1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
|
/*
* Copyright (C) 2024 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGLoopUnrollingPhase.h"
#if ENABLE(DFG_JIT)
#include "CodeOrigin.h"
#include "DFGBlockInsertionSet.h"
#include "DFGCFAPhase.h"
#include "DFGCloneHelper.h"
#include "DFGGraph.h"
#include "DFGNaturalLoops.h"
#include "DFGNodeOrigin.h"
#include "DFGNodeType.h"
#include "DFGPhase.h"
#include "FunctionAllowlist.h"
#include <wtf/IndexMap.h>
namespace JSC {
namespace DFG {
class LoopUnrollingPhase : public Phase {
public:
using NaturalLoop = CPSNaturalLoop;
using ComparisonFunction = bool (*)(CheckedInt32, CheckedInt32);
using UpdateFunction = CheckedInt32 (*)(CheckedInt32, CheckedInt32);
struct LoopData {
explicit LoopData(const NaturalLoop* naturalLoop)
: loop(naturalLoop)
{
for (uint32_t i = 0; i < loopSize(); ++i) {
if (!loopBody(i)->isJumpPad())
++nonJumpPadBlockCount;
}
}
uint32_t loopSize() { return loop->size(); }
BasicBlock* loopBody(uint32_t i) { return loop->at(i).node(); }
BasicBlock* header() const { return loop->header().node(); }
// If operand is a constant, it indicates that we can do fully unrolling.
bool shouldFullyUnroll() const { return std::holds_alternative<CheckedInt32>(operand) && std::holds_alternative<CheckedInt32>(initialValue); }
Node* condition() const
{
if (tail && tail->terminal()->isBranch())
return tail->terminal()->child1().node();
return nullptr;
}
bool shouldInvertCondition() const
{
ASSERT(invertCondition.has_value());
return *invertCondition;
}
BasicBlock*& loopTarget(BasicBlock* tail) const { return tail->successor(shouldInvertCondition()); }
BasicBlock*& exitTarget(BasicBlock* tail) const { return tail->successor(!shouldInvertCondition()); }
bool isInductionVariable(Node* node) { return node->operand() == inductionVariable->operand(); }
void dump(PrintStream& out) const;
bool isProfitableToUnroll();
void analyzeLoopNode(Graph&, Node*);
// Returns true if the node would emit code when lowered to B3.
// Used to estimate unrolling cost more precisely, skipping Phantom-like ops.
bool isMaterialNode(Graph&, Node*);
bool isNumericComputationNode(Node*);
bool isLocalAccessNode(Node*);
// Ratio of this count to total material node count
double ratio(uint32_t count) { return materialNodeCount ? static_cast<double>(count) / materialNodeCount : 0.0; }
uint32_t generalUnrollSizeLimit() { return shouldFullyUnroll() ? Options::maxLoopUnrollingBodyNodeSize() : Options::maxPartialLoopUnrollingBodyNodeSize(); }
// Used for early bailout during loop node scanning; combines general and special-case size limits.
