1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
|
/*
* Copyright (C) 2022 Apple Inc. All rights reserved.
* Copyright (C) 2024-2025 Samuel Weinig <sam@webkit.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "config.h"
#include "StyleGradient.h"
#include "ColorInterpolation.h"
#include "ComputedStyleExtractor.h"
#include "FloatConversion.h"
#include "GeometryUtilities.h"
#include "Gradient.h"
#include "GradientColorStop.h"
#include "RenderStyleInlines.h"
#include "StylePrimitiveNumericTypes+Conversions.h"
#include "StylePrimitiveNumericTypes+Evaluation.h"
namespace WebCore {
namespace Style {
// MARK: - IsRepeatingGradient
template<CSSValueID> constexpr bool IsRepeatingGradient = false;
template<> constexpr bool IsRepeatingGradient<CSSValueRepeatingLinearGradient> = true;
template<> constexpr bool IsRepeatingGradient<CSSValueWebkitRepeatingLinearGradient> = true;
template<> constexpr bool IsRepeatingGradient<CSSValueRepeatingRadialGradient> = true;
template<> constexpr bool IsRepeatingGradient<CSSValueWebkitRepeatingRadialGradient> = true;
template<> constexpr bool IsRepeatingGradient<CSSValueRepeatingConicGradient> = true;
template<CSSValueID Name, typename T> static constexpr bool isRepeating(const FunctionNotation<Name, T>&)
{
return IsRepeatingGradient<Name>;
}
// MARK: - Conversion: Style -> CSS
template<typename CSSStop, typename StyleStop> static auto toCSSColorStop(const StyleStop& stop, const RenderStyle& style) -> CSSStop
{
return CSSStop {
toCSS(stop.color, style),
toCSS(stop.position, style)
};
}
auto ToCSS<GradientAngularColorStop>::operator()(const GradientAngularColorStop& stop, const RenderStyle& style) -> CSS::GradientAngularColorStop
{
return toCSSColorStop<CSS::GradientAngularColorStop>(stop, style);
}
auto ToCSS<GradientLinearColorStop>::operator()(const GradientLinearColorStop& stop, const RenderStyle& style) -> CSS::GradientLinearColorStop
{
return toCSSColorStop<CSS::GradientLinearColorStop>(stop, style);
}
auto ToCSS<GradientDeprecatedColorStop>::operator()(const GradientDeprecatedColorStop& stop, const RenderStyle& style) -> CSS::GradientDeprecatedColorStop
{
return toCSSColorStop<CSS::GradientDeprecatedColorStop>(stop, style);
}
// MARK: - Conversion: CSS -> Style
template<typename T> decltype(auto) toStyleColorStop(const T& stop, const BuilderState& state)
{
return GradientColorStop {
toStyle(stop.color, state),
toStyle(stop.position, state)
};
}
auto ToStyle<CSS::GradientAngularColorStop>::operator()(const CSS::GradientAngularColorStop& stop, const BuilderState& state) -> GradientAngularColorStop
{
return toStyleColorStop(stop, state);
}
auto ToStyle<CSS::GradientLinearColorStop>::operator()(const CSS::GradientLinearColorStop& stop, const BuilderState& state) -> GradientLinearColorStop
{
return toStyleColorStop(stop, state);
}
auto ToStyle<CSS::GradientDeprecatedColorStop>::operator()(const CSS::GradientDeprecatedColorStop& stop, const BuilderState& state) -> GradientDeprecatedColorStop
{
return toStyleColorStop(stop, state);
}
// MARK: - Platform Gradient Resolution
static WebCore::Color resolveColorStopColor(const Color& styleColor, const RenderStyle& style, bool hasColorFilter)
{
if (hasColorFilter)
return style.colorWithColorFilter(styleColor);
return style.colorResolvingCurrentColor(styleColor);
}
static WebCore::Color resolveColorStopColor(const Markable<Color>& styleColor, const RenderStyle& style, bool hasColorFilter)
{
if (!styleColor)
return { };
return resolveColorStopColor(*styleColor, style, hasColorFilter);
}
static std::optional<float> resolveColorStopPosition(const GradientLinearColorStop::Position& position, float gradientLength)
{
if (!position)
return std::nullopt;
return WTF::switchOn(*position,
[&](const typename LengthPercentage<>::Dimension& length) -> std::optional<float> {
if (gradientLength <= 0)
return 0;
return length.value / gradientLength;
},
[&](const typename LengthPercentage<>::Percentage& percentage) -> std::optional<float> {
return percentage.value / 100.0;
},
[&](const typename LengthPercentage<>::Calc& calc) -> std::optional<float> {
if (gradientLength <= 0)
return 0;
return calc.protectedCalculation()->evaluate(gradientLength) / gradientLength;
}
);
}
static std::optional<float> resolveColorStopPosition(const GradientAngularColorStop::Position& position, float)
{
if (!position)
return std::nullopt;
return WTF::switchOn(*position,
[](const typename AnglePercentage<>::Dimension& angle) -> std::optional<float> {
return angle.value / 360.0;
},
[](const typename AnglePercentage<>::Percentage& percentage) -> std::optional<float> {
return percentage.value / 100.0;
},
[&](const typename AnglePercentage<>::Calc& calc) -> std::optional<float> {
return calc.protectedCalculation()->evaluate(100) / 100.0;
}
);
}
static float resolveColorStopPosition(const GradientDeprecatedColorStop::Position& position)
{
return narrowPrecisionToFloat(position.value.value);
}
struct ResolvedGradientStop {
WebCore::Color color;
std::optional<float> offset;
bool isSpecified() const { return offset.has_value(); }
bool isMidpoint() const { return !color.isValid(); }
};
class LinearGradientAdapter {
public:
explicit LinearGradientAdapter(WebCore::Gradient::LinearData& data)
: m_data(data)
{
}
float gradientLength() const
{
auto gradientSize = m_data.point0 - m_data.point1;
return gradientSize.diagonalLength();
}
static constexpr float maxExtent(float) { return 1; }
void normalizeStopsAndEndpointsOutsideRange(Vector<ResolvedGradientStop>& stops, ColorInterpolationMethod)
{
float firstOffset = *stops.first().offset;
float lastOffset = *stops.last().offset;
if (firstOffset != lastOffset) {
float scale = lastOffset - firstOffset;
for (auto& stop : stops)
stop.offset = (*stop.offset - firstOffset) / scale;
auto p0 = m_data.point0;
auto p1 = m_data.point1;
m_data.point0 = { p0.x() + firstOffset * (p1.x() - p0.x()), p0.y() + firstOffset * (p1.y() - p0.y()) };
m_data.point1 = { p1.x() + (lastOffset - 1) * (p1.x() - p0.x()), p1.y() + (lastOffset - 1) * (p1.y() - p0.y()) };
} else {
// There's a single position that is outside the scale, clamp the positions to 1.
