1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
|
/*
* Copyright (C) 2023 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "InlineContentConstrainer.h"
#include "InlineLineBuilder.h"
#include "RenderStyleInlines.h"
#include <limits>
#include <ranges>
#include <wtf/MathExtras.h>
#include <wtf/PriorityQueue.h>
namespace WebCore {
namespace Layout {
// Ideally, the act of balancing inline content will use the same number of lines as if the inline content
// was laid out via `text-wrap: wrap`. However, adhering to this ideal is expensive (quadratic in the number
// of break opportunities), and not caring about this ideal will allow us to use a more efficient algorithm.
// Typically, if inline content spans many lines, the likelihood of someone caring about the vertical space
// used decreases. So, we ignore this ideal number of lines requirement beyond this threshold.
static const size_t maximumLinesToBalanceWithLineRequirement { 12 };
// Define the penalty associated with show text wider/narrower than ideal bounds.
// Separating stretchability and shrinkability allows us to weight under/over
// filling the ideal bounds differently.
static const InlineLayoutUnit textWrapPrettyStretchability = 15;
static const InlineLayoutUnit textWrapPrettyShrinkability = 15;
// Defines the maximum shrink/stretch factor allowed for text-wrap-pretty.
static const float textWrapPrettyMaxStretch = 3;
static const float textWrapPrettyMaxShrink = 3;
// We would like 2 or more items on the last line for text-wrap-style:pretty to avoid orphans.
static const size_t lastLinePreferredInlineItemCount = 2;
static size_t lastLineBreakingPointOffset()
{
return 2 * lastLinePreferredInlineItemCount + 1;
}
// Use auto layout if ideal line width is too short relative to the largest inline item.
// In these situations, text-wrap-pretty does very little of note other than take up time.
static bool validIdealLineWidth(InlineLayoutUnit maxItemWidth, InlineLayoutUnit idealLineWidth, InlineLayoutUnit maxTextIndent)
{
return idealLineWidth >= maxItemWidth + maxTextIndent;
}
static bool validLineWidthPretty(InlineLayoutUnit candidateLineWidth, InlineLayoutUnit idealLineWidth)
{
auto difference = candidateLineWidth - idealLineWidth;
if (difference > 0)
return difference <= textWrapPrettyStretchability * textWrapPrettyMaxStretch;
return abs(difference) <= textWrapPrettyShrinkability * textWrapPrettyMaxShrink;
}
// Full implementation of the raggedness function defined in:
// http://www.eprg.org/G53DOC/pdfs/knuth-plass-breaking.pdf
static float computeRaggedness(InlineLayoutUnit candidateLineWidth, InlineLayoutUnit idealLineWidth)
{
auto difference = candidateLineWidth - idealLineWidth;
auto intermediate = difference / (difference > 0 ? textWrapPrettyStretchability : textWrapPrettyShrinkability);
return 100 * abs(pow(intermediate, 3));
};
static float computeCostBalance(InlineLayoutUnit candidateLineWidth, InlineLayoutUnit idealLineWidth)
{
return computeRaggedness(candidateLineWidth, idealLineWidth);
};
static float computeCostPretty(InlineLayoutUnit candidateLineWidth, InlineLayoutUnit idealLineWidth, size_t breakIndex, size_t numberOfBreakOpportunities, InlineLayoutUnit)
{
// FIXME: add support for river minimization.
// Force max/minimum line width bounds if there are more then lastLinePreferredInlineItemCount items to be laid out after the candidate line.
if (breakIndex < numberOfBreakOpportunities - lastLineBreakingPointOffset()) {
if (!validLineWidthPretty(candidateLineWidth, idealLineWidth))
return std::numeric_limits<float>::infinity();
}
return computeRaggedness(candidateLineWidth, idealLineWidth);
};
static LayoutUnit computeLineWidthFromSlidingWidth(InlineLayoutUnit indentWidth, SlidingWidth slidingWidth)
{
return LayoutUnit::fromFloatCeil(indentWidth + slidingWidth.width() + LayoutUnit::epsilon());
}
static bool containsTrailingSoftHyphen(const InlineItem& inlineItem)
{
if (inlineItem.style().hyphens() == Hyphens::None)
return false;
auto* textItem = dynamicDowncast<InlineTextItem>(inlineItem);
if (!textItem)
return false;
return textItem->hasTrailingSoftHyphen();
}
static bool containsPreservedTab(const InlineItem& inlineItem)
{
auto* textItem = dynamicDowncast<InlineTextItem>(inlineItem);
if (!textItem)
return false;
if (!textItem->isWhitespace())
return false;
const auto& textBox = textItem->inlineTextBox();
if (!TextUtil::shouldPreserveSpacesAndTabs(textBox))
return false;
auto start = textItem->start();
auto length = textItem->length();
const auto& textContent = textBox.content();
for (size_t index = start; index < start + length; index++) {
if (textContent[index] == tabCharacter)
return true;
}
return false;
}
static bool cannotConstrainInlineItem(const InlineItem& inlineItem)
{
// Opaque items are ignored by inline layout and do not affect constraint calculations.