uint32_t maxAllowedUnrollSize() { return std::max(generalUnrollSizeLimit(), Options::maxNumericHotLoopSize()); }
const NaturalLoop* loop { nullptr };
BasicBlock* preHeader { nullptr };
BasicBlock* tail { nullptr };
BasicBlock* next { nullptr };
// for (i = initialValue; condition(i, operand); i = update(i, updateValue)) { ... }
Node* inductionVariable { nullptr };
Variant<std::monostate, Node*, CheckedInt32> initialValue { };
Variant<std::monostate, Node*, CheckedInt32> operand { };
Node* update { nullptr };
CheckedInt32 updateValue { INT_MIN };
CheckedUint32 iterationCount { 0 };
std::optional<bool> invertCondition { };
uint32_t nonJumpPadBlockCount { 0 };
uint32_t materialNodeCount { 0 };
uint32_t putByValCount { 0 };
uint32_t getByValCount { 0 };
uint32_t numericComputationCount { 0 };
uint32_t localAccessCount { 0 };
};
LoopUnrollingPhase(Graph& graph)
: Phase(graph, "Loop Unrolling"_s)
, m_cloneHelper(graph)
{
}
bool run()
{
ASSERT(m_graph.m_form == ThreadedCPS);
if (!functionAllowlist().contains(m_graph.m_codeBlock)) [[unlikely]]
return false;
dataLogIf(Options::verboseLoopUnrolling(), "Graph before Loop Unrolling Phase:\n", m_graph);
uint32_t unrolledCount = 0;
while (true) {
auto loops = populateCandidateLoops();
if (loops.isEmpty() || unrolledCount >= Options::maxLoopUnrollingCount())
break;
bool unrolled = false;
for (auto [loop, depth] : loops) {
if (!loop)
break;
BasicBlock* header = loop->header().node();
if (m_unrolledLoopHeaders.contains(header)) {
dataLogLnIf(Options::verboseLoopUnrolling(), "Skipping the loop with header ", header, " since it's already unrolled. Looking for anther candidate.");
continue;
}
if (tryUnroll(loop)) {
unrolled = true;
++unrolledCount;
break;
}
}
if (!unrolled)
break;
}
dataLogLnIf(Options::verboseLoopUnrolling(), "Successfully unrolled ", unrolledCount, " loops.");
return !!unrolledCount;
}
Vector<std::tuple<const NaturalLoop*, int32_t>, 16> populateCandidateLoops()
{
m_graph.ensureCPSNaturalLoops();
uint32_t loopCount = m_graph.m_cpsNaturalLoops->numLoops();
Vector<std::tuple<const NaturalLoop*, int32_t>, 16> loops(loopCount, std::tuple { nullptr, INT_MIN });
for (uint32_t loopIndex = loopCount; loopIndex--;) {
const NaturalLoop& loop = m_graph.m_cpsNaturalLoops->loop(loopIndex);
ASSERT(loop.index() == loopIndex && std::get<1>(loops[loopIndex]) == INT_MIN);
int32_t depth = 0;
const NaturalLoop* current = &loop;
while (current) {
int32_t cachedDepth = std::get<1>(loops[current->index()]);
if (cachedDepth != INT_MIN) {
depth += cachedDepth;
break;
}
++depth;
current = m_graph.m_cpsNaturalLoops->innerMostOuterLoop(*current);
}
loops[loopIndex] = std::tuple { &loop, depth };
}
std::sort(loops.begin(), loops.end(), [&](const auto& lhs, const auto& rhs) {
return std::get<1>(lhs) > std::get<1>(rhs);
});
return loops;
}
bool tryUnroll(const NaturalLoop* loop)
{
if (Options::verboseLoopUnrolling()) [[unlikely]] {
const NaturalLoop* outerLoop = m_graph.m_cpsNaturalLoops->innerMostOuterLoop(*loop);
dataLogLnIf(Options::verboseLoopUnrolling(), "\nTry unroll innerMostLoop=", *loop, " with innerMostOuterLoop=", outerLoop ? *outerLoop : NaturalLoop());
}
LoopData data(loop);
if (Options::disallowLoopUnrollingForNonInnermost() && !data.loop->isInnerMostLoop())
return false;
// PreHeader PreHeader
// | |
// Header <--- HeaderBodyTailGraph_0 <-- original loop
// | | unrolled to |
// Body | ================> HeaderBodyTailGraph_1 <-- 1st copy
// | | |
// Tail ------ ...
// | |
// Next HeaderBodyTailGraph_n <-- n_th copy
// |
// Next
//
// Note that NaturalLoop's body includes Header, Body, and Tail. The unrolling
// process appends the HeaderBodyTailGraph copies in reverse order (from n_th to 1st).