for (auto& stop : stops)
stop.offset = 1;
}
}
private:
WebCore::Gradient::LinearData& m_data;
};
class RadialGradientAdapter {
public:
explicit RadialGradientAdapter(WebCore::Gradient::RadialData& data, FloatSize size)
: m_data(data)
, m_size(size)
{
}
float gradientLength() const { return m_data.endRadius; }
// Radial gradients may need to extend further than the endpoints, because they have
// to repeat out to the corners of the box.
float maxExtent(float gradientLength) const
{
auto maxLengthForRepeat = distanceToFarthestCorner(m_data.point1, m_size);
if (maxLengthForRepeat > gradientLength)
return gradientLength > 0 ? maxLengthForRepeat / gradientLength : 0;
return 1;
}
void normalizeStopsAndEndpointsOutsideRange(Vector<ResolvedGradientStop>& stops, ColorInterpolationMethod colorInterpolationMethod)
{
auto numberOfStops = stops.size();
// Rather than scaling the points < 0, we truncate them, so only scale according to the largest point.
float firstOffset = 0;
float lastOffset = *stops.last().offset;
float scale = lastOffset - firstOffset;
// Reset points below 0 to the first visible color.
size_t firstZeroOrGreaterIndex = numberOfStops;
for (size_t i = 0; i < numberOfStops; ++i) {
if (*stops[i].offset >= 0) {
firstZeroOrGreaterIndex = i;
break;
}
}
if (firstZeroOrGreaterIndex > 0) {
if (firstZeroOrGreaterIndex < numberOfStops && *stops[firstZeroOrGreaterIndex].offset > 0) {
float prevOffset = *stops[firstZeroOrGreaterIndex - 1].offset;
float nextOffset = *stops[firstZeroOrGreaterIndex].offset;
float interStopProportion = -prevOffset / (nextOffset - prevOffset);
auto blendedColor = interpolateColors(colorInterpolationMethod, stops[firstZeroOrGreaterIndex - 1].color, 1.0f - interStopProportion, stops[firstZeroOrGreaterIndex].color, interStopProportion);
// Clamp the positions to 0 and set the color.
for (size_t i = 0; i < firstZeroOrGreaterIndex; ++i) {
stops[i].offset = 0;
stops[i].color = blendedColor;
}
} else {
// All stops are below 0; just clamp them.
for (size_t i = 0; i < firstZeroOrGreaterIndex; ++i)
stops[i].offset = 0;
}
}
for (auto& stop : stops)
*stop.offset /= scale;
m_data.startRadius *= scale;
m_data.endRadius *= scale;
}
private:
WebCore::Gradient::RadialData& m_data;
FloatSize m_size;
};
class ConicGradientAdapter {
public:
static constexpr float gradientLength() { return 1; }
static constexpr float maxExtent(float) { return 1; }
void normalizeStopsAndEndpointsOutsideRange(Vector<ResolvedGradientStop>& stops, ColorInterpolationMethod colorInterpolationMethod)
{
size_t numberOfStops = stops.size();
size_t lastStopIndex = numberOfStops - 1;
std::optional<size_t> firstZeroOrGreaterIndex;
for (size_t i = 0; i < numberOfStops; ++i) {
if (*stops[i].offset >= 0) {
firstZeroOrGreaterIndex = i;
break;
}
}
if (firstZeroOrGreaterIndex) {
size_t index = *firstZeroOrGreaterIndex;
if (index > 0) {
float previousOffset = *stops[index - 1].offset;
float nextOffset = *stops[index].offset;
float interStopProportion = -previousOffset / (nextOffset - previousOffset);
auto blendedColor = interpolateColors(colorInterpolationMethod, stops[index - 1].color, 1.0f - interStopProportion, stops[index].color, interStopProportion);
// Clamp the positions to 0 and set the color.
for (size_t i = 0; i < index; ++i) {
stops[i].offset = 0;
stops[i].color = blendedColor;
}
}
} else {
// All stop offsets below 0, clamp them.
for (auto& stop : stops)
stop.offset = 0;
}
std::optional<size_t> lastOneOrLessIndex;
for (int i = lastStopIndex; i >= 0; --i) {
if (*stops[i].offset <= 1) {
lastOneOrLessIndex = i;
break;
}
}
if (lastOneOrLessIndex) {
size_t index = *lastOneOrLessIndex;
if (index < lastStopIndex) {
float previousOffset = *stops[index].offset;
float nextOffset = *stops[index + 1].offset;
float interStopProportion = (1 - previousOffset) / (nextOffset - previousOffset);
auto blendedColor = interpolateColors(colorInterpolationMethod, stops[index].color, 1.0f - interStopProportion, stops[index + 1].color, interStopProportion);
// Clamp the positions to 1 and set the color.
for (size_t i = index + 1; i < numberOfStops; ++i) {
stops[i].offset = 1;
stops[i].color = blendedColor;
}
}
} else {
// All stop offsets above 1, clamp them.
for (auto& stop : stops)
stop.offset = 1;
}
}
};
template<typename GradientAdapter, typename StyleGradient> GradientColorStops computeStopsForDeprecatedVariants(GradientAdapter&, const StyleGradient& styleGradient, const RenderStyle& style)
{
bool hasColorFilter = style.hasAppleColorFilter();
auto result = styleGradient.parameters.stops.value.template map<GradientColorStops::StopVector>([&](auto& stop) -> WebCore::GradientColorStop {
return {
resolveColorStopPosition(stop.position),
resolveColorStopColor(stop.color, style, hasColorFilter)
};
});
std::ranges::stable_sort(result, [](const auto& a, const auto& b) {
return a.offset < b.offset;
});
return GradientColorStops::Sorted { WTFMove(result) };
}
template<typename GradientAdapter, typename StyleGradient> GradientColorStops computeStops(GradientAdapter& gradientAdapter, const StyleGradient& styleGradient, const RenderStyle& style)
{
bool hasColorFilter = style.hasAppleColorFilter();
size_t numberOfStops = styleGradient.parameters.stops.size();
Vector<ResolvedGradientStop> stops(numberOfStops);
float gradientLength = gradientAdapter.gradientLength();
for (size_t i = 0; i < numberOfStops; ++i) {
auto& stop = styleGradient.parameters.stops[i];
stops[i].color = resolveColorStopColor(stop.color, style, hasColorFilter);
auto offset = resolveColorStopPosition(stop.position, gradientLength);
if (offset)
stops[i].offset = *offset;
else {
// If the first color-stop does not have a position, its position defaults to 0%.