if (inlineItem.isOpaque())
return false;
if (!inlineItem.layoutBox().isInlineLevelBox())
return true;
if (containsTrailingSoftHyphen(inlineItem))
return true;
if (containsPreservedTab(inlineItem))
return true;
if (inlineItem.style().boxDecorationBreak() == BoxDecorationBreak::Clone)
return true;
return false;
}
static PreviousLine buildPreviousLine(size_t lineIndex, LineLayoutResult lineLayoutResult)
{
return PreviousLine { lineIndex, lineLayoutResult.contentGeometry.trailingOverflowingContentWidth, !lineLayoutResult.inlineContent.isEmpty() && lineLayoutResult.inlineContent.last().isLineBreak(), !lineLayoutResult.inlineContent.isEmpty(), lineLayoutResult.directionality.inlineBaseDirection, WTFMove(lineLayoutResult.floatContent.suspendedFloats) };
}
InlineContentConstrainer::InlineContentConstrainer(InlineFormattingContext& inlineFormattingContext, const InlineItemList& inlineItemList, HorizontalConstraints horizontalConstraints)
: m_inlineFormattingContext(inlineFormattingContext)
, m_inlineItemList(inlineItemList)
, m_horizontalConstraints(horizontalConstraints)
{
initialize();
}
void InlineContentConstrainer::updateCachedWidths()
{
// We should only initialize the inline item width cache once.
ASSERT(!m_hasValidInlineItemWidthCache);
m_inlineItemWidths = Vector<InlineLayoutUnit>(m_numberOfInlineItems);
m_firstLineStyleInlineItemWidths = Vector<InlineLayoutUnit>(m_numberOfInlineItems);
// Cache inline item widths to speed up later computations.
for (size_t i = 0; i < m_numberOfInlineItems; i++) {
const auto& item = m_inlineItemList[i];
auto isWordSeparator = false;
if (auto* textItem = dynamicDowncast<InlineTextItem>(item))
isWordSeparator = textItem->isWordSeparator();
// Opaque items are ignored by inline layout. Skip over these items.
if (!item.isOpaque()) {
m_inlineItemWidths[i] = m_inlineFormattingContext.formattingUtils().inlineItemWidth(item, 0, false) + (isWordSeparator ? item.style().wordSpacing() : 0.0f);
m_inlineItemWidthsMax = std::max(m_inlineItemWidthsMax, m_inlineItemWidths[i]);
m_firstLineStyleInlineItemWidths[i] = m_inlineFormattingContext.formattingUtils().inlineItemWidth(item, 0, true) + (isWordSeparator ? item.firstLineStyle().wordSpacing() : 0.0f);
m_inlineItemWidthsMax = std::max(m_inlineItemWidthsMax, m_firstLineStyleInlineItemWidths[i]);
}
}
m_hasValidInlineItemWidthCache = true;
}
void InlineContentConstrainer::checkCanConstrainInlineItems()
{
for (auto& inlineItem : m_inlineItemList) {
if (cannotConstrainInlineItem(inlineItem)) {
m_cannotConstrainContent = true;
return;
}
}
}
InlineContentConstrainer::EntryPretty InlineContentConstrainer::layoutSingleLineForPretty(InlineItemRange layoutRange, InlineLayoutUnit idealLineWidth, EntryPretty lastValidEntry, size_t previousBreakIndex)
{
auto lineBuilder = LineBuilder { m_inlineFormattingContext, m_horizontalConstraints, m_inlineItemList };
// Hyphenation occurs when we require more space than is available. In this case, we should apply max stretch to idealLineWidth.
InlineRect lineInitialRect = InlineRect { 0.f, m_horizontalConstraints.logicalLeft, idealLineWidth + textWrapPrettyStretchability * textWrapPrettyMaxStretch, 0.f };
LineLayoutResult lineLayoutResult = lineBuilder.layoutInlineContent({ layoutRange, lineInitialRect }, lastValidEntry.previousLine);
InlineItemPosition lineEnd = InlineFormattingUtils::leadingInlineItemPositionForNextLine(lineLayoutResult.inlineItemRange.end, lastValidEntry.lineEnd, !lineLayoutResult.floatContent.hasIntrusiveFloat.isEmpty() || !lineLayoutResult.floatContent.placedFloats.isEmpty(), layoutRange.end);
bool didLayoutAllItems = lineEnd.index == layoutRange.endIndex();
bool hasEnoughItemsForNextLine = lineEnd.index < layoutRange.endIndex() - lastLineBreakingPointOffset();
if (didLayoutAllItems || hasEnoughItemsForNextLine) {
return { lastValidEntry.accumulatedCost,
// This function is only called when there are no more viable break points for PrettifyRange.
// Use the last valid entry's accumulated cost as we must use this breakpoint no matter what.
previousBreakIndex,
lastValidEntry.lineIndex + 1,
lineLayoutResult.contentGeometry.logicalWidth,
lineEnd,
buildPreviousLine(lastValidEntry.lineIndex + 1, lineLayoutResult)
};
}
// Handle the case where there would be too few items to be laid out in the next line.
// Redo the layout to leave lastLinePreferredInlineItemCount items at the end to avoid orphans.
auto shortenedLayoutRange = layoutRange;
shortenedLayoutRange.end.index -= lastLineBreakingPointOffset();
LineLayoutResult shortenedLineLayoutResult = lineBuilder.layoutInlineContent({ shortenedLayoutRange, lineInitialRect }, lastValidEntry.previousLine);
InlineItemPosition shortenedLineEnd = InlineFormattingUtils::leadingInlineItemPositionForNextLine(shortenedLineLayoutResult.inlineItemRange.end, lastValidEntry.lineEnd, !shortenedLineLayoutResult.floatContent.hasIntrusiveFloat.isEmpty() || !shortenedLineLayoutResult.floatContent.placedFloats.isEmpty(), shortenedLayoutRange.end);
return { lastValidEntry.accumulatedCost,
// This function is only called when there are no more viable break points for PrettifyRange.
