File: Damage.h

package info (click to toggle)
webkit2gtk 2.49.90-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 445,664 kB
  • sloc: cpp: 3,797,881; javascript: 197,914; ansic: 161,337; python: 49,141; asm: 21,979; ruby: 18,539; perl: 16,723; xml: 4,623; yacc: 2,360; sh: 2,246; java: 2,019; lex: 1,327; pascal: 366; makefile: 295
file content (551 lines) | stat: -rw-r--r-- 18,148 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
/*
 * Copyright (C) 2024, 2025 Igalia S.L.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

#pragma once

#if USE(COORDINATED_GRAPHICS)
#include "FloatRect.h"
#include "LayoutSize.h"
#include "Region.h"
#include <wtf/BitVector.h>
#include <wtf/ForbidHeapAllocation.h>
#include <wtf/text/TextStream.h>

// A helper class to store damage rectangles in a few approximated ways
// to trade-off the CPU cost of the data structure and the resolution
// it brings (i.e. how good approximation reflects the reality).

// The simplest way to store the damage is to maintain a minimum
// bounding rectangle (bounding box) of all incoming damage rectangles.
// This way the amount of memory used is minimal (just a single rect)
// and the add() operations are cheap as it's always about unite().
// While this method works well in many scenarios, it fails to model
// the small rectangles that are very far apart.

// The more sophisticated method to store the damage is to store a
// limited vector of rectangles. Unless the limit of rectangles is hit
// each rectangle is stored as-is.
// Once the new rectangle cannot be added without extending the vector
// past the limit, the unification mechanism starts.
// Unification mechanism - once enabled - uses an artificial grid
// to map incoming rects into cells that can store up to 1 rectangle
// each. If more than one rect gets mapped to the same cell, such
// rectangles are unified using a minimum bounding rectangle.
// This way the amount of memory used is limited as the vector of
// rectangles cannot grow past the limit. At the same time, the
// CPU utilization is also limited as the rect addition cost
// is O(1) excluding the vector addition complexity.
// And since the vector size is limited, the cost of adding to vector
// cannot get out of hand either.
// This method is more expensive than simple "bonding box", however,
// it yields surprisingly good approximation results.
// Moreover, the approximation resolution can be controlled by tweaking
// the artificial grid size - the more rows/cols the better the
// resolution at the expense of higher memory/CPU utilization.

namespace WebCore {

class Damage {
    WTF_FORBID_HEAP_ALLOCATION;

public:
    using Rects = Vector<IntRect, 1>;

    enum class Mode : uint8_t {
        Rectangles, // Tracks dirty regions as rectangles, only unifying when maximum is reached.
        BoundingBox, // Dirty region is always the minimum bounding box of all added rectangles.
        Full, // All area is always dirty.
    };

    static constexpr uint32_t NoMaxRectangles = 0;

    explicit Damage(const IntRect& rect, Mode mode = Mode::Rectangles, uint32_t maxRectangles = NoMaxRectangles)
        : m_mode(mode)
        , m_rect(rect)
    {
        initialize(maxRectangles);
    }

    explicit Damage(const IntSize& size, Mode mode = Mode::Rectangles, uint32_t maxRectangles = NoMaxRectangles)
        : Damage({ { }, size }, mode, maxRectangles)
    {
    }

    explicit Damage(const FloatSize& size, Mode mode = Mode::Rectangles, uint32_t maxRectangles = NoMaxRectangles)
        : Damage(ceiledIntSize(LayoutSize(size)), mode, maxRectangles)
    {
    }

    Damage(Damage&&) = default;
    Damage(const Damage&) = default;
    Damage& operator=(const Damage&) = default;
    Damage& operator=(Damage&&) = default;

    ALWAYS_INLINE Mode mode() const { return m_mode; }

    ALWAYS_INLINE const IntRect& at(size_t index) const LIFETIME_BOUND
    {
        switch (m_mode) {
        case Mode::Rectangles:
            if (!m_rects.indices.isEmpty()) {
                size_t i = 0;
                for (const auto& rect : *this) {
                    if (i++ == index)
                        return rect;
                }
            }
            return m_rects.rects.at(index);
        case Mode::BoundingBox:
            ASSERT(!index);
            return m_minimumBoundingRectangle;
        case Mode::Full:
            ASSERT(!index);
            return m_rect;
        }