if (!locatePreHeader(data))
return false;
dataLogLnIf(Options::verboseLoopUnrolling(), "\tFound PreHeader with LoopData=", data);
if (!locateTail(data))
return false;
dataLogLnIf(Options::verboseLoopUnrolling(), "\tFound Tail with LoopData=", data);
if (!identifyInductionVariable(data))
return false;
dataLogLnIf(Options::verboseLoopUnrolling(), "\tFound InductionVariable with LoopData=", data);
if (!isLoopBodyUnrollable(data))
return false;
dataLogLnIf(Options::verboseLoopUnrolling(), "\tFound LoopBody is within threshold and clonable");
if (!Options::usePartialLoopUnrolling()) {
if (!data.shouldFullyUnroll()) {
dataLogLnIf(Options::verboseLoopUnrolling(), "\tPartial Unrolling is disabled");
return false;
}
}
dataLogLnIf(Options::printEachUnrolledLoop(), "[UnrollLoop][", m_graph.m_plan.jitType(), "][", data.shouldFullyUnroll() ? "Full" : "Partial", "] function: ", m_graph.m_codeBlock->inferredNameWithHash(), " data: ", data);
unrollLoop(data);
dataLogIf(Options::verboseLoopUnrolling(), "\tGraph after Loop Unrolling for loop\n", m_graph);
return true;
}
// Returns the semantically meaningful predecessors of a block before edge-breaking,
// skipping through synthetic jump pads inserted during critical edge breaking.
PredecessorList loopAnalysisPredecessors(PredecessorList& predecessors)
{
PredecessorList result;
Deque<BasicBlock*> queue;
for (BasicBlock* predecessor : predecessors)
queue.append(predecessor);
while (!queue.isEmpty()) {
BasicBlock* current = queue.takeFirst();
if (current->isJumpPad()) {
for (BasicBlock* predecessor : current->predecessors)
queue.append(predecessor);
} else
result.append(current);
}
return result;
}
// Returns the true successor of a block prior to edge-breaking by skipping through
// intermediate jump pads inserted on critical edges.
BasicBlock* loopAnalysisSuccessor(BasicBlock* successor)
{
while (successor->isJumpPad())
successor = successor->successor(0);
return successor;
}
bool locatePreHeader(LoopData& data)
{
BasicBlock* preHeader = nullptr;
BasicBlock* header = data.header();
PredecessorList predecessors = loopAnalysisPredecessors(header->predecessors);
// This is guaranteed because we expect the CFG not to have unreachable code. Therefore, a
// loop header must have a predecessor. (Also, we don't allow the root block to be a loop,
// which cuts out the one other way of having a loop header with only one predecessor.)
DFG_ASSERT(m_graph, header->at(0), predecessors.size() > 1, predecessors.size());
uint32_t preHeaderCount = 0;
for (uint32_t i = predecessors.size(); i--;) {
BasicBlock* predecessor = predecessors[i];
if (m_graph.m_cpsDominators->dominates(header, predecessor))
continue;
preHeader = predecessor;
++preHeaderCount;
}
if (preHeaderCount != 1)
return false;
data.preHeader = preHeader;
return true;
}
bool locateTail(LoopData& data)
{
BasicBlock* header = data.header();
// TailBlock: A block that branches back to the header (i.e., loop back edge)
BasicBlock* tail = nullptr;
for (BasicBlock* predecessor : loopAnalysisPredecessors(header->predecessors)) {
if (!m_graph.m_cpsDominators->dominates(header, predecessor))
continue;
if (tail) {
dataLogLnIf(Options::verboseLoopUnrolling(), "Skipping loop with header ", *header, " since it contains two tails: ", *predecessor, " and ", *tail);
return false;
}
tail = predecessor;
}
if (!tail) {
dataLogLnIf(Options::verboseLoopUnrolling(), "Skipping loop with header ", *header, " since it has no tail");
return false;
}
// ExitBlock: A block that exits the loop.