// Use the last valid entry's accumulated cost as we must use this breakpoint no matter what.
previousBreakIndex,
lastValidEntry.lineIndex + 1,
shortenedLineLayoutResult.contentGeometry.logicalWidth,
shortenedLineEnd,
buildPreviousLine(lastValidEntry.lineIndex + 1, shortenedLineLayoutResult)
};
}
void InlineContentConstrainer::initialize()
{
auto lineClamp = m_inlineFormattingContext.layoutState().parentBlockLayoutState().lineClamp();
auto numberOfVisibleLinesAllowed = lineClamp ? std::make_optional(lineClamp->maximumLines) : std::nullopt;
if (!m_inlineFormattingContext.layoutState().placedFloats().isEmpty()) {
m_cannotConstrainContent = true;
return;
}
// Do not adjust single line content.
if (numberOfVisibleLinesAllowed == 1) {
m_hasSingleLineVisibleContent = true;
return;
}
m_numberOfInlineItems = m_inlineItemList.size();
m_maximumLineWidthConstraint = m_horizontalConstraints.logicalWidth;
checkCanConstrainInlineItems();
if (m_cannotConstrainContent)
return;
// Perform a line layout with `text-wrap: wrap` to compute useful metrics such as:
// - the number of lines used
// - the original widths of each line
// - forced break locations
auto layoutRange = InlineItemRange { 0, m_inlineItemList.size() };
auto lineBuilder = LineBuilder { m_inlineFormattingContext, m_horizontalConstraints, m_inlineItemList };
auto previousLineEnd = std::optional<InlineItemPosition> { };
auto previousLine = std::optional<PreviousLine> { };
auto lineIndex = 0lu;
while (!layoutRange.isEmpty()) {
auto lineInitialRect = InlineRect { 0.f, m_horizontalConstraints.logicalLeft, m_horizontalConstraints.logicalWidth, 0.f };
auto lineLayoutResult = lineBuilder.layoutInlineContent({ layoutRange, lineInitialRect }, previousLine);
// Record relevant geometry measurements from one line layout
m_originalLineInlineItemRanges.append(lineLayoutResult.inlineItemRange);
m_originalLineEndsWithForcedBreak.append(!lineLayoutResult.inlineContent.isEmpty() && lineLayoutResult.inlineContent.last().isLineBreak());
bool useFirstLineStyle = !lineIndex;
bool isFirstLineInChunk = !lineIndex || m_originalLineEndsWithForcedBreak[lineIndex - 1];
SlidingWidth lineSlidingWidth { *this, m_inlineItemList, lineLayoutResult.inlineItemRange.startIndex(), lineLayoutResult.inlineItemRange.endIndex(), useFirstLineStyle, isFirstLineInChunk };
auto previousLineEndsWithLineBreak = lineIndex ? (m_originalLineEndsWithForcedBreak[lineIndex - 1] ? PreviousLineState::EndsWithLineBreak : PreviousLineState::DoesNotEndWithLineBreak) : PreviousLineState::NoPreviousLine;
auto textIndent = m_inlineFormattingContext.formattingUtils().computedTextIndent(InlineFormattingUtils::IsIntrinsicWidthMode::No, previousLineEndsWithLineBreak, m_maximumLineWidthConstraint);
m_originalLineConstraints.append(computeLineWidthFromSlidingWidth(textIndent, lineSlidingWidth));
// If next line count would match (or exceed) the number of visible lines due to line-clamp, we can bail out early.
if (numberOfVisibleLinesAllowed && (lineIndex + 1 >= numberOfVisibleLinesAllowed))
break;
layoutRange.start = InlineFormattingUtils::leadingInlineItemPositionForNextLine(lineLayoutResult.inlineItemRange.end, previousLineEnd, !lineLayoutResult.floatContent.hasIntrusiveFloat.isEmpty() || !lineLayoutResult.floatContent.placedFloats.isEmpty(), layoutRange.end);
previousLineEnd = layoutRange.start;
previousLine = buildPreviousLine(lineIndex, lineLayoutResult);
lineIndex++;
}
// Cache inline item widths after laying out all inline content with LineBuilder.
updateCachedWidths();
m_numberOfLinesInOriginalLayout = lineIndex;
// Do not adjust single line content.
if (m_numberOfLinesInOriginalLayout == 1)
m_hasSingleLineVisibleContent = true;
}
std::optional<Vector<LayoutUnit>> InlineContentConstrainer::computeParagraphLevelConstraints(TextWrapStyle wrapStyle)
{
ASSERT(wrapStyle == TextWrapStyle::Balance || wrapStyle == TextWrapStyle::Pretty);
if (m_cannotConstrainContent || m_hasSingleLineVisibleContent)
return { };
// If forced line breaks exist, then we can constrain each forced-break-delimited
// chunk of text separately. This helps simplify first line/indentation logic.