        RELEASE_ASSERT_NOT_REACHED();
    }

    const IntRect& operator[](size_t index) const LIFETIME_BOUND { return at(index); }

    ALWAYS_INLINE size_t size() const
    {
        // FIXME: we should not allow to create a Damage for an empty rect.
        if (m_rect.isEmpty())
            return 0;

        switch (m_mode) {
        case Mode::Rectangles:
            if (m_rects.indices.isEmpty())
                return m_rects.rects.size();
            return m_rects.indices.bitCount();
        case Mode::BoundingBox:
            return m_minimumBoundingRectangle.isEmpty() ? 0 : 1;
        case Mode::Full:
            return 1;
        }

        RELEASE_ASSERT_NOT_REACHED();
    }

    ALWAYS_INLINE bool isEmpty() const
    {
        // FIXME: we should not allow to create a Damage for an empty rect.
        if (m_rect.isEmpty())
            return true;

        switch (m_mode) {
        case Mode::Rectangles:
            return m_rects.indices.isEmpty() && m_rects.rects.isEmpty();
        case Mode::BoundingBox:
            return m_minimumBoundingRectangle.isEmpty();
        case Mode::Full:
            return false;
        }

        RELEASE_ASSERT_NOT_REACHED();
    }

    ALWAYS_INLINE const IntRect& bounds() const
    {
        switch (m_mode) {
        case Mode::Rectangles:
        case Mode::BoundingBox:
            return m_minimumBoundingRectangle;
        case Mode::Full:
            return m_rect;
        }

        RELEASE_ASSERT_NOT_REACHED();
    }

    class iterator {
        WTF_DEPRECATED_MAKE_FAST_ALLOCATED(iterator);
    public:
        iterator() = default;

        iterator(const Damage& damage, size_t index)
            : m_damage(&damage)
            , m_index(index)
        {
        }

        iterator(const Damage& damage, BitVector::iterator iter)
            : m_damage(&damage)
            , m_iter(iter)
            , m_index(*iter)
        {
        }

        const IntRect& operator*()
        {
            switch (m_damage->m_mode) {
            case Mode::Rectangles:
                return m_damage->m_rects.rects.at(m_index);
            case Mode::BoundingBox:
                ASSERT(!m_index);
                return m_damage->m_minimumBoundingRectangle;
            case Mode::Full:
                ASSERT(!m_index);
                return m_damage->m_rect;
            }
            RELEASE_ASSERT_NOT_REACHED();
        }

        iterator& operator++()
        {
            if (m_iter) {
                ++m_iter.value();
                m_index = *m_iter.value();
            } else
                ++m_index;

            return *this;
        }

        bool operator==(const iterator& other) const
        {
            return m_index == other.m_index;
        }

    private:
        const Damage* m_damage { nullptr };
        std::optional<BitVector::iterator> m_iter;
        size_t m_index { 0 };
    };

    iterator begin() const LIFETIME_BOUND
    {
        switch (m_mode) {
        case Mode::Rectangles:
            if (!m_rects.indices.isEmpty())
                return iterator(*this, m_rects.indices.begin());
            [[fallthrough]];
        case Mode::BoundingBox:
        case Mode::Full:
            return iterator(*this, 0);
        }
        RELEASE_ASSERT_NOT_REACHED();
    }

    iterator end() const LIFETIME_BOUND
    {
        switch (m_mode) {
        case Mode::Rectangles:
            if (!m_rects.indices.isEmpty())
                return iterator(*this, m_rects.indices.end());
            [[fallthrough]];
        case Mode::BoundingBox:
        case Mode::Full:
            return iterator(*this, size());
        }
        RELEASE_ASSERT_NOT_REACHED();
    }

    ALWAYS_INLINE const Rects& rectsForTesting() const
    {
        return m_rects.rects;
    }

    Region regionForTesting() const
    {
        Region region;

        // FIXME: we should not allow to create a Damage for an empty rect.
        if (m_rect.isEmpty())
            return region;

        for (const auto& rect : *this)
            region.unite(Region { rect });

        return region;
    }

    // May return overlapping rects.
    ALWAYS_INLINE Rects rects() const
    {
        // FIXME: we should not allow to create a Damage for an empty rect.
        if (m_rect.isEmpty())
            return { };