BasicBlock* exit = nullptr;
for (uint32_t i = 0; i < data.loopSize(); ++i) {
BasicBlock* body = data.loopBody(i);
for (BasicBlock* successor : body->successors()) {
if (data.loop->contains(successor))
continue;
if (exit) {
dataLogLnIf(Options::verboseLoopUnrolling(), "Skipping loop with header ", *header, " since it contains two exit blocks: ", *body, " and ", *exit);
return false;
}
exit = body;
}
}
if (tail != exit) {
dataLogLnIf(Options::verboseLoopUnrolling(), "Skipping loop with header ", *header, " since the exit ", *exit, " and tail ", *tail, " are not the same one");
return false;
}
for (BasicBlock* successor : tail->successors()) {
if (data.loop->contains(successor))
continue;
data.next = loopAnalysisSuccessor(successor);
}
data.tail = tail;
// PreHeader
// |
// Header <----------
// | |
// Body |
// | True/False |
// Tail -------------
// | False/True
// Next
//
// Determine if the condition should be inverted based on whether the "not taken" branch points into the loop.
data.invertCondition = data.loop->contains(tail->successor(1));
ASSERT(data.loop->contains(tail->successor(0)) == !data.shouldInvertCondition());
ASSERT(tail->terminal()->op() == Branch && data.loopTarget(tail)->isJumpPad());
return true;
}
bool isSupportedConditionOp(NodeType op);
bool isSupportedUpdateOp(NodeType op);
ComparisonFunction comparisonFunction(Node* condition, bool inverse);
UpdateFunction updateFunction(Node* update);
bool identifyInductionVariable(LoopData& data)
{
Node* condition = data.condition();
ASSERT(condition);
auto isConditionValid = [&]() ALWAYS_INLINE_LAMBDA {
if (!isSupportedConditionOp(condition->op()))
return false;
// Condition left
Edge update = condition->child1();
if (!isSupportedUpdateOp(update->op()) || update.useKind() != Int32Use)
return false;
// FIXME: Currently, we assume the left operand is the induction variable.
if (update->child1()->op() != GetLocal)
return false;
if (!update->child2()->isInt32Constant())
return false;
// Condition right
Edge operand = condition->child2();
if (operand->isInt32Constant() && operand.useKind() == Int32Use)
data.operand.emplace<CheckedInt32>(operand->asInt32());
else
data.operand.emplace<Node*>(operand.node());
data.update = condition->child1().node();
data.updateValue = update->child2()->asInt32();
data.inductionVariable = condition->child1()->child1().node();
return true;
};
if (!isConditionValid()) {
dataLogLnIf(Options::verboseLoopUnrolling(), "Skipping loop with header ", *data.header(), " since the invalid loop condition node D@", condition->index());
return false;
}
auto isInitialValueValid = [&]() ALWAYS_INLINE_LAMBDA {
Node* initialization = nullptr;
for (Node* node : *data.preHeader) {
if (node->op() != SetLocal || !data.isInductionVariable(node))
continue;
initialization = node;
}
if (!initialization)
return false;
Node* initialValue = initialization->child1().node();
if (initialValue->isInt32Constant())
data.initialValue.emplace<CheckedInt32>(initialValue->asInt32());
else
data.initialValue.emplace<Node*>(initialValue);
return true;
};
if (!isInitialValueValid()) {
dataLogLnIf(Options::verboseLoopUnrolling(), "Skipping loop with header ", *data.header(), " since the initial value is invalid");
return false;
}
auto isInductionVariableValid = [&]() ALWAYS_INLINE_LAMBDA {
uint32_t updateCount = 0;
for (uint32_t i = 0; i < data.loopSize(); ++i) {
BasicBlock* body = data.loopBody(i);
for (Node* node : *body) {
if (node->op() != SetLocal || !data.isInductionVariable(node))
continue;
dataLogLnIf(Options::verboseLoopUnrolling(), "Induction variable ", data.inductionVariable->index(), " is updated at node ", node->index(), " at ", *body);
++updateCount;
// FIXME: Maybe we can extend this and do better here?
if (updateCount != 1)
return false;
if (!m_graph.m_cpsDominators->dominates(data.tail, body))
return false;
}
}
return true;
};
if (!isInductionVariableValid()) {
dataLogLnIf(Options::verboseLoopUnrolling(), "Skipping loop with header ", *data.header(), " since the induction variable is invalid");
return false;
}
// Compute the number of iterations in the loop, if it has a constant iteration count.