Vector<size_t> chunkSizes; // Number of lines per chunk of text
size_t currentChunkSize = 0;
for (size_t i = 0; i < m_originalLineInlineItemRanges.size(); i++) {
currentChunkSize++;
if (m_originalLineEndsWithForcedBreak[i]) {
chunkSizes.append(currentChunkSize);
currentChunkSize = 0;
}
}
if (currentChunkSize > 0)
chunkSizes.append(currentChunkSize);
// Constrain each chunk
auto constrainChunk = [&](auto chunkStart, auto chunkSize) -> std::optional<Vector<LayoutUnit>> {
const bool isFirstChunk = !chunkStart;
auto rangeToConstrain = InlineItemRange { m_originalLineInlineItemRanges[chunkStart].startIndex(), m_originalLineInlineItemRanges[chunkStart + chunkSize - 1].endIndex() };
if (rangeToConstrain.startIndex() >= rangeToConstrain.endIndex())
return { };
if (wrapStyle == TextWrapStyle::Balance) {
InlineLayoutUnit totalWidth = 0.f;
for (size_t line = 0; line < chunkSize; line++)
totalWidth += m_originalLineConstraints[chunkStart + line];
const InlineLayoutUnit idealLineWidth = totalWidth / chunkSize;
if (m_numberOfLinesInOriginalLayout <= maximumLinesToBalanceWithLineRequirement)
return balanceRangeWithLineRequirement(rangeToConstrain, idealLineWidth, chunkSize, isFirstChunk);
return balanceRangeWithNoLineRequirement(rangeToConstrain, idealLineWidth, isFirstChunk);
}
if (wrapStyle == TextWrapStyle::Pretty) {
const InlineLayoutUnit idealLineWidth = m_maximumLineWidthConstraint - textWrapPrettyStretchability * textWrapPrettyMaxStretch;
return prettifyRange(rangeToConstrain, idealLineWidth, isFirstChunk);
}
ASSERT_NOT_REACHED();
return { };
};
size_t chunkStart = 0;
Vector<LayoutUnit> constrainedLineWidths;
for (auto chunkSize : chunkSizes) {
auto constrainedLineWidthsForChunk = constrainChunk(chunkStart, chunkSize);
if (!constrainedLineWidthsForChunk) {
for (size_t i = 0; i < chunkSize; i++)
constrainedLineWidths.append(m_maximumLineWidthConstraint);
} else {
for (auto constrainedLineWidth : *constrainedLineWidthsForChunk)
constrainedLineWidths.append(constrainedLineWidth);
}
chunkStart += chunkSize;
}
return constrainedLineWidths;
}
std::optional<Vector<LayoutUnit>> InlineContentConstrainer::balanceRangeWithLineRequirement(InlineItemRange range, InlineLayoutUnit idealLineWidth, size_t numberOfLines, bool isFirstChunk)
{
ASSERT(range.startIndex() < range.endIndex());
// breakOpportunities holds the indices i such that a line break can occur before m_inlineItemList[i].
auto breakOpportunities = computeBreakOpportunities(range);
// We need a dummy break opportunity at the beginning for algorithmic base case purposes
breakOpportunities.insert(0, range.startIndex());
auto numberOfBreakOpportunities = breakOpportunities.size();
// Indentation offsets
auto previousLineEndsWithLineBreak = isFirstChunk ? PreviousLineState::NoPreviousLine : PreviousLineState::EndsWithLineBreak;
auto firstLineTextIndent = computeTextIndent(previousLineEndsWithLineBreak);
auto textIndent = computeTextIndent(PreviousLineState::DoesNotEndWithLineBreak);
// state[i][j] holds the optimal set of line breaks where the jth line break (1-indexed) is
// right before m_inlineItemList[breakOpportunities[i]]. "Optimal" in this context means the
// lowest possible accumulated cost.
Vector<Vector<EntryBalance>> state(numberOfBreakOpportunities, Vector<EntryBalance>(numberOfLines + 1));
state[0][0].accumulatedCost = 0.f;
// Special case the first line because of ::first-line styling, indentation, etc.
SlidingWidth firstLineSlidingWidth { *this, m_inlineItemList, range.startIndex(), range.startIndex(), isFirstChunk, true };
for (size_t breakIndex = 1; breakIndex < numberOfBreakOpportunities; breakIndex++) {
auto end = breakOpportunities[breakIndex];
firstLineSlidingWidth.advanceEndTo(end);
auto firstLineCandidateWidth = computeLineWidthFromSlidingWidth(firstLineTextIndent, firstLineSlidingWidth);
if (firstLineCandidateWidth > m_maximumLineWidthConstraint)
break;
auto cost = computeCostBalance(firstLineCandidateWidth, idealLineWidth);
state[breakIndex][1].accumulatedCost = cost;
}
// breakOpportunities[firstStartIndex] is the first possible starting position for a candidate line that is NOT the first line
size_t firstStartIndex = 1;
SlidingWidth slidingWidth { *this, m_inlineItemList, breakOpportunities[firstStartIndex], breakOpportunities[firstStartIndex], false, false };
for (size_t breakIndex = 1; breakIndex < numberOfBreakOpportunities; breakIndex++) {
size_t end = breakOpportunities[breakIndex];
slidingWidth.advanceEndTo(end);
// We prune our search space by limiting the possible starting positions for our candidate line.
