenderMathMLToken::updateTokenContent()
{
RenderMathMLBlock::updateFromElement();
setMathVariantGlyphDirty();
}
// Entries for the mathvariant lookup tables.
// 'key' represents the Unicode character to be transformed and is used for searching the tables.
// 'replacement' represents the mapped mathvariant Unicode character.
struct MathVariantMapping {
uint32_t key;
uint32_t replacement;
};
static inline char32_t ExtractKey(const MathVariantMapping* entry) { return entry->key; }
static char32_t MathVariantMappingSearch(uint32_t key, const MathVariantMapping* table, size_t tableLength)
{
if (const auto* entry = tryBinarySearch<const MathVariantMapping, char32_t>(table, tableLength, key, ExtractKey))
return entry->replacement;
return 0;
}
// Lookup tables for use with mathvariant mappings to transform a unicode character point to another unicode character that indicates the proper output.
// key represents one of two concepts.
// 1. In the Latin table it represents a hole in the mathematical alphanumeric block, where the character that should occupy that position is located elsewhere.
// 2. It represents an Arabic letter.
// As a replacement, 0 is reserved to indicate no mapping was found.
static const MathVariantMapping arabicInitialMapTable[] = {
{ 0x628, 0x1EE21 },
{ 0x62A, 0x1EE35 },
{ 0x62B, 0x1EE36 },
{ 0x62C, 0x1EE22 },
{ 0x62D, 0x1EE27 },
{ 0x62E, 0x1EE37 },
{ 0x633, 0x1EE2E },
{ 0x634, 0x1EE34 },
{ 0x635, 0x1EE31 },
{ 0x636, 0x1EE39 },
{ 0x639, 0x1EE2F },
{ 0x63A, 0x1EE3B },
{ 0x641, 0x1EE30 },
{ 0x642, 0x1EE32 },
{ 0x643, 0x1EE2A },
{ 0x644, 0x1EE2B },
{ 0x645, 0x1EE2C },
{ 0x646, 0x1EE2D },
{ 0x647, 0x1EE24 },
{ 0x64A, 0x1EE29 }
};
static const MathVariantMapping arabicTailedMapTable[] = {
{ 0x62C, 0x1EE42 },
{ 0x62D, 0x1EE47 },
{ 0x62E, 0x1EE57 },
{ 0x633, 0x1EE4E },
{ 0x634, 0x1EE54 },
{ 0x635, 0x1EE51 },
{ 0x636, 0x1EE59 },
{ 0x639, 0x1EE4F },
{ 0x63A, 0x1EE5B },
{ 0x642, 0x1EE52 },
{ 0x644, 0x1EE4B },
{ 0x646, 0x1EE4D },
{ 0x64A, 0x1EE49 },
{ 0x66F, 0x1EE5F },
{ 0x6BA, 0x1EE5D }
};
static const MathVariantMapping arabicStretchedMapTable[] = {
{ 0x628, 0x1EE61 },
{ 0x62A, 0x1EE75 },
{ 0x62B, 0x1EE76 },
{ 0x62C, 0x1EE62 },
{ 0x62D, 0x1EE67 },
{ 0x62E, 0x1EE77 },
{ 0x633, 0x1EE6E },
{ 0x634, 0x1EE74 },
{ 0x635, 0x1EE71 },
{ 0x636, 0x1EE79 },
{ 0x637, 0x1EE68 },
{ 0x638, 0x1EE7A },
{ 0x639, 0x1EE6F },
{ 0x63A, 0x1EE7B },
{ 0x641, 0x1EE70 },
{ 0x642, 0x1EE72 },
{ 0x643, 0x1EE6A },
{ 0x645, 0x1EE6C },
{ 0x646, 0x1EE6D },
{ 0x647, 0x1EE64 },
{ 0x64A, 0x1EE69 },
{ 0x66E, 0x1EE7C },
{ 0x6A1, 0x1EE7E }
};
static const MathVariantMapping arabicLoopedMapTable[] = {
{ 0x627, 0x1EE80 },
{ 0x628, 0x1EE81 },
{ 0x62A, 0x1EE95 },
{ 0x62B, 0x1EE96 },
{ 0x62C, 0x1EE82 },
{ 0x62D, 0x1EE87 },
{ 0x62E, 0x1EE97 },
{ 0x62F, 0x1EE83 },
{ 0x630, 0x1EE98 },
{ 0x631, 0x1EE93 },
{ 0x632, 0x1EE86 },
{ 0x633, 0x1EE8E },
{ 0x634, 0x1EE94 },
{ 0x635, 0x1EE91 },