// If the last color-stop does not have a position, its position defaults to 100%.
if (!i)
stops[i].offset = 0;
else if (numberOfStops > 1 && i == numberOfStops - 1)
stops[i].offset = 1;
}
// If a color-stop has a position that is less than the specified position of any
// color-stop before it in the list, its position is changed to be equal to the
// largest specified position of any color-stop before it.
if (stops[i].isSpecified() && i > 0) {
size_t prevSpecifiedIndex;
for (prevSpecifiedIndex = i - 1; prevSpecifiedIndex; --prevSpecifiedIndex) {
if (stops[prevSpecifiedIndex].isSpecified())
break;
}
if (*stops[i].offset < *stops[prevSpecifiedIndex].offset)
stops[i].offset = stops[prevSpecifiedIndex].offset;
}
}
ASSERT(stops[0].isSpecified() && stops[numberOfStops - 1].isSpecified());
// If any color-stop still does not have a position, then, for each run of adjacent
// color-stops without positions, set their positions so that they are evenly spaced
// between the preceding and following color-stops with positions.
if (numberOfStops > 2) {
size_t unspecifiedRunStart = 0;
bool inUnspecifiedRun = false;
for (size_t i = 0; i < numberOfStops; ++i) {
if (!stops[i].isSpecified() && !inUnspecifiedRun) {
unspecifiedRunStart = i;
inUnspecifiedRun = true;
} else if (stops[i].isSpecified() && inUnspecifiedRun) {
size_t unspecifiedRunEnd = i;
if (unspecifiedRunStart < unspecifiedRunEnd) {
float lastSpecifiedOffset = *stops[unspecifiedRunStart - 1].offset;
float nextSpecifiedOffset = *stops[unspecifiedRunEnd].offset;
float delta = (nextSpecifiedOffset - lastSpecifiedOffset) / (unspecifiedRunEnd - unspecifiedRunStart + 1);
for (size_t j = unspecifiedRunStart; j < unspecifiedRunEnd; ++j)
stops[j].offset = lastSpecifiedOffset + (j - unspecifiedRunStart + 1) * delta;
}
inUnspecifiedRun = false;
}
}
}
// Walk over the color stops, look for midpoints and add stops as needed.
// If mid < 50%, add 2 stops to the left and 6 to the right
// else add 6 stops to the left and 2 to the right.
// Stops on the side with the most stops start midway because the curve approximates
// a line in that region. We then add 5 more color stops on that side to minimize the change
// how the luminance changes at each of the color stops. We don't have to add as many on the other side
// since it becomes small which increases the differentiation of luminance which hides the color stops.
// Even with 4 extra color stops, it *is* possible to discern the steps when the gradient is large and has
// large luminance differences between midpoint and color stop. If this becomes an issue, we can consider
// making this algorithm a bit smarter.
// Midpoints that coincide with color stops are treated specially since they don't require
// extra stops and generate hard lines.
for (size_t x = 1; x < stops.size() - 1;) {
if (!stops[x].isMidpoint()) {
++x;
continue;
}
// Find previous and next color so we know what to interpolate between.
// We already know they have a color since we checked for that earlier.
auto color1 = stops[x - 1].color;
auto color2 = stops[x + 1].color;
// Likewise find the position of previous and next color stop.
float offset1 = *stops[x - 1].offset;
float offset2 = *stops[x + 1].offset;
float offset = *stops[x].offset;
// Check if everything coincides or the midpoint is exactly in the middle.
// If so, ignore the midpoint.
if (offset - offset1 == offset2 - offset) {
stops.remove(x);
continue;
}
// Check if we coincide with the left color stop.
if (offset1 == offset) {
// Morph the midpoint to a regular stop with the color of the next color stop.
stops[x].color = color2;
continue;
}
// Check if we coincide with the right color stop.
if (offset2 == offset) {
// Morph the midpoint to a regular stop with the color of the previous color stop.
stops[x].color = color1;
continue;
}
float midpoint = (offset - offset1) / (offset2 - offset1);
std::array<ResolvedGradientStop, 9> newStops;
if (midpoint > .5f) {
for (size_t y = 0; y < 6; ++y)
newStops[y].offset = offset1 + (offset - offset1) * (7 + y) / 13;
newStops[6].offset = offset;
newStops[7].offset = offset + (offset2 - offset) / 3;
newStops[8].offset = offset + (offset2 - offset) * 2 / 3;
} else {
newStops[0].offset = offset1 + (offset - offset1) / 3;
newStops[1].offset = offset1 + (offset - offset1) * 2 / 3;
newStops[2].offset = offset;
for (size_t y = 1; y < 7; ++y)
newStops[y + 2].offset = offset + (offset2 - offset) * y / 13;
}
// calculate colors
for (size_t y = 0; y < 9; ++y) {
float relativeOffset = (*newStops[y].offset - offset1) / (offset2 - offset1);
float multiplier = std::pow(relativeOffset, std::log(.5f) / std::log(midpoint));
newStops[y].color = interpolateColors(styleGradient.parameters.colorInterpolationMethod.method, color1, 1.0f - multiplier, color2, multiplier);
}
stops.remove(x);
stops.insertSpan(x, std::span { newStops });
x += 9;
}
numberOfStops = stops.size();
// If the gradient is repeating, repeat the color stops.
