1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
/*
* Copyright (C) 2023 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "IPCSemaphore.h"
#include "StreamConnectionBuffer.h"
#include "StreamConnectionEncoder.h"
namespace IPC {
class StreamClientConnectionBuffer : public StreamConnectionBuffer {
public:
static std::optional<StreamClientConnectionBuffer> create(unsigned dataSizeLog2);
StreamClientConnectionBuffer(StreamClientConnectionBuffer&&) = default;
StreamClientConnectionBuffer& operator=(StreamClientConnectionBuffer&&) = default;
std::optional<std::span<uint8_t>> tryAcquire(Timeout);
std::optional<std::span<uint8_t>> tryAcquireAll(Timeout);
enum class WakeUpServer : bool { No, Yes };
WakeUpServer release(size_t writeSize);
void resetClientOffset();
std::span<uint8_t> alignedMutableSpan(size_t offset, size_t limit);
void setSemaphores(IPC::Semaphore&& wakeUp, IPC::Semaphore&& clientWait);
bool hasSemaphores() const { return m_semaphores.has_value(); }
void wakeUpServer();
private:
static constexpr size_t minimumMessageSize = StreamConnectionEncoder::minimumMessageSize;
static constexpr size_t messageAlignment = StreamConnectionEncoder::messageAlignment;
explicit StreamClientConnectionBuffer(Ref<WebCore::SharedMemory>);
size_t size(size_t offset, size_t limit) const;
size_t alignOffset(size_t offset) const { return StreamConnectionBuffer::alignOffset<messageAlignment>(offset, minimumMessageSize); }
Atomic<ClientOffset>& sharedClientOffset() { return clientOffset(); }
using ClientLimit = ServerOffset;
Atomic<ClientLimit>& sharedClientLimit() { return serverOffset(); }
size_t toLimit(ClientLimit) const;
size_t m_clientOffset { 0 };
struct Semaphores {
Semaphore wakeUp;
Semaphore clientWait;
};
std::optional<Semaphores> m_semaphores;
};
inline std::optional<StreamClientConnectionBuffer> StreamClientConnectionBuffer::create(unsigned dataSizeLog2)
{
// Currently expected to be not that big, and offset to fit in size_t with the tag bits.
if (dataSizeLog2 >= 31)
return std::nullopt;
// Currently the minimum message size is 16, and as such 32 bytes is not enough to hold one message.
// The problem happens after initial write and read, because after the read the buffer is split between
// 15 free bytes and 15 free bytes.
if (dataSizeLog2 <= 5)
return std::nullopt;
auto size = (static_cast<size_t>(1) << dataSizeLog2) + headerSize();
auto memory = WebCore::SharedMemory::allocate(size);
if (!memory)
return std::nullopt;
return StreamClientConnectionBuffer { memory.releaseNonNull() };
}
inline StreamClientConnectionBuffer::StreamClientConnectionBuffer(Ref<WebCore::SharedMemory> memory)
: StreamConnectionBuffer(WTFMove(memory))
{
RELEASE_ASSERT_WITH_SECURITY_IMPLICATION(sharedMemorySizeIsValid(m_sharedMemory->size()));
// Read starts from 0 with limit of 0 and reader sleeping.
sharedClientOffset().store(ClientOffset::serverIsSleepingTag, std::memory_order_relaxed);
// Write starts from 0 with a limit of the whole buffer.
sharedClientLimit().store(static_cast<ClientLimit>(0), std::memory_order_relaxed);
}
inline std::optional<std::span<uint8_t>> StreamClientConnectionBuffer::tryAcquire(Timeout timeout)
{
ClientLimit clientLimit = sharedClientLimit().load(std::memory_order_acquire);
// This would mean we try to send messages after a timeout. It is a programming error.
// Since the value is trusted, we only assert.
ASSERT(clientLimit != ClientLimit::clientIsWaitingTag);
for (;;) {
if (clientLimit != ClientLimit::clientIsWaitingTag) {
auto result = alignedMutableSpan(m_clientOffset, toLimit(clientLimit));
if (result.size() >= minimumMessageSize)
return result;
}
if (timeout.didTimeOut())
break;
ClientLimit oldClientLimit = sharedClientLimit().compareExchangeStrong(clientLimit, ClientLimit::clientIsWaitingTag, std::memory_order_acq_rel, std::memory_order_acquire);
if (clientLimit == oldClientLimit) {
if (!m_semaphores || !m_semaphores->clientWait.waitFor(timeout))
return std::nullopt;
clientLimit = sharedClientLimit().load(std::memory_order_acquire);
} else
clientLimit = oldClientLimit;
// The alignedMutableSpan uses the minimumMessageSize to calculate the next beginning position in the buffer,
// and not the size. The size might be more or less what is needed, depending on where the reader is.