while (computeLineWidthFromSlidingWidth(textIndent, slidingWidth) > m_maximumLineWidthConstraint) {
firstStartIndex++;
if (firstStartIndex > breakIndex)
break;
slidingWidth.advanceStartTo(breakOpportunities[firstStartIndex]);
}
// Evaluate all possible lines that break before m_inlineItemList[end]
auto innerSlidingWidth = slidingWidth;
for (size_t startIndex = firstStartIndex; startIndex < breakIndex; startIndex++) {
size_t start = breakOpportunities[startIndex];
ASSERT(start != range.startIndex());
innerSlidingWidth.advanceStartTo(start);
auto candidateLineWidth = computeLineWidthFromSlidingWidth(textIndent, innerSlidingWidth);
auto candidateLineCost = computeCostBalance(candidateLineWidth, idealLineWidth);
ASSERT(candidateLineWidth <= m_maximumLineWidthConstraint);
// Compute the cost of this line based on the line index
for (size_t lineIndex = 1; lineIndex <= numberOfLines; lineIndex++) {
auto accumulatedCost = candidateLineCost + state[startIndex][lineIndex - 1].accumulatedCost;
auto currentAccumulatedCost = state[breakIndex][lineIndex].accumulatedCost;
if (accumulatedCost < currentAccumulatedCost || WTF::areEssentiallyEqual(accumulatedCost, currentAccumulatedCost)) {
state[breakIndex][lineIndex].accumulatedCost = accumulatedCost;
state[breakIndex][lineIndex].previousBreakIndex = startIndex;
}
}
}
}
// Check if we found no solution
if (std::isinf(state[numberOfBreakOpportunities - 1][numberOfLines].accumulatedCost))
return { };
// breaks[i] equals the index into m_inlineItemList before which the ith line will break
Vector<size_t> breaks(numberOfLines);
size_t breakIndex = numberOfBreakOpportunities - 1;
for (size_t line = numberOfLines; line > 0; line--) {
breaks[line - 1] = breakOpportunities[breakIndex];
breakIndex = state[breakIndex][line].previousBreakIndex;
}
return computeLineWidthsFromBreaks(range, breaks, isFirstChunk);
}
std::optional<Vector<LayoutUnit>> InlineContentConstrainer::balanceRangeWithNoLineRequirement(InlineItemRange range, InlineLayoutUnit idealLineWidth, bool isFirstChunk)
{
ASSERT(range.startIndex() < range.endIndex());
// breakOpportunities holds the indices i such that a line break can occur before m_inlineItemList[i].
auto breakOpportunities = computeBreakOpportunities(range);
if (breakOpportunities.size() == 1)
return { };
// We need a dummy break opportunity at the beginning for algorithmic base case purposes
breakOpportunities.insert(0, range.startIndex());
auto numberOfBreakOpportunities = breakOpportunities.size();
// Indentation offsets
auto previousLineEndsWithLineBreak = isFirstChunk ? PreviousLineState::NoPreviousLine : PreviousLineState::EndsWithLineBreak;
auto firstLineTextIndent = computeTextIndent(previousLineEndsWithLineBreak);
auto textIndent = computeTextIndent(PreviousLineState::DoesNotEndWithLineBreak);
// state[i] holds the optimal set of line breaks where the last line break is right
// before m_inlineItemList[breakOpportunities[i]]. "Optimal" in this context means the
// lowest possible accumulated cost.
Vector<EntryBalance> state(numberOfBreakOpportunities);
state[0].accumulatedCost = 0.f;
// Special case the first line because of ::first-line styling, indentation, etc.
SlidingWidth firstLineSlidingWidth { *this, m_inlineItemList, range.startIndex(), range.startIndex(), isFirstChunk, true };
for (size_t breakIndex = 1; breakIndex < numberOfBreakOpportunities; breakIndex++) {
auto end = breakOpportunities[breakIndex];
firstLineSlidingWidth.advanceEndTo(end);
auto firstLineCandidateWidth = computeLineWidthFromSlidingWidth(firstLineTextIndent, firstLineSlidingWidth);
if (firstLineCandidateWidth > m_maximumLineWidthConstraint)
break;
auto cost = computeCostBalance(firstLineCandidateWidth, idealLineWidth);
state[breakIndex].accumulatedCost = cost;
}
// breakOpportunities[firstStartIndex] is the first possible starting position for a candidate line that is NOT the first line
size_t firstStartIndex = 1;
SlidingWidth slidingWidth { *this, m_inlineItemList, breakOpportunities[firstStartIndex], breakOpportunities[firstStartIndex], false, false };
for (size_t breakIndex = 1; breakIndex < numberOfBreakOpportunities; breakIndex++) {
size_t end = breakOpportunities[breakIndex];
slidingWidth.advanceEndTo(end);
// We prune our search space by limiting the possible starting positions for our candidate line.
while (computeLineWidthFromSlidingWidth(textIndent, slidingWidth) > m_maximumLineWidthConstraint) {
firstStartIndex++;
if (firstStartIndex > breakIndex)
break;
slidingWidth.advanceStartTo(breakOpportunities[firstStartIndex]);
}
// Evaluate all possible lines that break before m_inlineItemList[end]
auto innerSlidingWidth = slidingWidth;
for (size_t startIndex = firstStartIndex; startIndex < breakIndex; startIndex++) {
size_t start = breakOpportunities[startIndex];
ASSERT(start != range.startIndex());
innerSlidingWidth.advanceStartTo(start);
auto candidateLineWidth = computeLineWidthFromSlidingWidth(textIndent, innerSlidingWidth);
auto candidateLineCost = computeCostBalance(candidateLineWidth, idealLineWidth);
ASSERT(candidateLineWidth <= m_maximumLineWidthConstraint);
auto accumulatedCost = candidateLineCost + state[startIndex].accumulatedCost;
if (accumulatedCost < state[breakIndex].accumulatedCost) {
state[breakIndex].accumulatedCost = accumulatedCost;
state[breakIndex].previousBreakIndex = startIndex;
}
}
}
// Check if we found no solution
if (std::isinf(state[numberOfBreakOpportunities - 1].accumulatedCost))
return { };
// breaks[i] equals the index into m_inlineItemList before which the ith line will break
Vector<size_t> breaks;
size_t breakIndex = numberOfBreakOpportunities - 1;
do {
breaks.append(breakOpportunities[breakIndex]);
breakIndex = state[breakIndex].previousBreakIndex;
} while (breakIndex);
breaks.reverse();
return computeLineWidthsFromBreaks(range, breaks, isFirstChunk);
}
std::optional<Vector<LayoutUnit>> InlineContentConstrainer::prettifyRange(InlineItemRange range, InlineLayoutUnit idealLineWidth, bool isFirstChunk)
{
ASSERT(range.startIndex() < range.endIndex());
// Fall back to auto layout if the ideal line width is too narrow relative to the width of the largest inline item.