{ 0x636, 0x1EE99 },
{ 0x637, 0x1EE88 },
{ 0x638, 0x1EE9A },
{ 0x639, 0x1EE8F },
{ 0x63A, 0x1EE9B },
{ 0x641, 0x1EE90 },
{ 0x642, 0x1EE92 },
{ 0x644, 0x1EE8B },
{ 0x645, 0x1EE8C },
{ 0x646, 0x1EE8D },
{ 0x647, 0x1EE84 },
{ 0x648, 0x1EE85 },
{ 0x64A, 0x1EE89 }
};
static const MathVariantMapping arabicDoubleMapTable[] = {
{ 0x628, 0x1EEA1 },
{ 0x62A, 0x1EEB5 },
{ 0x62B, 0x1EEB6 },
{ 0x62C, 0x1EEA2 },
{ 0x62D, 0x1EEA7 },
{ 0x62E, 0x1EEB7 },
{ 0x62F, 0x1EEA3 },
{ 0x630, 0x1EEB8 },
{ 0x631, 0x1EEB3 },
{ 0x632, 0x1EEA6 },
{ 0x633, 0x1EEAE },
{ 0x634, 0x1EEB4 },
{ 0x635, 0x1EEB1 },
{ 0x636, 0x1EEB9 },
{ 0x637, 0x1EEA8 },
{ 0x638, 0x1EEBA },
{ 0x639, 0x1EEAF },
{ 0x63A, 0x1EEBB },
{ 0x641, 0x1EEB0 },
{ 0x642, 0x1EEB2 },
{ 0x644, 0x1EEAB },
{ 0x645, 0x1EEAC },
{ 0x646, 0x1EEAD },
{ 0x648, 0x1EEA5 },
{ 0x64A, 0x1EEA9 }
};
static const MathVariantMapping latinExceptionMapTable[] = {
{ 0x1D455, 0x210E },
{ 0x1D49D, 0x212C },
{ 0x1D4A0, 0x2130 },
{ 0x1D4A1, 0x2131 },
{ 0x1D4A3, 0x210B },
{ 0x1D4A4, 0x2110 },
{ 0x1D4A7, 0x2112 },
{ 0x1D4A8, 0x2133 },
{ 0x1D4AD, 0x211B },
{ 0x1D4BA, 0x212F },
{ 0x1D4BC, 0x210A },
{ 0x1D4C4, 0x2134 },
{ 0x1D506, 0x212D },
{ 0x1D50B, 0x210C },
{ 0x1D50C, 0x2111 },
{ 0x1D515, 0x211C },
{ 0x1D51D, 0x2128 },
{ 0x1D53A, 0x2102 },
{ 0x1D53F, 0x210D },
{ 0x1D545, 0x2115 },
{ 0x1D547, 0x2119 },
{ 0x1D548, 0x211A },
{ 0x1D549, 0x211D },
{ 0x1D551, 0x2124 }
};
constexpr char16_t greekUpperTheta = 0x03F4;
constexpr char16_t holeGreekUpperTheta = 0x03A2;
constexpr char16_t nabla = 0x2207;
constexpr char16_t partialDifferential = 0x2202;
constexpr char16_t greekUpperAlpha = 0x0391;
constexpr char16_t greekUpperOmega = 0x03A9;
constexpr char16_t greekLowerAlpha = 0x03B1;
constexpr char16_t greekLowerOmega = 0x03C9;
constexpr char16_t greekLunateEpsilonSymbol = 0x03F5;
constexpr char16_t greekThetaSymbol = 0x03D1;
constexpr char16_t greekKappaSymbol = 0x03F0;
constexpr char16_t greekPhiSymbol = 0x03D5;
constexpr char16_t greekRhoSymbol = 0x03F1;
constexpr char16_t greekPiSymbol = 0x03D6;
constexpr char16_t greekLetterDigamma = 0x03DC;
constexpr char32_t greekSmallLetterDigamma = 0x03DD;
constexpr char32_t mathBoldCapitalDigamma = 0x1D7CA;
constexpr char32_t mathBoldSmallDigamma = 0x1D7CB;
constexpr char16_t latinSmallLetterDotlessI = 0x0131;
constexpr char16_t latinSmallLetterDotlessJ = 0x0237;
constexpr char32_t mathItalicSmallDotlessI = 0x1D6A4;
constexpr char32_t mathItalicSmallDotlessJ = 0x1D6A5;
constexpr char32_t mathBoldUpperA = 0x1D400;
constexpr char32_t mathItalicUpperA = 0x1D434;
constexpr char32_t mathBoldSmallA = 0x1D41A;
constexpr char32_t mathBoldUpperAlpha = 0x1D6A8;
constexpr char32_t mathBoldSmallAlpha = 0x1D6C2;
constexpr char32_t mathItalicUpperAlpha = 0x1D6E2;
constexpr char32_t mathBoldDigitZero = 0x1D7CE;
constexpr char32_t mathDoubleStruckZero = 0x1D7D8;
constexpr char32_t mathBoldUpperTheta = 0x1D6B9;