// We can't just push this logic down into the platform-specific Gradient code,
// because we have to know the extent of the gradient, and possible move the end points.
if (isRepeating(styleGradient) && numberOfStops > 1) {
float maxExtent = gradientAdapter.maxExtent(gradientLength);
// If the difference in the positions of the first and last color-stops is 0,
// the gradient defines a solid-color image with the color of the last color-stop in the rule.
float gradientRange = *stops.last().offset - *stops.first().offset;
if (maxExtent > 1)
gradientRange /= maxExtent;
if (!gradientRange) {
stops.first().offset = 0;
stops.first().color = stops.last().color;
stops.shrink(1);
numberOfStops = 1;
} else if (std::abs(gradientRange) < (float(1) / (2 << 15))) {
// If the gradient range is too small, the subsequent replication of stops
// across the complete [0, maxExtent] range can challenging to complete both
// because of potentially-expensive initial traversal across the [0, first-offset]
// and [last-offset, maxExtent] ranges as well as likely exorbitant memory consumption
// needed for all such generated stops. In case of such a gradient range the initial
// Vector of stops remains unchanged, and additional stops for the purpose of the
// repeating nature of the gradient are not computed.
} else {
// Since the gradient range is deemed big enough, the amount of necessary stops is
// calculated for both the [0, first-offset] and the [last-offset, maxExtent] ranges.
CheckedSize numberOfGeneratedStopsBeforeFirst;
CheckedSize numberOfGeneratedStopsAfterLast;
if (*stops.first().offset > 0) {
float currOffset = *stops.first().offset;
size_t srcStopOrdinal = numberOfStops - 1;
while (true) {
++numberOfGeneratedStopsBeforeFirst;
if (currOffset < 0)
break;
if (srcStopOrdinal)
currOffset -= *stops[srcStopOrdinal].offset - *stops[srcStopOrdinal - 1].offset;
srcStopOrdinal = (srcStopOrdinal + numberOfStops - 1) % numberOfStops;
}
}
if (*stops.last().offset < maxExtent) {
float currOffset = *stops.last().offset;
size_t srcStopOrdinal = 0;
while (true) {
++numberOfGeneratedStopsAfterLast;
if (currOffset > maxExtent)
break;
if (srcStopOrdinal < numberOfStops - 1)
currOffset += *stops[srcStopOrdinal + 1].offset - *stops[srcStopOrdinal].offset;
srcStopOrdinal = (srcStopOrdinal + 1) % numberOfStops;
}
}
// With the number of stops necessary for the repeating gradient now known, we can impose
// some reasonable limit to prevent generation of memory-expensive amounts of gradient stops.
CheckedSize checkedNumberOfGeneratedStops = CheckedSize(numberOfStops) + numberOfGeneratedStopsBeforeFirst + numberOfGeneratedStopsAfterLast;
if (checkedNumberOfGeneratedStops.hasOverflowed() || checkedNumberOfGeneratedStops.value() > (2 << 15)) {
// More than 65536 gradient stops are expected. Let's fall back to the initially-provided
// Vector of stops, effectively meaning the repetition of stops is not applied.
} else {
// An affordable amount of gradient stops is determined. A separate Vector object is constructed
// accordingly, first generating the repeated stops in the [0, first-offset] range, then adding
// the original stops, and finally generating the repeated stops in the [last-offset, maxExtent]
// range. The resulting Vector is then moved in to replace the original stops.
Vector<ResolvedGradientStop> generatedStops;
generatedStops.reserveInitialCapacity(checkedNumberOfGeneratedStops.value());
if (numberOfGeneratedStopsBeforeFirst > 0) {
float currOffset = *stops.first().offset;
size_t srcStopOrdinal = numberOfStops - 1;
for (size_t i = 0; i < numberOfGeneratedStopsBeforeFirst; ++i) {
auto newStop = stops[srcStopOrdinal];
newStop.offset = currOffset;
generatedStops.append(newStop);
if (srcStopOrdinal)
currOffset -= *stops[srcStopOrdinal].offset - *stops[srcStopOrdinal - 1].offset;
srcStopOrdinal = (srcStopOrdinal + numberOfStops - 1) % numberOfStops;
}
generatedStops.reverse();
}
generatedStops.appendVector(stops);
if (numberOfGeneratedStopsAfterLast > 0) {
float currOffset = *stops.last().offset;
size_t srcStopOrdinal = 0;
for (size_t i = 0; i < numberOfGeneratedStopsAfterLast; ++i) {
auto newStop = stops[srcStopOrdinal];
newStop.offset = currOffset;
generatedStops.append(newStop);
if (srcStopOrdinal < numberOfStops - 1)
currOffset += *stops[srcStopOrdinal + 1].offset - *stops[srcStopOrdinal].offset;
srcStopOrdinal = (srcStopOrdinal + 1) % numberOfStops;
}
}
stops = WTFMove(generatedStops);
}
}
}
// If the gradient goes outside the 0-1 range, normalize it by moving the endpoints, and adjusting the stops.
if (stops.size() > 1 && (*stops.first().offset < 0 || *stops.last().offset > 1))
gradientAdapter.normalizeStopsAndEndpointsOutsideRange(stops, styleGradient.parameters.colorInterpolationMethod.method);
return GradientColorStops::Sorted {
stops.template map<GradientColorStops::StopVector>([](auto& stop) -> WebCore::GradientColorStop {
return { *stop.offset, stop.color };
})
};
}
static inline float positionFromValue(const LengthPercentage<>& coordinate, float widthOrHeight)
{
return evaluate(coordinate, widthOrHeight);
}
static inline float positionFromValue(const NumberOrPercentage<>& coordinate, float widthOrHeight)
{
return WTF::switchOn(coordinate,
[&](Number<> number) -> float { return number.value; },
[&](Percentage<> percentage) -> float { return percentage.value / 100.0f * widthOrHeight; }
);
}
template<typename Position> static inline FloatPoint computeEndPoint(const Position& value, const FloatSize& size)
{
return {
positionFromValue(get<0>(value), size.width()),
positionFromValue(get<1>(value), size.height())
};
}
// Compute the endpoints so that a gradient of the given angle covers a box of the given size.
static std::pair<FloatPoint, FloatPoint> endPointsFromAngle(float angleDeg, const FloatSize& size)
{
angleDeg = toPositiveAngle(angleDeg);
if (!angleDeg)
return { { 0, size.height() }, { 0, 0 } };
if (angleDeg == 90)
return { { 0, 0 }, { size.width(), 0 } };
if (angleDeg == 180)
return { { 0, 0 }, { 0, size.height() } };
if (angleDeg == 270)
return { { size.width(), 0 }, { 0, 0 } };
// angleDeg is a "bearing angle" (0deg = N, 90deg = E),
// but tan expects 0deg = E, 90deg = N.