if (data.shouldFullyUnroll()) {
CheckedUint32 iterationCount = 0;
auto compare = comparisonFunction(condition, data.shouldInvertCondition());
auto update = updateFunction(data.update);
for (CheckedInt32 i = std::get<CheckedInt32>(data.initialValue); compare(i, std::get<CheckedInt32>(data.operand));) {
if (iterationCount > Options::maxLoopUnrollingIterationCount()) {
dataLogLnIf(Options::verboseLoopUnrolling(), "Skipping loop with header ", *data.header(), " since maxLoopUnrollingIterationCount =", Options::maxLoopUnrollingIterationCount());
return false;
}
i = update(i, data.updateValue);
if (i.hasOverflowed()) {
dataLogLnIf(Options::verboseLoopUnrolling(), "Skipping loop with header ", *data.header(), " since the induction variable overflowed after the update");
return false;
}
++iterationCount;
if (iterationCount.hasOverflowed()) {
dataLogLnIf(Options::verboseLoopUnrolling(), "Skipping loop with header ", *data.header(), " since the iteration count overflowed after the update");
return false;
}
}
if (!iterationCount) {
dataLogLnIf(Options::verboseLoopUnrolling(), "Skipping loop with header ", *data.header(), " since the iteration count is zero");
return false;
}
data.iterationCount = iterationCount;
}
return true;
}
bool isLoopBodyUnrollable(LoopData& data)
{
for (uint32_t i = 0; i < data.loopSize(); ++i) {
BasicBlock* body = data.loopBody(i);
if (!body->isReachable) {
dataLogLnIf(Options::verboseLoopUnrolling(), "Skipping loop with header ", *data.header(), " since block ", *body, " is not reachable");
return false;
}
// FIXME: We may also need to check whether the block is valid using CFA.
// If the block is unreachable or invalid in the CFG, we can directly
// ignore the loop, avoiding unnecessary cloneability checks for nodes in invalid blocks.
UncheckedKeyHashSet<Node*> cloneableCache;
uint32_t exitEarlyLimit = data.maxAllowedUnrollSize();
for (Node* node : *body) {
if (data.materialNodeCount > exitEarlyLimit) {
dataLogLnIf(Options::verboseLoopUnrolling(), "Skipping loop with header ", *data.header(), " and loop node count=", data.materialNodeCount, " since exitEarlyLimit=", exitEarlyLimit);
return false;
}
if (node->op() == StringFromCharCode) {
// Not supported due to performance regression rdar://150526635
dataLogLnIf(Options::verboseLoopUnrolling(), "Skipping loop with header ", *data.header(), " since ", node, "<", node->op(), "> is not supported");
return false;
}
bool isCloneable = CloneHelper::isNodeCloneable(m_graph, cloneableCache, node);
#if ASSERT_ENABLED
ASSERT(CloneHelper::debugVisitingSet().isEmpty());
#endif
if (!isCloneable) {
dataLogLnIf(Options::verboseLoopUnrolling(), "Skipping loop with header ", *data.header(), " since D@", node->index(), " with op ", node->op(), " is not cloneable");
return false;
}
data.analyzeLoopNode(m_graph, node);
}
}
if (Options::verboseLoopUnrolling()) [[unlikely]]
dumpLoopNodeTypeStats(data);
return data.isProfitableToUnroll();
}
void unrollLoop(LoopData& data)
{
dataLogLnIf(Options::verboseLoopUnrolling(), data.shouldFullyUnroll() ? "Fully" : "Partially", " unrolling...");
BasicBlock* const header = data.header();
BasicBlock* const tail = data.tail;
BasicBlock* const next = data.next;
NodeOrigin tailTerminalOriginSemantic = data.tail->terminal()->origin;
// ### Constant ### ### Partial ###
//
// PreHeader PreHeader
// | |
// BodyGraph_0 -> BodyGraph_0 --
// | | | |
// | |T |T |F
// | | | |
// BodyGraph_1 -- BodyGraph_1 |
// | |F |
// Next Next <--------
auto updateTailBranch = [&](BasicBlock* tail, BasicBlock* taken) {
if (data.shouldFullyUnroll()) {
// We can directly use jump here as CPSRethreading phase (re)computes variablesAtHead/Tail for basic blocks.
tail->terminal()->removeWithoutChecks();
tail->appendNode(m_graph, SpecNone, Jump, tailTerminalOriginSemantic, OpInfo(taken));
} else {
// Since loop bodies are copied and appended in bottom-up order, the first cloned body should branch to the original header.
bool firstLoopBodyClone = taken == next;
data.loopTarget(tail) = firstLoopBodyClone ? header : taken;
data.exitTarget(tail) = next;
}
};
#if ASSERT_ENABLED
m_graph.initializeNodeOwners(); // This is only used for the debug assertion in cloneNodeImpl.