constexpr char32_t mathBoldNabla = 0x1D6C1;
constexpr char32_t mathBoldPartialDifferential = 0x1D6DB;
constexpr char32_t mathBoldEpsilonSymbol = 0x1D6DC;
constexpr char32_t mathBoldThetaSymbol = 0x1D6DD;
constexpr char32_t mathBoldKappaSymbol = 0x1D6DE;
constexpr char32_t mathBoldPhiSymbol = 0x1D6DF;
constexpr char32_t mathBoldRhoSymbol = 0x1D6E0;
constexpr char32_t mathBoldPiSymbol = 0x1D6E1;
// Performs the character mapping needed to implement MathML's mathvariant attribute.
// It takes a unicode character and maps it to its appropriate mathvariant counterpart specified by mathvariant.
// The mapped character is typically located within Unicode's mathematical blocks (0x1D***, 0x1EE**) but there are exceptions which this function accounts for.
// Characters without a valid mapping or valid aMathvar value are returned
// unaltered.
// Characters already in the mathematical blocks (or are one of the exceptions) are never transformed.
// Acceptable values for mathvariant are specified in MathMLElement.h
// The transformable characters can be found at:
// http://lists.w3.org/Archives/Public/www-math/2013Sep/0012.html and
// https://en.wikipedia.org/wiki/Mathematical_Alphanumeric_Symbols
static char32_t mathVariant(char32_t codePoint, MathMLElement::MathVariant mathvariant)
{
ASSERT(mathvariant >= MathMLElement::MathVariant::Normal && mathvariant <= MathMLElement::MathVariant::Stretched);
if (mathvariant == MathMLElement::MathVariant::Normal)
return codePoint; // Nothing to do here.
// Exceptional characters with at most one possible transformation.
if (codePoint == holeGreekUpperTheta)
return codePoint; // Nothing at this code point is transformed
if (codePoint == greekLetterDigamma) {
if (mathvariant == MathMLElement::MathVariant::Bold)
return mathBoldCapitalDigamma;
return codePoint;
}
if (codePoint == greekSmallLetterDigamma) {
if (mathvariant == MathMLElement::MathVariant::Bold)
return mathBoldSmallDigamma;
return codePoint;
}
if (codePoint == latinSmallLetterDotlessI) {
if (mathvariant == MathMLElement::MathVariant::Italic)
return mathItalicSmallDotlessI;
return codePoint;
}
if (codePoint == latinSmallLetterDotlessJ) {
if (mathvariant == MathMLElement::MathVariant::Italic)
return mathItalicSmallDotlessJ;
return codePoint;
}
// The Unicode mathematical blocks are divided into four segments: Latin, Greek, numbers and Arabic.
// In the case of the first three baseChar represents the relative order in which the characters are encoded in the Unicode mathematical block, normalised to the first character of that sequence.
char32_t baseChar = 0;
enum CharacterType {
Latin,
Greekish,
Number,
Arabic
};
CharacterType varType;
if (isASCIIUpper(codePoint)) {
baseChar = codePoint - 'A';
varType = Latin;
} else if (isASCIILower(codePoint)) {
// Lowercase characters are placed immediately after the uppercase characters in the Unicode mathematical block.