float slope = std::tan(deg2rad(90 - angleDeg));
// We find the endpoint by computing the intersection of the line formed by the slope,
// and a line perpendicular to it that intersects the corner.
float perpendicularSlope = -1 / slope;
// Compute start corner relative to center, in Cartesian space (+y = up).
float halfHeight = size.height() / 2;
float halfWidth = size.width() / 2;
FloatPoint endCorner;
if (angleDeg < 90)
endCorner.set(halfWidth, halfHeight);
else if (angleDeg < 180)
endCorner.set(halfWidth, -halfHeight);
else if (angleDeg < 270)
endCorner.set(-halfWidth, -halfHeight);
else
endCorner.set(-halfWidth, halfHeight);
// Compute c (of y = mx + c) using the corner point.
float c = endCorner.y() - perpendicularSlope * endCorner.x();
float endX = c / (slope - perpendicularSlope);
float endY = perpendicularSlope * endX + c;
// We computed the end point, so set the second point,
// taking into account the moved origin and the fact
// that we're in drawing space (+y = down). Reflect
// around the center for the start point.
return { FloatPoint(halfWidth - endX, halfHeight + endY), FloatPoint(halfWidth + endX, halfHeight - endY) };
}
static std::pair<FloatPoint, FloatPoint> endPointsFromAngleForPrefixedVariants(float angleDeg, const FloatSize& size)
{
// Prefixed gradients use "polar coordinate" angles, rather than "bearing" angles.
return endPointsFromAngle(90 - angleDeg, size);
}
static float resolveRadius(const LengthPercentage<CSS::Nonnegative>& radius, float widthOrHeight)
{
return evaluate(radius, widthOrHeight);
}
struct DistanceToCorner {
float distance;
FloatPoint corner;
};
static DistanceToCorner findDistanceToClosestCorner(const FloatPoint& p, const FloatSize& size)
{
FloatPoint topLeft;
float topLeftDistance = FloatSize(p - topLeft).diagonalLength();
FloatPoint topRight(size.width(), 0);
float topRightDistance = FloatSize(p - topRight).diagonalLength();
FloatPoint bottomLeft(0, size.height());
float bottomLeftDistance = FloatSize(p - bottomLeft).diagonalLength();
FloatPoint bottomRight(size.width(), size.height());
float bottomRightDistance = FloatSize(p - bottomRight).diagonalLength();
FloatPoint corner = topLeft;
float minDistance = topLeftDistance;
if (topRightDistance < minDistance) {
minDistance = topRightDistance;
corner = topRight;
}
if (bottomLeftDistance < minDistance) {
minDistance = bottomLeftDistance;
corner = bottomLeft;
}
if (bottomRightDistance < minDistance) {
minDistance = bottomRightDistance;
corner = bottomRight;
}
return { minDistance, corner };
}
static DistanceToCorner findDistanceToFarthestCorner(const FloatPoint& p, const FloatSize& size)
{
FloatPoint topLeft;
float topLeftDistance = FloatSize(p - topLeft).diagonalLength();
FloatPoint topRight(size.width(), 0);
float topRightDistance = FloatSize(p - topRight).diagonalLength();
FloatPoint bottomLeft(0, size.height());
float bottomLeftDistance = FloatSize(p - bottomLeft).diagonalLength();
FloatPoint bottomRight(size.width(), size.height());
float bottomRightDistance = FloatSize(p - bottomRight).diagonalLength();
FloatPoint corner = topLeft;
float maxDistance = topLeftDistance;
if (topRightDistance > maxDistance) {
maxDistance = topRightDistance;
corner = topRight;
}
if (bottomLeftDistance > maxDistance) {
maxDistance = bottomLeftDistance;
corner = bottomLeft;
}
if (bottomRightDistance > maxDistance) {
maxDistance = bottomRightDistance;
corner = bottomRight;
}
return { maxDistance, corner };
}
// Compute horizontal radius of ellipse with center at 0,0 which passes through p, and has
// width/height given by aspectRatio.
static inline float horizontalEllipseRadius(const FloatSize& p, float aspectRatio)
{
// x^2/a^2 + y^2/b^2 = 1
// a/b = aspectRatio, b = a/aspectRatio
// a = sqrt(x^2 + y^2/(1/r^2))
return std::hypot(p.width(), p.height() * aspectRatio);
}
// MARK: - Linear create.
template<CSSValueID Name> static Ref<WebCore::Gradient> createPlatformGradient(const FunctionNotation<Name, LinearGradient>& linear, const FloatSize& size, const RenderStyle& style)
{
ASSERT(!size.isEmpty());
auto [point0, point1] = WTF::switchOn(linear.parameters.gradientLine,
[&](const Angle<>& angle) -> std::pair<FloatPoint, FloatPoint> {
return endPointsFromAngle(angle.value, size);
},
[&](const Horizontal& horizontal) -> std::pair<FloatPoint, FloatPoint> {
return WTF::switchOn(horizontal,
[&](CSS::Keyword::Left) -> std::pair<FloatPoint, FloatPoint> {
return { { size.width(), 0 }, { 0, 0 } };
},
[&](CSS::Keyword::Right) -> std::pair<FloatPoint, FloatPoint> {
return { { 0, 0 }, { size.width(), 0 } };
}
);
},
[&](const Vertical& vertical) -> std::pair<FloatPoint, FloatPoint> {
return WTF::switchOn(vertical,
[&](CSS::Keyword::Top) -> std::pair<FloatPoint, FloatPoint> {
return { { 0, size.height() }, { 0, 0 } };
},
[&](CSS::Keyword::Bottom) -> std::pair<FloatPoint, FloatPoint> {
return { { 0, 0 }, { 0, size.height() } };
}
);
},
[&](const SpaceSeparatedTuple<Horizontal, Vertical>& pair) -> std::pair<FloatPoint, FloatPoint> {
float rise = size.width();
float run = size.height();
if (std::holds_alternative<CSS::Keyword::Left>(get<0>(pair)))
run *= -1;
if (std::holds_alternative<CSS::Keyword::Bottom>(get<1>(pair)))
rise *= -1;
// Compute angle, and flip it back to "bearing angle" degrees.