        Rects result;
        result.reserveInitialCapacity(size());
        for (const auto& rect : *this)
            result.append(rect);
        return result;
    }

    void makeFull()
    {
        if (m_mode == Mode::Full)
            return;

        m_mode = Mode::Full;
        initialize(NoMaxRectangles);
    }

    bool add(const IntRect& rect)
    {
        if (rect.isEmpty() || !shouldAdd())
            return false;

        if (rect.contains(m_rect)) {
            makeFull();
            return true;
        }

        const auto rectsCount = size();
        if (!rectsCount || rect.contains(m_minimumBoundingRectangle)) {
            if (m_mode == Mode::Rectangles) {
                if (rectsCount) {
                    m_rects.rects.clear();
                    m_rects.indices = { };
                    m_rects.shouldUnite = m_rects.gridCells.width() == 1 && m_rects.gridCells.height() == 1;
                }
                m_rects.rects.append(rect);
            }

            m_minimumBoundingRectangle = rect;
            return true;
        }

        if (rectsCount == 1 && m_minimumBoundingRectangle.contains(rect))
            return false;

        m_minimumBoundingRectangle.unite(rect);
        if (m_mode == Mode::BoundingBox) {
            ASSERT(rectsCount == 1);
            return true;
        }

        ASSERT(m_mode == Mode::Rectangles);
        if (m_rects.shouldUnite) {
            unite(rect);
            return true;
        }

        if (rectsCount == m_rects.gridCells.unclampedArea()) {
            m_rects.shouldUnite = true;
            uniteExistingRects();
            unite(rect);
            return true;
        }

        m_rects.rects.append(rect);
        return true;
    }

    ALWAYS_INLINE bool add(const FloatRect& rect)
    {
        if (rect.isEmpty() || !shouldAdd())
            return false;

        return add(enclosingIntRect(rect));
    }

    ALWAYS_INLINE bool add(const Rects& rects)
    {
        if (rects.isEmpty() || !shouldAdd())
            return false;

        // When adding rects to an empty Damage and we know we will need to unite,
        // we can unite the rects directly.
        if (m_mode == Mode::Rectangles && isEmpty()) {
            auto rectsCount = rects.size();
            auto gridArea = m_rects.gridCells.unclampedArea();

            if (rectsCount > gridArea) {
                m_rects.rects.grow(gridArea);
                if (rectsCount > 1)
                    m_rects.indices = BitVector(rectsCount);

                for (const auto& rect : rects) {
                    if (rect.isEmpty())
                        continue;

                    if (rect.contains(m_rect)) {
                        makeFull();
                        return true;
                    }

                    m_minimumBoundingRectangle.unite(rect);
                    unite(rect);
                }

                if (m_minimumBoundingRectangle.isEmpty()) {
                    // All rectangles were empty.
                    m_rects.rects.clear();
                    m_rects.indices = { };
                    return false;
                }

                m_rects.shouldUnite = true;
                if (m_rects.rects.size() == 1)
                    m_rects.indices = { };

                return true;
            }
        }

        bool returnValue = false;
        for (const auto& rect : rects)
            returnValue |= add(rect);
        return returnValue;
    }

    ALWAYS_INLINE bool add(const Damage& other)
    {
        if (other.isEmpty() || !shouldAdd())
            return false;

        if (other.m_mode == Mode::Full && m_rect == other.m_rect) {
            makeFull();
            return true;
        }

        if (m_mode == Mode::Rectangles) {
            // When both Damage are already united and have the same rect and grid, we can just iterate the rects and unite them.
            if (m_rects.shouldUnite && m_mode == other.m_mode && m_rect == other.m_rect && m_rects.gridCells == other.m_rects.gridCells && other.m_rects.shouldUnite && m_rects.rects.size() == other.m_rects.rects.size()) {
                for (unsigned i = 0; i < m_rects.rects.size(); ++i)
                    m_rects.rects[i].unite(other.m_rects.rects[i]);
                return true;
            }
        }

        switch (other.m_mode) {
        case Mode::Rectangles:
            return add(other.m_rects.rects);
        case Mode::BoundingBox:
            return add(other.m_minimumBoundingRectangle);
        case Mode::Full:
            return add(other.m_rect);
        }