// The constant subtraction represents the number of characters between the start of the sequence (capital A) and the first lowercase letter.
baseChar = mathBoldSmallA - mathBoldUpperA + codePoint - 'a';
varType = Latin;
} else if (isASCIIDigit(codePoint)) {
baseChar = codePoint - '0';
varType = Number;
} else if (greekUpperAlpha <= codePoint && codePoint <= greekUpperOmega) {
baseChar = codePoint - greekUpperAlpha;
varType = Greekish;
} else if (greekLowerAlpha <= codePoint && codePoint <= greekLowerOmega) {
// Lowercase Greek comes after uppercase Greek.
// Note in this instance the presence of an additional character (Nabla) between the end of the uppercase Greek characters and the lowercase ones.
baseChar = mathBoldSmallAlpha - mathBoldUpperAlpha + codePoint - greekLowerAlpha;
varType = Greekish;
} else if (0x0600 <= codePoint && codePoint <= 0x06FF) {
// Arabic characters are defined within this range
varType = Arabic;
} else {
switch (codePoint) {
case greekUpperTheta:
baseChar = mathBoldUpperTheta - mathBoldUpperAlpha;
break;
case nabla:
baseChar = mathBoldNabla - mathBoldUpperAlpha;
break;
case partialDifferential:
baseChar = mathBoldPartialDifferential - mathBoldUpperAlpha;
break;
case greekLunateEpsilonSymbol:
baseChar = mathBoldEpsilonSymbol - mathBoldUpperAlpha;
break;
case greekThetaSymbol:
baseChar = mathBoldThetaSymbol - mathBoldUpperAlpha;
break;
case greekKappaSymbol:
baseChar = mathBoldKappaSymbol - mathBoldUpperAlpha;
break;
case greekPhiSymbol:
baseChar = mathBoldPhiSymbol - mathBoldUpperAlpha;
break;
case greekRhoSymbol:
baseChar = mathBoldRhoSymbol - mathBoldUpperAlpha;
break;
case greekPiSymbol:
baseChar = mathBoldPiSymbol - mathBoldUpperAlpha;
break;
default:
return codePoint;
}
varType = Greekish;
}
int8_t multiplier;
if (varType == Number) {
// Each possible number mathvariant is encoded in a single, contiguous block.
// For example the beginning of the double struck number range follows immediately after the end of the bold number range.
// multiplier represents the order of the sequences relative to the first one.
switch (mathvariant) {
case MathMLElement::MathVariant::Bold:
multiplier = 0;
break;
case MathMLElement::MathVariant::DoubleStruck:
multiplier = 1;
break;
case MathMLElement::MathVariant::SansSerif:
multiplier = 2;
break;
case MathMLElement::MathVariant::BoldSansSerif:
multiplier = 3;
break;
case MathMLElement::MathVariant::Monospace:
multiplier = 4;
break;
default:
// This mathvariant isn't defined for numbers or is otherwise normal.
return codePoint;
}
// As the ranges are contiguous, to find the desired mathvariant range it is sufficient to
// multiply the position within the sequence order (multiplier) with the period of the sequence (which is constant for all number sequences)
// and to add the character point of the first character within the number mathvariant range.
// To this the baseChar calculated earlier is added to obtain the final code point.
return baseChar + multiplier * (mathDoubleStruckZero - mathBoldDigitZero) + mathBoldDigitZero;
}
if (varType == Greekish) {
switch (mathvariant) {
case MathMLElement::MathVariant::Bold:
multiplier = 0;
break;
case MathMLElement::MathVariant::Italic:
multiplier = 1;
break;
case MathMLElement::MathVariant::BoldItalic:
multiplier = 2;
break;
case MathMLElement::MathVariant::BoldSansSerif:
multiplier = 3;
break;
case MathMLElement::MathVariant::SansSerifBoldItalic:
multiplier = 4;
break;
default:
// This mathvariant isn't defined for Greek or is otherwise normal.
return codePoint;
}
// See the Number case for an explanation of the following calculation.
return baseChar + mathBoldUpperAlpha + multiplier * (mathItalicUpperAlpha - mathBoldUpperAlpha);
}
char32_t tempChar = 0;
char32_t newChar;
if (varType == Arabic) {
// The Arabic mathematical block is not continuous, nor does it have a monotonic mapping to the unencoded characters, requiring the use of a lookup table.