float angle = 90 - rad2deg(atan2(rise, run));
return endPointsFromAngle(angle, size);
}
);
WebCore::Gradient::LinearData data { point0, point1 };
LinearGradientAdapter adapter { data };
auto stops = computeStops(adapter, linear, style);
return WebCore::Gradient::create(WTFMove(data), linear.parameters.colorInterpolationMethod.method, GradientSpreadMethod::Pad, WTFMove(stops));
}
// MARK: - Prefixed Linear create.
template<CSSValueID Name> static Ref<WebCore::Gradient> createPlatformGradient(const FunctionNotation<Name, PrefixedLinearGradient>& linear, const FloatSize& size, const RenderStyle& style)
{
ASSERT(!size.isEmpty());
auto [point0, point1] = WTF::switchOn(linear.parameters.gradientLine,
[&](const Angle<>& angle) -> std::pair<FloatPoint, FloatPoint> {
return endPointsFromAngleForPrefixedVariants(angle.value, size);
},
[&](const Horizontal& horizontal) -> std::pair<FloatPoint, FloatPoint> {
return WTF::switchOn(horizontal,
[&](CSS::Keyword::Left) -> std::pair<FloatPoint, FloatPoint> {
return { { 0, 0 }, { size.width(), 0 } };
},
[&](CSS::Keyword::Right) -> std::pair<FloatPoint, FloatPoint> {
return { { size.width(), 0 }, { 0, 0 } };
}
);
},
[&](const Vertical vertical) -> std::pair<FloatPoint, FloatPoint> {
return WTF::switchOn(vertical,
[&](CSS::Keyword::Top) -> std::pair<FloatPoint, FloatPoint> {
return { { 0, 0 }, { 0, size.height() } };
},
[&](CSS::Keyword::Bottom) -> std::pair<FloatPoint, FloatPoint> {
return { { 0, size.height() }, { 0, 0 } };
}
);
},
[&](const SpaceSeparatedTuple<Horizontal, Vertical>& pair) -> std::pair<FloatPoint, FloatPoint> {
return std::visit(WTF::makeVisitor(
[&](CSS::Keyword::Left, CSS::Keyword::Top) -> std::pair<FloatPoint, FloatPoint> {
return { { 0, 0 }, { size.width(), size.height() } };
},
[&](CSS::Keyword::Left, CSS::Keyword::Bottom) -> std::pair<FloatPoint, FloatPoint> {
return { { 0, size.height() }, { size.width(), 0 } };
},
[&](CSS::Keyword::Right, CSS::Keyword::Top) -> std::pair<FloatPoint, FloatPoint> {
return { { size.width(), 0 }, { 0, size.height() } };
},
[&](CSS::Keyword::Right, CSS::Keyword::Bottom) -> std::pair<FloatPoint, FloatPoint> {
return { { size.width(), size.height() }, { 0, 0 } };
}
), get<0>(pair), get<1>(pair));
}
);
WebCore::Gradient::LinearData data { point0, point1 };
LinearGradientAdapter adapter { data };
auto stops = computeStops(adapter, linear, style);
return WebCore::Gradient::create(WTFMove(data), linear.parameters.colorInterpolationMethod.method, GradientSpreadMethod::Pad, WTFMove(stops));
}
// MARK: - Deprecated Linear create.
template<CSSValueID Name> static Ref<WebCore::Gradient> createPlatformGradient(const FunctionNotation<Name, DeprecatedLinearGradient>& linear, const FloatSize& size, const RenderStyle& style)
{
ASSERT(!size.isEmpty());
auto point0 = computeEndPoint(get<0>(linear.parameters.gradientLine), size);
auto point1 = computeEndPoint(get<1>(linear.parameters.gradientLine), size);
WebCore::Gradient::LinearData data { point0, point1 };
LinearGradientAdapter adapter { data };
auto stops = computeStopsForDeprecatedVariants(adapter, linear, style);
return WebCore::Gradient::create(WTFMove(data), linear.parameters.colorInterpolationMethod.method, GradientSpreadMethod::Pad, WTFMove(stops));
}
// MARK: - Radial create.
template<CSSValueID Name> static Ref<WebCore::Gradient> createPlatformGradient(const FunctionNotation<Name, RadialGradient>& radial, const FloatSize& size, const RenderStyle& style)
{
ASSERT(!size.isEmpty());
auto computeCenterPoint = [&](const std::optional<Position>& position) -> FloatPoint {
return position ? computeEndPoint(*position, size) : FloatPoint { size.width() / 2, size.height() / 2 };
};
auto computeCircleRadius = [&](const std::variant<RadialGradient::Circle::Length, RadialGradient::Extent>& circleLengthOrExtent, FloatPoint centerPoint) -> std::pair<float, float> {
return WTF::switchOn(circleLengthOrExtent,
[&](const RadialGradient::Circle::Length& circleLength) -> std::pair<float, float> {
return { circleLength.value, 1 };
},
[&](const RadialGradient::Extent& extent) -> std::pair<float, float> {
return WTF::switchOn(extent,
[&](CSS::Keyword::ClosestSide) -> std::pair<float, float> {
return { distanceToClosestSide(centerPoint, size), 1 };
},
[&](CSS::Keyword::FarthestSide) -> std::pair<float, float> {
return { distanceToFarthestSide(centerPoint, size), 1 };
},
[&](CSS::Keyword::ClosestCorner) -> std::pair<float, float> {
return { distanceToClosestCorner(centerPoint, size), 1 };
},
[&](CSS::Keyword::FarthestCorner) -> std::pair<float, float> {
return { distanceToFarthestCorner(centerPoint, size), 1 };
}
);
}
);
};
auto computeEllipseRadii = [&](const std::variant<RadialGradient::Ellipse::Size, RadialGradient::Extent>& ellipseSizeOrExtent, FloatPoint centerPoint) -> std::pair<float, float> {
return WTF::switchOn(ellipseSizeOrExtent,
[&](const RadialGradient::Ellipse::Size& ellipseSize) -> std::pair<float, float> {
auto xDist = resolveRadius(get<0>(ellipseSize), size.width());
auto yDist = resolveRadius(get<1>(ellipseSize), size.height());
return { xDist, xDist / yDist };
},
[&](const RadialGradient::Extent& extent) -> std::pair<float, float> {
return WTF::switchOn(extent,
[&](CSS::Keyword::ClosestSide) -> std::pair<float, float> {
float xDist = std::min(centerPoint.x(), size.width() - centerPoint.x());
float yDist = std::min(centerPoint.y(), size.height() - centerPoint.y());
return { xDist, xDist / yDist };
},
[&](CSS::Keyword::FarthestSide) -> std::pair<float, float> {
float xDist = std::max(centerPoint.x(), size.width() - centerPoint.x());
float yDist = std::max(centerPoint.y(), size.height() - centerPoint.y());
return { xDist, xDist / yDist };
},
[&](CSS::Keyword::ClosestCorner) -> std::pair<float, float> {
auto [distance, corner] = findDistanceToClosestCorner(centerPoint, size);
// If <shape> is ellipse, the gradient-shape has the same ratio of width to height
// that it would if closest-side or farthest-side were specified, as appropriate.