if (!validIdealLineWidth(m_inlineItemWidthsMax, idealLineWidth, computeMaxTextIndent()))
return { };
// breakOpportunities holds the indices i such that a line break can occur before m_inlineItemList[i].
auto breakOpportunities = computeBreakOpportunities(range);
if (breakOpportunities.size() == 1)
return { };
// We need a dummy break opportunity at the beginning for algorithmic base case purposes
breakOpportunities.insert(0, range.startIndex());
auto numberOfBreakOpportunities = breakOpportunities.size();
// Indentation offsets
auto previousLineEndsWithLineBreak = isFirstChunk ? PreviousLineState::NoPreviousLine : PreviousLineState::EndsWithLineBreak;
auto firstLineTextIndent = computeTextIndent(previousLineEndsWithLineBreak);
auto textIndent = computeTextIndent(PreviousLineState::DoesNotEndWithLineBreak);
// state[i] holds the optimal set of line breaks where the last line break is right
// before m_inlineItemList[breakOpportunities[i]]. "Optimal" in this context means the
// lowest possible accumulated cost.
Vector<EntryPretty> state(numberOfBreakOpportunities);
state[0].accumulatedCost = 0.f;
std::optional<size_t> lastValidStateIndex;
// Special case the first line because of ::first-line styling, indentation, etc.
SlidingWidth firstLineSlidingWidth { *this, m_inlineItemList, range.startIndex(), range.startIndex(), isFirstChunk, true };
for (size_t breakIndex = 1; breakIndex < numberOfBreakOpportunities; breakIndex++) {
auto end = breakOpportunities[breakIndex];
firstLineSlidingWidth.advanceEndTo(end);
auto firstLineCandidateWidth = computeLineWidthFromSlidingWidth(firstLineTextIndent, firstLineSlidingWidth);
if (firstLineCandidateWidth > m_maximumLineWidthConstraint)
break;
auto cost = computeCostPretty(firstLineCandidateWidth, idealLineWidth, breakIndex, numberOfBreakOpportunities, idealLineWidth);
if (cost < state[breakIndex].accumulatedCost) {
lastValidStateIndex = breakIndex;
state[breakIndex].accumulatedCost = cost;
state[breakIndex].previousBreakIndex = 0;
state[breakIndex].lineIndex = state[0].lineIndex + 1;
state[breakIndex].lastLineWidth = firstLineCandidateWidth;
state[breakIndex].lineEnd = { .index = breakIndex, .offset = 0 };
auto lineInitialRect = InlineRect { 0.f, m_horizontalConstraints.logicalLeft, firstLineCandidateWidth, 0.f };
auto lineBuilder = LineBuilder { m_inlineFormattingContext, m_horizontalConstraints, m_inlineItemList };
auto lineLayoutResult = lineBuilder.layoutInlineContent({ { range.startIndex(), breakOpportunities[breakIndex] }, lineInitialRect }, state[0].previousLine);
state[breakIndex].previousLine = buildPreviousLine(state[breakIndex].lineIndex, lineLayoutResult);
}
}
// If we are unable to build a valid line from without hyphenation,
// try to build a valid line using hyphenation from the beginning.
if (!lastValidStateIndex.has_value()) {
auto newEntry = layoutSingleLineForPretty({ breakOpportunities[0], range.endIndex() }, idealLineWidth, state[0], 0);
auto it = std::ranges::find(breakOpportunities, newEntry.lineEnd.index);
if (it == breakOpportunities.end())
return { };
lastValidStateIndex = std::distance(breakOpportunities.begin(), it);
state[lastValidStateIndex.value()] = newEntry;
}
ASSERT(lastValidStateIndex.has_value());
// breakOpportunities[firstStartIndex] is the first possible starting position for a candidate line that is NOT the first line
size_t firstStartIndex = 1;
SlidingWidth slidingWidth { *this, m_inlineItemList, breakOpportunities[firstStartIndex], breakOpportunities[firstStartIndex], false, false };
// breakIndex should always be one or more break opportunities ahead of firstStartIndex.
for (size_t breakIndex = firstStartIndex + 1; breakIndex < numberOfBreakOpportunities; breakIndex++) {
size_t end = breakOpportunities[breakIndex];
slidingWidth.advanceEndTo(end);
// We prune our search space by limiting the possible starting positions for our candidate line.
while (computeLineWidthFromSlidingWidth(textIndent, slidingWidth) > m_maximumLineWidthConstraint) {
firstStartIndex++;
if (firstStartIndex >= breakIndex)
break;
slidingWidth.advanceStartTo(breakOpportunities[firstStartIndex]);
}
ASSERT(firstStartIndex < breakIndex);
// If the start of our slidingWidth is past the last valid breaking point, we will not be able to find a valid solution.