const MathVariantMapping* mapTable;
size_t tableLength;
switch (mathvariant) {
case MathMLElement::MathVariant::Initial:
mapTable = arabicInitialMapTable;
tableLength = std::size(arabicInitialMapTable);
break;
case MathMLElement::MathVariant::Tailed:
mapTable = arabicTailedMapTable;
tableLength = std::size(arabicTailedMapTable);
break;
case MathMLElement::MathVariant::Stretched:
mapTable = arabicStretchedMapTable;
tableLength = std::size(arabicStretchedMapTable);
break;
case MathMLElement::MathVariant::Looped:
mapTable = arabicLoopedMapTable;
tableLength = std::size(arabicLoopedMapTable);
break;
case MathMLElement::MathVariant::DoubleStruck:
mapTable = arabicDoubleMapTable;
tableLength = std::size(arabicDoubleMapTable);
break;
default:
return codePoint; // No valid transformations exist.
}
newChar = MathVariantMappingSearch(codePoint, mapTable, tableLength);
} else {
// Must be Latin
if (mathvariant > MathMLElement::MathVariant::Monospace)
return codePoint; // Latin doesn't support the Arabic mathvariants
multiplier = static_cast<int>(mathvariant) - 2;
// This is possible because the values for NS_MATHML_MATHVARIANT_* are chosen to coincide with the order in which the encoded mathvariant characters are located within their unicode block (less an offset to avoid None and Normal variants)
// See the Number case for an explanation of the following calculation
tempChar = baseChar + mathBoldUpperA + multiplier * (mathItalicUpperA - mathBoldUpperA);
// There are roughly twenty characters that are located outside of the mathematical block, so the spaces where they ought to be are used as keys for a lookup table containing the correct character mappings.
newChar = MathVariantMappingSearch(tempChar, latinExceptionMapTable, std::size(latinExceptionMapTable));
}
if (newChar)
return newChar;
if (varType == Latin)
return tempChar;
return codePoint; // This is an Arabic character without a corresponding mapping.
}
void RenderMathMLToken::computePreferredLogicalWidths()
{
ASSERT(preferredLogicalWidthsDirty());
if (m_mathVariantGlyphDirty)
updateMathVariantGlyph();
if (m_mathVariantCodePoint) {
auto mathVariantGlyph = style().fontCascade().glyphDataForCharacter(m_mathVariantCodePoint.value(), m_mathVariantIsMirrored);
if (mathVariantGlyph.font) {
m_maxPreferredLogicalWidth = m_minPreferredLogicalWidth = mathVariantGlyph.font->widthForGlyph(mathVariantGlyph.glyph);
adjustPreferredLogicalWidthsForBorderAndPadding();
setPreferredLogicalWidthsDirty(false);
return;
}
}
RenderMathMLBlock::computePreferredLogicalWidths();
}
void RenderMathMLToken::updateMathVariantGlyph()
{
ASSERT(m_mathVariantGlyphDirty);
m_mathVariantCodePoint = std::nullopt;
m_mathVariantGlyphDirty = false;
// Early return if the token element contains RenderElements.
// Note that the renderers corresponding to the children of the token element are wrapped inside an anonymous RenderBlock.