float xDist = std::min(centerPoint.x(), size.width() - centerPoint.x());
float yDist = std::min(centerPoint.y(), size.height() - centerPoint.y());
return { horizontalEllipseRadius(corner - centerPoint, xDist / yDist), xDist / yDist };
},
[&](CSS::Keyword::FarthestCorner) -> std::pair<float, float> {
auto [distance, corner] = findDistanceToFarthestCorner(centerPoint, size);
// If <shape> is ellipse, the gradient-shape has the same ratio of width to height
// that it would if closest-side or farthest-side were specified, as appropriate.
float xDist = std::max(centerPoint.x(), size.width() - centerPoint.x());
float yDist = std::max(centerPoint.y(), size.height() - centerPoint.y());
return { horizontalEllipseRadius(corner - centerPoint, xDist / yDist), xDist / yDist };
}
);
}
);
};
auto data = WTF::switchOn(radial.parameters.gradientBox,
[&](const RadialGradient::Ellipse& ellipse) {
auto centerPoint = computeCenterPoint(ellipse.position);
auto [endRadius, aspectRatio] = computeEllipseRadii(ellipse.size, centerPoint);
return WebCore::Gradient::RadialData { centerPoint, centerPoint, 0, endRadius, aspectRatio };
},
[&](const RadialGradient::Circle& circle) {
auto centerPoint = computeCenterPoint(circle.position);
auto [endRadius, aspectRatio] = computeCircleRadius(circle.size, centerPoint);
return WebCore::Gradient::RadialData { centerPoint, centerPoint, 0, endRadius, aspectRatio };
}
);
RadialGradientAdapter adapter { data, size };
auto stops = computeStops(adapter, radial, style);
return WebCore::Gradient::create(WTFMove(data), radial.parameters.colorInterpolationMethod.method, GradientSpreadMethod::Pad, WTFMove(stops));
}
// MARK: - Prefixed Radial create.
template<CSSValueID Name> static Ref<WebCore::Gradient> createPlatformGradient(const FunctionNotation<Name, PrefixedRadialGradient>& radial, const FloatSize& size, const RenderStyle& style)
{
ASSERT(!size.isEmpty());
auto computeCenterPoint = [&](const std::optional<Position>& position) -> FloatPoint {
return position ? computeEndPoint(*position, size) : FloatPoint { size.width() / 2, size.height() / 2 };
};
auto computeEllipseRadii = [&](const std::variant<PrefixedRadialGradient::Ellipse::Size, PrefixedRadialGradient::Extent>& ellipseSizeOrExtent, FloatPoint centerPoint) -> std::pair<float, float> {
return WTF::switchOn(ellipseSizeOrExtent,
[&](const PrefixedRadialGradient::Ellipse::Size& ellipseSize) -> std::pair<float, float> {
auto xDist = resolveRadius(get<0>(ellipseSize), size.width());
auto yDist = resolveRadius(get<1>(ellipseSize), size.height());
return { xDist, xDist / yDist };
},
[&](const PrefixedRadialGradient::Extent& extent) -> std::pair<float, float> {
return WTF::switchOn(extent,
[&](CSS::Keyword::ClosestSide) -> std::pair<float, float> {
float xDist = std::min(centerPoint.x(), size.width() - centerPoint.x());
float yDist = std::min(centerPoint.y(), size.height() - centerPoint.y());
return { xDist, xDist / yDist };
},
[&](CSS::Keyword::Contain) -> std::pair<float, float> {
float xDist = std::min(centerPoint.x(), size.width() - centerPoint.x());
float yDist = std::min(centerPoint.y(), size.height() - centerPoint.y());
return { xDist, xDist / yDist };
},
[&](CSS::Keyword::FarthestSide) -> std::pair<float, float> {
float xDist = std::max(centerPoint.x(), size.width() - centerPoint.x());
float yDist = std::max(centerPoint.y(), size.height() - centerPoint.y());
return { xDist, xDist / yDist };
},
[&](CSS::Keyword::ClosestCorner) -> std::pair<float, float> {
auto [distance, corner] = findDistanceToClosestCorner(centerPoint, size);
// If <shape> is ellipse, the gradient-shape has the same ratio of width to height
// that it would if closest-side or farthest-side were specified, as appropriate.
float xDist = std::min(centerPoint.x(), size.width() - centerPoint.x());
float yDist = std::min(centerPoint.y(), size.height() - centerPoint.y());
return { horizontalEllipseRadius(corner - centerPoint, xDist / yDist), xDist / yDist };
},
[&](CSS::Keyword::FarthestCorner) -> std::pair<float, float> {
auto [distance, corner] = findDistanceToFarthestCorner(centerPoint, size);
// If <shape> is ellipse, the gradient-shape has the same ratio of width to height
// that it would if closest-side or farthest-side were specified, as appropriate.
float xDist = std::max(centerPoint.x(), size.width() - centerPoint.x());
float yDist = std::max(centerPoint.y(), size.height() - centerPoint.y());
return { horizontalEllipseRadius(corner - centerPoint, xDist / yDist), xDist / yDist };
},
[&](CSS::Keyword::Cover) -> std::pair<float, float> {
auto [distance, corner] = findDistanceToFarthestCorner(centerPoint, size);
// If <shape> is ellipse, the gradient-shape has the same ratio of width to height
// that it would if closest-side or farthest-side were specified, as appropriate.