// Try to find a solution using hyphenation.
if (firstStartIndex>lastValidStateIndex.value()) {
// Perform a single line layout from lastValidStateIndex.value().
auto newEntry = layoutSingleLineForPretty({ state[lastValidStateIndex.value()].lineEnd.index, range.endIndex() }, idealLineWidth, state[lastValidStateIndex.value()], lastValidStateIndex.value());
auto it = std::ranges::find(breakOpportunities, newEntry.lineEnd.index);
// If hyphenation does not create a valid solution, we should return early.
if (it == breakOpportunities.end())
return { };
lastValidStateIndex = std::distance(breakOpportunities.begin(), it);
state[lastValidStateIndex.value()] = newEntry;
}
// Evaluate all possible lines that break before m_inlineItemList[end]
auto innerSlidingWidth = slidingWidth;
for (size_t startIndex = firstStartIndex; startIndex < breakIndex; startIndex++) {
if (state[startIndex].accumulatedCost == std::numeric_limits<float>::infinity())
continue;
size_t start = breakOpportunities[startIndex];
ASSERT(start != range.startIndex());
innerSlidingWidth.advanceStartTo(start);
auto candidateLineWidth = computeLineWidthFromSlidingWidth(textIndent, innerSlidingWidth);
// TODO: update candidateLineWidth here using state[startIndex].lineEnd.offset.
auto candidateLineCost = computeCostPretty(candidateLineWidth, idealLineWidth, breakIndex, numberOfBreakOpportunities, state[startIndex].lastLineWidth);
auto accumulatedCost = candidateLineCost + state[startIndex].accumulatedCost;
if (accumulatedCost < state[breakIndex].accumulatedCost) {
lastValidStateIndex = breakIndex;
state[breakIndex].accumulatedCost = accumulatedCost;
ASSERT(breakIndex > startIndex);
state[breakIndex].previousBreakIndex = startIndex;
state[breakIndex].lastLineWidth = candidateLineWidth;
state[breakIndex].lineEnd = { .index = breakIndex, .offset = 0 };
state[breakIndex].lineIndex = state[startIndex].lineIndex + 1;
auto lineInitialRect = InlineRect { 0.f, m_horizontalConstraints.logicalLeft, candidateLineWidth, 0.f };
auto lineBuilder = LineBuilder { m_inlineFormattingContext, m_horizontalConstraints, m_inlineItemList };
auto lineLayoutResult = lineBuilder.layoutInlineContent({ { startIndex, breakIndex }, lineInitialRect }, state[startIndex].previousLine);
state[breakIndex].previousLine = buildPreviousLine(state[breakIndex].lineIndex, lineLayoutResult);
}
}
}
// Check if we found no solution
if (std::isinf(state[numberOfBreakOpportunities - 1].accumulatedCost))
return { };
// breaks[i] equals the index into m_inlineItemList before which the ith line will break
Vector<LayoutUnit> widths;
size_t breakIndex = numberOfBreakOpportunities - 1;
do {
// state[breakIndex].previousBreakIndex should always be less than breakIndex.
// If this invariant fails, we will find ourselves in an infinite loop.
// In the case we should fall back to auto layout.
if (breakIndex <= state[breakIndex].previousBreakIndex) {
ASSERT_NOT_REACHED_WITH_SECURITY_IMPLICATION();
return { };
}
widths.append(state[breakIndex].lastLineWidth);
breakIndex = state[breakIndex].previousBreakIndex;
} while (breakIndex);
widths.reverse();
return widths;
}
InlineLayoutUnit InlineContentConstrainer::inlineItemWidth(size_t inlineItemIndex, bool useFirstLineStyle) const
{
// Opaque items are ignored by inline layout. Skip over this item by setting its width to 0.
if (m_inlineItemList[inlineItemIndex].isOpaque())
return { };
if (m_hasValidInlineItemWidthCache)
return useFirstLineStyle ? m_firstLineStyleInlineItemWidths[inlineItemIndex] : m_inlineItemWidths[inlineItemIndex];
// If inline items width cache has not yet been initialized, we should explicitly calculate the item's width.
return m_inlineFormattingContext.formattingUtils().inlineItemWidth(m_inlineItemList[inlineItemIndex], 0, useFirstLineStyle);
}
bool InlineContentConstrainer::shouldTrimLeading(size_t inlineItemIndex, bool useFirstLineStyle, bool isFirstLineInChunk) const
{
auto& inlineItem = m_inlineItemList[inlineItemIndex];
auto& style = useFirstLineStyle ? inlineItem.firstLineStyle() : inlineItem.style();
// Handle line break first so we can focus on other types of white space
if (inlineItem.isLineBreak())
return true;
if (auto* textItem = dynamicDowncast<InlineTextItem>(inlineItem)) {
if (textItem->isWhitespace()) {
bool isFirstLineLeadingPreservedWhiteSpace = style.whiteSpaceCollapse() == WhiteSpaceCollapse::Preserve && isFirstLineInChunk;
return !isFirstLineLeadingPreservedWhiteSpace && style.whiteSpaceCollapse() != WhiteSpaceCollapse::BreakSpaces;
}
return false;
}
if (inlineItemWidth(inlineItemIndex, useFirstLineStyle) <= 0)
return true;
return false;
}
bool InlineContentConstrainer::shouldTrimTrailing(size_t inlineItemIndex, bool useFirstLineStyle) const
{
auto& inlineItem = m_inlineItemList[inlineItemIndex];
auto& style = useFirstLineStyle ? inlineItem.firstLineStyle() : inlineItem.style();
// Handle line break first so we can focus on other types of white space
if (inlineItem.isLineBreak())
return true;
if (auto* textItem = dynamicDowncast<InlineTextItem>(inlineItem)) {