#endif
BasicBlock* taken = next;
uint32_t cloneCount = 0;
if (data.shouldFullyUnroll()) {
ASSERT(!data.iterationCount.hasOverflowed() && data.iterationCount);
cloneCount = data.iterationCount - 1;
} else
cloneCount = Options::maxPartialLoopUnrollingIterationCount() - 1;
while (cloneCount--) {
m_cloneHelper.clear();
taken = m_cloneHelper.cloneBlock(header, [&](BasicBlock* block, BasicBlock* clone) {
ASSERT(clone == m_cloneHelper.blockClone(block));
if (block != tail)
return false;
ASSERT(tail->terminal()->isBranch());
updateTailBranch(clone, taken);
return true;
});
#if ASSERT_ENABLED
for (uint32_t i = 0; i < data.loopSize(); ++i) {
BasicBlock* body = data.loopBody(i);
// After breaking critical edge, a jump pad is inserted between the edge from
// tail to the header. However, we don't explicitly copy the jump pad in this phase
// since it can be handled in the later DFGCriticalEdgeBreakingPhase.
if (body == data.loopTarget(tail) && body->isJumpPad())
continue;
ASSERT(m_cloneHelper.blockClone(body));
}
#endif
}
updateTailBranch(tail, taken);
m_cloneHelper.finalize();
ASSERT(m_graph.m_form == LoadStore);
m_unrolledLoopHeaders.add(header);
}
FunctionAllowlist& functionAllowlist();
void dumpLoopNodeTypeStats(LoopData&);
private:
CloneHelper m_cloneHelper;
UncheckedKeyHashSet<BasicBlock*> m_unrolledLoopHeaders;
};
bool performLoopUnrolling(Graph& graph)
{
return runPhase<LoopUnrollingPhase>(graph);
}
bool LoopUnrollingPhase::LoopData::isProfitableToUnroll()
{
auto isNumericHotLoop = [&]() {
// Unroll hot loops dominated by numeric computations and local access
return nonJumpPadBlockCount == 1
&& ratio(numericComputationCount) > 0.3
&& ratio(localAccessCount) > 0.4
&& materialNodeCount > 160 // FIXME: Remove this threshold rdar://150955614.
&& materialNodeCount < Options::maxNumericHotLoopSize();
};
if (isNumericHotLoop())
return true;
if (materialNodeCount > generalUnrollSizeLimit()) {
dataLogLnIf(Options::verboseLoopUnrolling(), "Skipping loop with header ", *header(), " and loop node count=", materialNodeCount, " since generalUnrollSizeLimit=", generalUnrollSizeLimit());
return false;
}
if (putByValCount && !getByValCount) {
// Avoid unrolling loops that only perform stores. These tend to increase code size
// without improving performance, since they are often memory-bound and unrolling
// doesn't expose additional optimization opportunities. (e.g., rdar://150524264)
dataLogLnIf(Options::verboseLoopUnrolling(), "Skipping loop with header ", *header(), " since putByValCount=", putByValCount, " getByValCount=", getByValCount);
return false;
}
return true;
}
// This can be extended to count other categories, such as arithmetic operations,
// and get/set operations for locals.
void LoopUnrollingPhase::LoopData::analyzeLoopNode(Graph& graph, Node* node)
{
// Count only nodes that would generate real code. Helps avoid overestimating
// loop body size due to Phantom or ExitOK, etc.