if (const auto& block = downcast<RenderElement>(firstChild())) {
if (childrenOfType<RenderElement>(*block).first())
return;
}
const Ref tokenElement = element();
if (auto codePoint = MathMLTokenElement::convertToSingleCodePoint(element().textContent())) {
MathMLElement::MathVariant mathvariant = mathMLStyle().mathVariant();
if (mathvariant == MathMLElement::MathVariant::None)
mathvariant = tokenElement->hasTagName(MathMLNames::miTag) ? MathMLElement::MathVariant::Italic : MathMLElement::MathVariant::Normal;
char32_t transformedCodePoint = mathVariant(codePoint.value(), mathvariant);
if (transformedCodePoint != codePoint.value()) {
m_mathVariantCodePoint = mathVariant(codePoint.value(), mathvariant);
m_mathVariantIsMirrored = writingMode().isBidiRTL();
}
}
}
void RenderMathMLToken::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle)
{
RenderMathMLBlock::styleDidChange(diff, oldStyle);
setMathVariantGlyphDirty();
}
void RenderMathMLToken::updateFromElement()
{
RenderMathMLBlock::updateFromElement();
setMathVariantGlyphDirty();
}
std::optional<LayoutUnit> RenderMathMLToken::firstLineBaseline() const
{
if (m_mathVariantCodePoint) {
auto mathVariantGlyph = style().fontCascade().glyphDataForCharacter(m_mathVariantCodePoint.value(), m_mathVariantIsMirrored);
if (mathVariantGlyph.font)
return LayoutUnit { static_cast<int>(lroundf(-mathVariantGlyph.font->boundsForGlyph(mathVariantGlyph.glyph).y())) } + borderAndPaddingBefore();
}
return RenderMathMLBlock::firstLineBaseline();
}
void RenderMathMLToken::layoutBlock(RelayoutChildren relayoutChildren, LayoutUnit pageLogicalHeight)
{
ASSERT(needsLayout());
insertPositionedChildrenIntoContainingBlock();
if (relayoutChildren == RelayoutChildren::No && simplifiedLayout())
return;
layoutFloatingChildren();
GlyphData mathVariantGlyph;
if (m_mathVariantCodePoint)
mathVariantGlyph = style().fontCascade().glyphDataForCharacter(m_mathVariantCodePoint.value(), m_mathVariantIsMirrored);
if (!mathVariantGlyph.font) {
RenderMathMLBlock::layoutBlock(relayoutChildren, pageLogicalHeight);
return;
}
recomputeLogicalWidth();
for (auto* child = firstInFlowChildBox(); child; child = child->nextInFlowSiblingBox())
child->layoutIfNeeded();
setLogicalWidth(LayoutUnit(mathVariantGlyph.font->widthForGlyph(mathVariantGlyph.glyph)));
setLogicalHeight(LayoutUnit(mathVariantGlyph.font->boundsForGlyph(mathVariantGlyph.glyph).height()));
adjustLayoutForBorderAndPadding();
layoutPositionedObjects(relayoutChildren);
updateScrollInfoAfterLayout();
clearNeedsLayout();
}
void RenderMathMLToken::paint(PaintInfo& info, const LayoutPoint& paintOffset)
{
RenderMathMLBlock::paint(info, paintOffset);
// FIXME: Instead of using DrawGlyph, we may consider using the more general TextPainter so that we can apply mathvariant to strings with an arbitrary number of characters and preserve advanced CSS effects (text-shadow, etc).
if (info.context().paintingDisabled() || info.phase != PaintPhase::Foreground || style().usedVisibility() != Visibility::Visible || !m_mathVariantCodePoint)
return;
auto mathVariantGlyph = style().fontCascade().glyphDataForCharacter(m_mathVariantCodePoint.value(), m_mathVariantIsMirrored);
if (!mathVariantGlyph.font)
return;
GraphicsContextStateSaver stateSaver(info.context());
info.context().setFillColor(style().visitedDependentColorWithColorFilter(CSSPropertyColor));
LayoutUnit glyphAscent = static_cast<int>(lroundf(-mathVariantGlyph.font->boundsForGlyph(mathVariantGlyph.glyph).y()));
// FIXME: If we're just drawing a single glyph, why do we need to compute an advance?
auto advance = makeGlyphBufferAdvance(mathVariantGlyph.font->widthForGlyph(mathVariantGlyph.glyph));
info.context().drawGlyphs(*mathVariantGlyph.font, singleElementSpan(mathVariantGlyph.glyph), singleElementSpan(advance), paintOffset + location() + LayoutPoint(borderLeft() + paddingLeft(), glyphAscent + borderAndPaddingBefore()), style().fontCascade().fontDescription().usedFontSmoothing());
}
void RenderMathMLToken::paintChildren(PaintInfo& paintInfo, const LayoutPoint& paintOffset, PaintInfo& paintInfoForChild, bool usePrintRect)
{
if (m_mathVariantCodePoint) {
auto mathVariantGlyph = style().fontCascade().glyphDataForCharacter(m_mathVariantCodePoint.value(), m_mathVariantIsMirrored);
if (mathVariantGlyph.font)
return;
}
RenderMathMLBlock::paintChildren(paintInfo, paintOffset, paintInfoForChild, usePrintRect);
}
}
#endif // ENABLE(MATHML)
|