float xDist = std::max(centerPoint.x(), size.width() - centerPoint.x());
float yDist = std::max(centerPoint.y(), size.height() - centerPoint.y());
return { horizontalEllipseRadius(corner - centerPoint, xDist / yDist), xDist / yDist };
}
);
}
);
};
auto computeCircleRadius = [&](const PrefixedRadialGradient::Extent& extent, FloatPoint centerPoint) -> std::pair<float, float> {
return WTF::switchOn(extent,
[&](CSS::Keyword::ClosestSide) -> std::pair<float, float> {
return { std::min({ centerPoint.x(), size.width() - centerPoint.x(), centerPoint.y(), size.height() - centerPoint.y() }), 1 };
},
[&](CSS::Keyword::Contain) -> std::pair<float, float> {
return { std::min({ centerPoint.x(), size.width() - centerPoint.x(), centerPoint.y(), size.height() - centerPoint.y() }), 1 };
},
[&](CSS::Keyword::FarthestSide) -> std::pair<float, float> {
return { std::max({ centerPoint.x(), size.width() - centerPoint.x(), centerPoint.y(), size.height() - centerPoint.y() }), 1 };
},
[&](CSS::Keyword::ClosestCorner) -> std::pair<float, float> {
return { distanceToClosestCorner(centerPoint, size), 1 };
},
[&](CSS::Keyword::FarthestCorner) -> std::pair<float, float> {
return { distanceToFarthestCorner(centerPoint, size), 1 };
},
[&](CSS::Keyword::Cover) -> std::pair<float, float> {
return { distanceToFarthestCorner(centerPoint, size), 1 };
}
);
};
auto data = WTF::switchOn(radial.parameters.gradientBox,
[&](const PrefixedRadialGradient::Ellipse& ellipse) {
auto centerPoint = computeCenterPoint(ellipse.position);
auto [endRadius, aspectRatio] = computeEllipseRadii(ellipse.size.value_or(PrefixedRadialGradient::Extent { CSS::Keyword::Cover { } }), centerPoint);
return WebCore::Gradient::RadialData { centerPoint, centerPoint, 0, endRadius, aspectRatio };
},
[&](const PrefixedRadialGradient::Circle& circle) {
auto centerPoint = computeCenterPoint(circle.position);
auto [endRadius, aspectRatio] = computeCircleRadius(circle.size.value_or(PrefixedRadialGradient::Extent { CSS::Keyword::Cover { } }), centerPoint);
return WebCore::Gradient::RadialData { centerPoint, centerPoint, 0, endRadius, aspectRatio };
}
);
RadialGradientAdapter adapter { data, size };
auto stops = computeStops(adapter, radial, style);
return WebCore::Gradient::create(WTFMove(data), radial.parameters.colorInterpolationMethod.method, GradientSpreadMethod::Pad, WTFMove(stops));
}
// MARK: - Deprecated Radial create.
template<CSSValueID Name> static Ref<WebCore::Gradient> createPlatformGradient(const FunctionNotation<Name, DeprecatedRadialGradient>& radial, const FloatSize& size, const RenderStyle& style)
{
ASSERT(!size.isEmpty());
auto firstPoint = computeEndPoint(radial.parameters.gradientBox.first, size);
auto secondPoint = computeEndPoint(radial.parameters.gradientBox.second, size);
auto firstRadius = narrowPrecisionToFloat(radial.parameters.gradientBox.firstRadius.value);
auto secondRadius = narrowPrecisionToFloat(radial.parameters.gradientBox.secondRadius.value);
auto aspectRatio = 1.0f;
WebCore::Gradient::RadialData data { firstPoint, secondPoint, firstRadius, secondRadius, aspectRatio };
RadialGradientAdapter adapter { data, size };
auto stops = computeStopsForDeprecatedVariants(adapter, radial, style);
return WebCore::Gradient::create(WTFMove(data), radial.parameters.colorInterpolationMethod.method, GradientSpreadMethod::Pad, WTFMove(stops));
}
// MARK: - Conic create.
template<CSSValueID Name> static Ref<WebCore::Gradient> createPlatformGradient(const FunctionNotation<Name, ConicGradient>& conic, const FloatSize& size, const RenderStyle& style)
{
ASSERT(!size.isEmpty());
auto computeCenterPoint = [&](const std::optional<Position>& position) -> FloatPoint {
return position ? computeEndPoint(*position, size) : FloatPoint { size.width() / 2, size.height() / 2 };
};
auto centerPoint = computeCenterPoint(conic.parameters.gradientBox.position);
float angleRadians = conic.parameters.gradientBox.angle ? CSS::convertToValueInUnitsOf<CSS::AngleUnit::Rad>(*conic.parameters.gradientBox.angle) : 0;
WebCore::Gradient::ConicData data { centerPoint, angleRadians };
ConicGradientAdapter adapter;
auto stops = computeStops(adapter, conic, style);
return WebCore::Gradient::create(WTFMove(data), conic.parameters.colorInterpolationMethod.method, GradientSpreadMethod::Pad, WTFMove(stops));
}
// MARK: - createPlatformGradient
Ref<WebCore::Gradient> createPlatformGradient(const Gradient& gradient, const FloatSize& size, const RenderStyle& style)
{
return WTF::switchOn(gradient, [&](auto& gradient) { return createPlatformGradient(gradient, size, style); });
}
// MARK: - stopsAreCacheable
static bool stopColorIsCacheable(const Color& stopColor)
{
return !containsCurrentColor(stopColor);
}
static bool stopColorIsCacheable(const Markable<Color>& stopColor)
{
return !stopColor || stopColorIsCacheable(*stopColor);
}
template<typename Gradient> static bool stopsAreCacheable(const Gradient& gradient)
{
return std::ranges::all_of(gradient.parameters.stops, [](auto& stop) {
return stopColorIsCacheable(stop.color);
});
}
bool stopsAreCacheable(const Gradient& gradient)
{
return WTF::switchOn(gradient, [](auto& gradient) { return stopsAreCacheable(gradient); });
}
// MARK: - isOpaque
template<typename T> static bool isOpaque(const T& gradient, const RenderStyle& style)
{
bool hasColorFilter = style.hasAppleColorFilter();
return std::ranges::all_of(gradient.parameters.stops, [&](auto& stop) {
return resolveColorStopColor(stop.color, style, hasColorFilter).isOpaque();
});
}
bool isOpaque(const Gradient& gradient, const RenderStyle& style)
{
return WTF::switchOn(gradient, [&](auto& gradient) { return isOpaque(gradient, style); } );
}
} // namespace Style
} // namespace WebCore
|