if (isMaterialNode(graph, node))
++materialNodeCount;
if (node->op() == PutByVal)
++putByValCount;
if (node->op() == GetByVal)
++getByValCount;
if (isNumericComputationNode(node))
++numericComputationCount;
if (isLocalAccessNode(node))
++localAccessCount;
}
void LoopUnrollingPhase::dumpLoopNodeTypeStats(LoopData& data)
{
dataLogLn("Loop unrolling candidate of function ", m_graph.m_codeBlock->inferredNameWithHash(), " with data=", data);
Vector<uint32_t> counter(numberOfNodeTypes + 1, 0);
for (uint32_t i = 0; i < data.loopSize(); ++i) {
BasicBlock* body = data.loopBody(i);
for (Node* node : *body)
if (data.isMaterialNode(m_graph, node))
++counter[static_cast<uint32_t>(node->op())];
}
for (uint32_t i = 0; i < counter.size(); i++) {
uint32_t count = counter[i];
if (count)
dataLogLn(" ", static_cast<NodeType>(i), ": count = ", count, ", ratio = ", data.ratio(count));
}
dataLogLn(" numericComputationCount=", data.numericComputationCount, ", ratio=", data.ratio(data.numericComputationCount));
dataLogLn(" localAccessCount=", data.localAccessCount, ", ratio=", data.ratio(data.localAccessCount));
}
void LoopUnrollingPhase::LoopData::dump(PrintStream& out) const
{
out.print(*loop);
out.print(" preHeader=");
if (preHeader)
out.print(*preHeader);
else
out.print("<null>");
out.print(", ");
out.print("tail=");
if (tail) {
out.print(*tail, " with branch condition=");
Node* condition = this->condition();
if (condition)
out.print(condition, "<", condition->op(), ">");
else
out.print("<null>");
} else
out.print("<null>");
out.print(", ");
out.print("next=");
if (tail)
out.print(*next);
else
out.print("<null>");
out.print(", ");
out.print("inductionVariable=");
if (inductionVariable)
out.print("D@", inductionVariable->index());
else
out.print("<null>");
out.print(", ");
if (auto* value = std::get_if<CheckedInt32>(&initialValue))
out.print("initValue=", *value, ", ");
else if (auto* value = std::get_if<Node*>(&initialValue))
out.print("initValue=", *value, ", ");
if (auto* value = std::get_if<CheckedInt32>(&operand))
out.print("operand=", *value, ", ");
else if (auto* value = std::get_if<Node*>(&operand))
out.print("operand=", *value, ", ");
out.print("update=");
if (update)
out.print(update, "<", update->op(), ">");
else
out.print("<null>");
out.print(", ");
out.print("updateValue=", updateValue, ", ");
out.print("iterationCount=", iterationCount, ", ");
if (invertCondition.has_value())
out.print("inverseCondition=", shouldInvertCondition(), ", ");
else
out.print("inverseCondition=<NULL>, ");
out.print("nonJumpPadBlockCount=", nonJumpPadBlockCount, ", ");
out.print("materialNodeCount=", materialNodeCount);
}
// FIXME: Add more condition and update operations if they are profitable.