if (textItem->isWhitespace())
return style.whiteSpaceCollapse() != WhiteSpaceCollapse::BreakSpaces;
return false;
}
if (inlineItemWidth(inlineItemIndex, useFirstLineStyle) <= 0)
return true;
return false;
}
SlidingWidth::SlidingWidth(const InlineContentConstrainer& inlineContentConstrainer, [[maybe_unused]] const InlineItemList& inlineItemList, size_t start, size_t end, bool useFirstLineStyle, bool isFirstLineInChunk)
: m_inlineContentConstrainer(inlineContentConstrainer)
#if ASSERT_ENABLED
, m_inlineItemList(inlineItemList)
#endif
, m_start(start)
, m_end(start)
, m_useFirstLineStyle(useFirstLineStyle)
, m_isFirstLineInChunk(isFirstLineInChunk)
{
ASSERT(start <= end);
advanceEndTo(end);
}
InlineLayoutUnit SlidingWidth::width()
{
return m_totalWidth - m_leadingTrimmableWidth - m_trailingTrimmableWidth;
}
void SlidingWidth::advanceStart()
{
ASSERT(m_start < m_end);
auto startItemIndex = m_start;
auto startItemWidth = m_inlineContentConstrainer.inlineItemWidth(startItemIndex, m_useFirstLineStyle);
m_totalWidth -= startItemWidth;
m_start++;
if (m_inlineContentConstrainer.shouldTrimLeading(startItemIndex, m_useFirstLineStyle, m_isFirstLineInChunk)) {
m_leadingTrimmableWidth -= startItemWidth;
return;
}
m_firstLeadingNonTrimmedItem = std::nullopt;
m_leadingTrimmableWidth = 0;
for (auto current = m_start; current < m_end; current++) {
if (!m_inlineContentConstrainer.shouldTrimLeading(current, m_useFirstLineStyle, m_isFirstLineInChunk)) {
m_firstLeadingNonTrimmedItem = current;
break;
}
m_leadingTrimmableWidth += m_inlineContentConstrainer.inlineItemWidth(current, m_useFirstLineStyle);
}
// Update trailing logic if necessary:
// 1: Check if the removed start item was the first trailing item
// 2: Check if the first non trimmed leading item surpassed the first trailing item
// In both cases, we should have m_leadingTrimmableWidth + m_trailingTrimmableWidth = m_totalWidth
if (m_leadingTrimmableWidth + m_trailingTrimmableWidth > m_totalWidth)
m_trailingTrimmableWidth = m_totalWidth - m_leadingTrimmableWidth;
}
void SlidingWidth::advanceStartTo(size_t newStart)
{
ASSERT(m_start <= newStart);
while (m_start < newStart)
advanceStart();
}
void SlidingWidth::advanceEnd()
{
ASSERT(m_end < m_inlineItemList.size());
auto endItemIndex = m_end;
auto endItemWidth = m_inlineContentConstrainer.inlineItemWidth(endItemIndex, m_useFirstLineStyle);
m_totalWidth += endItemWidth;
m_end++;
if (!m_firstLeadingNonTrimmedItem.has_value()) {
if (m_inlineContentConstrainer.shouldTrimLeading(endItemIndex, m_useFirstLineStyle, m_isFirstLineInChunk)) {
m_leadingTrimmableWidth += endItemWidth;
return;
}
m_firstLeadingNonTrimmedItem = endItemIndex;
return;
}
if (m_inlineContentConstrainer.shouldTrimTrailing(m_end - 1, m_useFirstLineStyle)) {
m_trailingTrimmableWidth += endItemWidth;
return;
}
m_trailingTrimmableWidth = 0;
}
void SlidingWidth::advanceEndTo(size_t newEnd)
{
ASSERT(m_end <= newEnd);
while (m_end < newEnd)
advanceEnd();
}
Vector<size_t> InlineContentConstrainer::computeBreakOpportunities(InlineItemRange range) const
{
Vector<size_t> breakOpportunities;
size_t currentIndex = range.startIndex();
while (currentIndex < range.endIndex()) {
currentIndex = m_inlineFormattingContext.formattingUtils().nextWrapOpportunity(currentIndex, range, m_inlineItemList.span());
// FIXME: we should not consider the range end as breaking opportunity.
breakOpportunities.append(currentIndex);
}
return breakOpportunities;
}
Vector<LayoutUnit> InlineContentConstrainer::computeLineWidthsFromBreaks(InlineItemRange inlineItems, const Vector<size_t>& breaks, bool isFirstChunk) const
{
Vector<LayoutUnit> lineWidths(breaks.size());
auto previousLineEndsWithLineBreak = isFirstChunk ? PreviousLineState::NoPreviousLine : PreviousLineState::EndsWithLineBreak;
auto firstLineTextIndent = computeTextIndent(previousLineEndsWithLineBreak);
auto textIndent = computeTextIndent(PreviousLineState::DoesNotEndWithLineBreak);
for (size_t i = 0; i < breaks.size(); i++) {
auto start = !i ? inlineItems.startIndex() : breaks[i - 1];
auto end = breaks[i];
auto indentWidth = !i ? firstLineTextIndent : textIndent;
SlidingWidth slidingWidth { *this, m_inlineItemList, start, end, !i && isFirstChunk, !i };
lineWidths[i] = computeLineWidthFromSlidingWidth(indentWidth, slidingWidth);
}
return lineWidths;
}
InlineLayoutUnit InlineContentConstrainer::computeMaxTextIndent() const
{
auto noPreviousLineTextIndent = computeTextIndent(PreviousLineState::NoPreviousLine);
auto firstLineTextIndent = computeTextIndent(PreviousLineState::EndsWithLineBreak);
auto textIndent = computeTextIndent(PreviousLineState::DoesNotEndWithLineBreak);
// Return the maximum indent value
return std::max({ noPreviousLineTextIndent, firstLineTextIndent, textIndent });
}
InlineLayoutUnit InlineContentConstrainer::computeTextIndent(PreviousLineState previousLineState) const
{
return m_inlineFormattingContext.formattingUtils().computedTextIndent(InlineFormattingUtils::IsIntrinsicWidthMode::No, previousLineState, m_maximumLineWidthConstraint);
}
}
}
|