// If there is no capacity for minimum message size, wait until more is available.
// In the case where clientOffset < clientLimit we can arrive to a situation where
// 0 < result.size() < minimumMessageSize.
}
return std::nullopt;
}
inline std::optional<std::span<uint8_t>> StreamClientConnectionBuffer::tryAcquireAll(Timeout timeout)
{
// This would mean we try to send messages after a timeout. It is a programming error.
// Since the value is trusted, we only assert.
ASSERT(sharedClientLimit().load(std::memory_order_acquire) != ClientLimit::clientIsWaitingTag);
// The server acknowledges that sync message has been processed by setting clientOffset == clientLimit == 0.
// Wait for this condition, or then the condition where server says that it started to sleep after setting that condition.
// The wait sequence involves two variables, so form a transaction by setting clientLimit == clientIsWaitingTag.
// The transaction is cancelled if the server has already set clientOffset == clientLimit == 0, otherwise it commits.
// If the transaction commits, server is guaranteed to signal.
for (;;) {
ClientLimit clientLimit = sharedClientLimit().exchange(ClientLimit::clientIsWaitingTag, std::memory_order_acq_rel);
ClientOffset clientOffset = sharedClientOffset().load(std::memory_order_acquire);
if (!clientLimit && (clientOffset == ClientOffset::serverIsSleepingTag || !clientOffset))
break;
if (!m_semaphores || !m_semaphores->clientWait.waitFor(timeout))
return std::nullopt;
if (timeout.didTimeOut())
return std::nullopt;
}
// In case the transaction was cancelled, undo the transaction marker.
sharedClientLimit().store(static_cast<ClientLimit>(0), std::memory_order_release);
m_clientOffset = 0;
return alignedMutableSpan(m_clientOffset, 0);
}
inline StreamClientConnectionBuffer::WakeUpServer StreamClientConnectionBuffer::release(size_t size)
{
size = std::max(size, minimumMessageSize);
m_clientOffset = wrapOffset(alignOffset(m_clientOffset) + size);
ASSERT(m_clientOffset < dataSize());
// If the server wrote over the clientOffset with serverIsSleepingTag, we know it is sleeping.
ClientOffset oldClientOffset = sharedClientOffset().exchange(static_cast<ClientOffset>(m_clientOffset), std::memory_order_acq_rel);
if (oldClientOffset == ClientOffset::serverIsSleepingTag)
return WakeUpServer::Yes;
ASSERT(!(oldClientOffset & ClientOffset::serverIsSleepingTag));
return WakeUpServer::No;
}
inline void StreamClientConnectionBuffer::resetClientOffset()
{
// For synchronous send protocols with replies out-of-band.
m_clientOffset = 0;
}
inline std::span<uint8_t> StreamClientConnectionBuffer::alignedMutableSpan(size_t offset, size_t limit)
{
ASSERT(offset < dataSize());
ASSERT(limit < dataSize());
size_t aligned = alignOffset(offset);
size_t resultSize = 0;
if (offset < limit) {
if (aligned >= offset && aligned < limit)
resultSize = size(aligned, limit);
} else {
if (aligned >= offset || aligned < limit)
resultSize = size(aligned, limit);
}
return mutableSpan().subspan(aligned, resultSize);
}
inline size_t StreamClientConnectionBuffer::size(size_t offset, size_t limit) const
{
if (!limit)
return dataSize() - 1 - offset;
if (limit <= offset)
return dataSize() - offset;
return limit - offset - 1;
}
inline size_t StreamClientConnectionBuffer::toLimit(ClientLimit clientLimit) const
{
ASSERT(!(clientLimit & ClientLimit::clientIsWaitingTag));
ASSERT(static_cast<size_t>(clientLimit) <= dataSize() - 1);
return static_cast<size_t>(clientLimit);
}
inline void StreamClientConnectionBuffer::setSemaphores(IPC::Semaphore&& wakeUp, IPC::Semaphore&& clientWait)
{
m_semaphores = { WTFMove(wakeUp), WTFMove(clientWait) };
m_semaphores->wakeUp.signal();
}
inline void StreamClientConnectionBuffer::wakeUpServer()
{
if (!m_semaphores)
return;
m_semaphores->wakeUp.signal();
}
}
|