bool LoopUnrollingPhase::isSupportedConditionOp(NodeType op)
{
switch (op) {
case CompareLess:
case CompareLessEq:
case CompareGreater:
case CompareGreaterEq:
case CompareEq:
case CompareStrictEq:
return true;
default:
return false;
}
}
bool LoopUnrollingPhase::isSupportedUpdateOp(NodeType op)
{
switch (op) {
case ArithAdd:
case ArithSub:
case ArithMul:
case ArithDiv:
return true;
default:
return false;
}
}
LoopUnrollingPhase::ComparisonFunction LoopUnrollingPhase::comparisonFunction(Node* condition, bool inverse)
{
static const ComparisonFunction less = [](auto a, auto b) { return a < b; };
static const ComparisonFunction lessEq = [](auto a, auto b) { return a <= b; };
static const ComparisonFunction greater = [](auto a, auto b) { return a > b; };
static const ComparisonFunction greaterEq = [](auto a, auto b) { return a >= b; };
static const ComparisonFunction equal = [](auto a, auto b) { return a == b; };
static const ComparisonFunction notEqual = [](auto a, auto b) { return a != b; };
switch (condition->op()) {
case CompareLess:
return inverse ? greaterEq : less;
case CompareLessEq:
return inverse ? greater : lessEq;
case CompareGreater:
return inverse ? lessEq : greater;
case CompareGreaterEq:
return inverse ? less : greaterEq;
case CompareEq:
case CompareStrictEq:
return inverse ? notEqual : equal;
default:
RELEASE_ASSERT_NOT_REACHED();
return [](auto, auto) { return false; };
}
}
LoopUnrollingPhase::UpdateFunction LoopUnrollingPhase::updateFunction(Node* update)
{
switch (update->op()) {
case ArithAdd:
return [](auto a, auto b) { return a + b; };
case ArithSub:
return [](auto a, auto b) { return a - b; };
case ArithMul:
return [](auto a, auto b) { return a * b; };
case ArithDiv:
return [](auto a, auto b) { return a / b; };
default:
RELEASE_ASSERT_NOT_REACHED();
return [](auto, auto) { return CheckedInt32(); };
}
}
bool LoopUnrollingPhase::LoopData::isMaterialNode(Graph& graph, Node* node)
{
switch (node->op()) {
// This aligns with DFGDCEPhase.
case Check:
case Phantom:
if (node->children.isEmpty())
return false;
break;
case CheckVarargs: {
bool isEmpty = true;
graph.doToChildren(node, [&] (Edge edge) {
isEmpty &= !edge;
});
if (isEmpty)
return false;
break;
}
// This aligns with LowerDFGToB3::compileNode.
case PhantomLocal:
case MovHint:
case ZombieHint:
case ExitOK:
case PhantomNewObject:
case PhantomNewArrayWithConstantSize:
case PhantomNewFunction:
case PhantomNewGeneratorFunction:
case PhantomNewAsyncGeneratorFunction:
case PhantomNewAsyncFunction:
case PhantomNewInternalFieldObject:
case PhantomCreateActivation:
case PhantomDirectArguments:
case PhantomCreateRest:
case PhantomSpread:
case PhantomNewArrayWithSpread:
case PhantomNewArrayBuffer:
case PhantomClonedArguments:
case PhantomNewRegExp:
case PutHint:
case BottomValue:
case KillStack:
case InitializeEntrypointArguments:
return false;
default:
break;
}
return true;
}
bool LoopUnrollingPhase::LoopData::isNumericComputationNode(Node* node)
{
switch (node->op()) {
// Arithmetic operations
case ArithBitNot:
case ArithBitAnd:
case ArithBitOr:
case ArithBitXor:
case ArithBitLShift:
case ArithBitRShift:
case ArithAdd:
case ArithClz32:
case ArithSub:
case ArithNegate:
case ArithMul:
case ArithIMul:
case ArithDiv:
case ArithMod:
case ArithAbs:
case ArithMin:
case ArithMax:
case ArithFRound:
case ArithF16Round:
case ArithPow:
case ArithRandom:
case ArithRound:
case ArithFloor:
case ArithCeil:
case ArithTrunc:
case ArithSqrt:
case ArithUnary:
// Representations
case DoubleRep:
case Int52Rep:
case ValueRep:
// Numeric constants
case DoubleConstant:
case Int52Constant:
return true;
case JSConstant:
if (node->isNumberConstant())
return true;
[[fallthrough]];
default:
return false;
}
}
bool LoopUnrollingPhase::LoopData::isLocalAccessNode(Node* node)
{
switch (node->op()) {
case GetLocal:
case SetLocal:
return true;
default:
return false;
}
}
FunctionAllowlist& LoopUnrollingPhase::functionAllowlist()
{
static LazyNeverDestroyed<FunctionAllowlist> allowList;
static std::once_flag initializeAllowlistFlag;
std::call_once(initializeAllowlistFlag, [] {
const char* functionAllowlistFile = Options::loopUnrollingAllowlist();
allowList.construct(functionAllowlistFile);
});
return allowList;
}
}
} // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)
|