        RELEASE_ASSERT_NOT_REACHED();
    }

private:
    IntSize gridSize(int maxRectangles) const
    {
        const float widthToHeightRatio = static_cast<float>(m_rect.width()) / m_rect.height();
        if (widthToHeightRatio >= 1) {
            int gridHeight = std::max<int>(1, std::floor(std::sqrt(static_cast<float>(maxRectangles) / widthToHeightRatio)));
            while (gridHeight > 1 && maxRectangles % gridHeight)
                gridHeight--;
            return { maxRectangles / gridHeight, gridHeight };
        }

        int gridWidth = std::max<int>(1, std::floor(std::sqrt(static_cast<float>(maxRectangles) * widthToHeightRatio)));
        while (gridWidth > 1 && maxRectangles % gridWidth)
            gridWidth--;
        return { gridWidth, maxRectangles / gridWidth };
    }

    void initialize(uint32_t maxRectangles)
    {
        switch (m_mode) {
        case Mode::Rectangles:
            if (maxRectangles != NoMaxRectangles) {
                m_rects.gridCells = gridSize(maxRectangles);
                m_rects.cellSize = IntSize(std::ceil(static_cast<float>(m_rect.width()) / m_rects.gridCells.width()), std::ceil(static_cast<float>(m_rect.height()) / m_rects.gridCells.height()));
            } else {
                static constexpr int defaultCellSize { 256 };
                m_rects.cellSize = { defaultCellSize, defaultCellSize };
                m_rects.gridCells = IntSize(std::ceil(static_cast<float>(m_rect.width()) / m_rects.cellSize.width()), std::ceil(static_cast<float>(m_rect.height()) / m_rects.cellSize.height())).expandedTo({ 1, 1 });
            }

            m_rects.shouldUnite = m_rects.gridCells.width() == 1 && m_rects.gridCells.height() == 1;
            break;
        case Mode::BoundingBox:
        case Mode::Full:
            m_minimumBoundingRectangle = { };
            m_rects = { };
            break;
        }
    }

    ALWAYS_INLINE bool shouldAdd() const
    {
        // FIXME: we should not allow to create a Damage for an empty rect.
        return !m_rect.isEmpty() && m_mode != Mode::Full;
    }

    void uniteExistingRects()
    {
        auto rectsCount = m_rects.rects.size();
        Rects rectsCopy(rectsCount);
        m_rects.rects.swap(rectsCopy);
        if (rectsCount > 1)
            m_rects.indices = BitVector(rectsCount);

        for (const auto& rect : rectsCopy)
            unite(rect);
    }

    ALWAYS_INLINE size_t cellIndexForRect(const IntRect& rect) const
    {
        ASSERT(m_rects.rects.size() > 1);

        const auto rectCenter = IntPoint(rect.center() - m_rect.location());
        const auto rectCell = flooredIntPoint(FloatPoint { static_cast<float>(rectCenter.x()) / m_rects.cellSize.width(), static_cast<float>(rectCenter.y()) / m_rects.cellSize.height() });
        return std::clamp(rectCell.x(), 0, m_rects.gridCells.width() - 1) + std::clamp(rectCell.y(), 0, m_rects.gridCells.height() - 1) * m_rects.gridCells.width();
    }

    void unite(const IntRect& rect)
    {
        // When merging cannot be avoided, we use m_rects to store minimal bounding rectangles
        // and perform merging while trying to keep minimal bounding rectangles small and
        // separated from each other.
        if (m_rects.rects.size() == 1) {
            m_rects.rects[0] = m_minimumBoundingRectangle;
            return;
        }

        const auto index = cellIndexForRect(rect);
        ASSERT(index < m_rects.rects.size());
        m_rects.rects[index].unite(rect);
        m_rects.indices.set(index);
    }

    Mode m_mode { Mode::Rectangles };
    IntRect m_rect;
    IntRect m_minimumBoundingRectangle;
    struct {
        Rects rects;
        BitVector indices;
        bool shouldUnite { false };
        IntSize cellSize;
        IntSize gridCells;
    } m_rects;
};

static inline WTF::TextStream& operator<<(WTF::TextStream& ts, const Damage& damage)
{
    return streamSizedContainer(ts, damage);
}

} // namespace WebCore

#endif // USE(COORDINATED_GRAPHICS)