1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkFloatingPoint_DEFINED
#define SkFloatingPoint_DEFINED
#include "include/private/base/SkAttributes.h"
#include "include/private/base/SkMath.h"
#include <cmath>
#include <cstdint>
#include <limits>
#include <type_traits>
inline constexpr float SK_FloatSqrt2 = 1.41421356f;
inline constexpr float SK_FloatPI = 3.14159265f;
inline constexpr double SK_DoublePI = 3.14159265358979323846264338327950288;
static constexpr int sk_float_sgn(float x) {
return (0.0f < x) - (x < 0.0f);
}
static constexpr float sk_float_degrees_to_radians(float degrees) {
return degrees * (SK_FloatPI / 180);
}
static constexpr float sk_float_radians_to_degrees(float radians) {
return radians * (180 / SK_FloatPI);
}
// floor(double+0.5) vs. floorf(float+0.5f) give comparable performance, but upcasting to double
// means tricky values like 0.49999997 and 2^24 get rounded correctly. If these were rounded
// as floatf(x + .5f), they would be 1 higher than expected.
#define sk_float_round(x) (float)sk_double_round((double)(x))
template <typename T, std::enable_if_t<std::is_floating_point_v<T>, bool> = true>
static inline constexpr bool SkIsNaN(T x) {
return x != x;
}
// Subtracting a value from itself will result in zero, except for NAN or ±Inf, which make NAN.
// Multiplying a group of values against zero will result in zero for each product, except for
// NAN or ±Inf, which will result in NAN and continue resulting in NAN for the rest of the elements.
// This generates better code than `std::isfinite` when building with clang-cl (April 2024).
template <typename T, typename... Pack, std::enable_if_t<std::is_floating_point_v<T>, bool> = true>
static inline bool SkIsFinite(T x, Pack... values) {
T prod = x - x;
prod = (prod * ... * values);
// At this point, `prod` will either be NaN or 0.
return prod == prod;
}
template <typename T, std::enable_if_t<std::is_floating_point_v<T>, bool> = true>
static inline bool SkIsFinite(const T array[], int count) {
T x = array[0];
T prod = x - x;
for (int i = 1; i < count; ++i) {
prod *= array[i];
}
// At this point, `prod` will either be NaN or 0.
return prod == prod;
}
inline constexpr int SK_MaxS32FitsInFloat = 2147483520;
inline constexpr int SK_MinS32FitsInFloat = -SK_MaxS32FitsInFloat;
// 0x7fffff8000000000
inline constexpr int64_t SK_MaxS64FitsInFloat = SK_MaxS64 >> (63-24) << (63-24);
inline constexpr int64_t SK_MinS64FitsInFloat = -SK_MaxS64FitsInFloat;
// sk_[float|double]_saturate2int are written to return their maximum values when passed NaN.
// MSVC 19.38+ has a bug with this implementation, leading to incorrect results:
// https://developercommunity.visualstudio.com/t/Optimizer-incorrectly-handles-NaN-floati/10654403
//
// We inject an explicit NaN test on MSVC to work around the problem.
#if defined(_MSC_VER) && !defined(__clang__)
#define SK_CHECK_NAN(resultVal) if (SkIsNaN(x)) { return resultVal; }
#else
#define SK_CHECK_NAN(resultVal)
#endif
/**
* Return the closest int for the given float. Returns SK_MaxS32FitsInFloat for NaN.
*/
static constexpr int sk_float_saturate2int(float x) {
SK_CHECK_NAN(SK_MaxS32FitsInFloat)
x = x < SK_MaxS32FitsInFloat ? x : SK_MaxS32FitsInFloat;
x = x > SK_MinS32FitsInFloat ? x : SK_MinS32FitsInFloat;
return (int)x;
}
/**
* Return the closest int for the given double. Returns SK_MaxS32 for NaN.
*/
static constexpr int sk_double_saturate2int(double x) {
SK_CHECK_NAN(SK_MaxS32)
x = x < SK_MaxS32 ? x : SK_MaxS32;
x = x > SK_MinS32 ? x : SK_MinS32;
return (int)x;
}
/**
* Return the closest int64_t for the given float. Returns SK_MaxS64FitsInFloat for NaN.
*/
static constexpr int64_t sk_float_saturate2int64(float x) {
SK_CHECK_NAN(SK_MaxS64FitsInFloat)
x = x < SK_MaxS64FitsInFloat ? x : SK_MaxS64FitsInFloat;
x = x > SK_MinS64FitsInFloat ? x : SK_MinS64FitsInFloat;
return (int64_t)x;
}
#undef SK_CHECK_NAN
#define sk_float_floor2int(x) sk_float_saturate2int(std::floor(x))
#define sk_float_round2int(x) sk_float_saturate2int(sk_float_round(x))
#define sk_float_ceil2int(x) sk_float_saturate2int(std::ceil(x))
#define sk_float_floor2int_no_saturate(x) ((int)std::floor(x))
#define sk_float_round2int_no_saturate(x) ((int)sk_float_round(x))
#define sk_float_ceil2int_no_saturate(x) ((int)std::ceil(x))
#define sk_double_round(x) (std::floor((x) + 0.5))
#define sk_double_floor2int(x) ((int)std::floor(x))
#define sk_double_round2int(x) ((int)std::round(x))
#define sk_double_ceil2int(x) ((int)std::ceil(x))
// Cast double to float, ignoring any warning about too-large finite values being cast to float.
// Clang thinks this is undefined, but it's actually implementation defined to return either
// the largest float or infinity (one of the two bracketing representable floats). Good enough!
SK_NO_SANITIZE("float-cast-overflow")
static constexpr float sk_double_to_float(double x) {
return static_cast<float>(x);
}
inline constexpr float SK_FloatNaN = std::numeric_limits<float>::quiet_NaN();
inline constexpr float SK_FloatInfinity = std::numeric_limits<float>::infinity();
inline constexpr float SK_FloatNegativeInfinity = -SK_FloatInfinity;
inline constexpr double SK_DoubleNaN = std::numeric_limits<double>::quiet_NaN();
// Calculate the midpoint between a and b. Similar to std::midpoint in c++20.
static constexpr float sk_float_midpoint(float a, float b) {
// Use double math to avoid underflow and overflow.
return static_cast<float>(0.5 * (static_cast<double>(a) + b));
}
static inline float sk_float_rsqrt_portable(float x) { return 1.0f / std::sqrt(x); }
static inline float sk_float_rsqrt (float x) { return 1.0f / std::sqrt(x); }
// IEEE defines how float divide behaves for non-finite values and zero-denoms, but C does not,
// so we have a helper that suppresses the possible undefined-behavior warnings.
#ifdef SK_BUILD_FOR_WIN
#pragma warning(push)
#pragma warning(disable : 4723)
#endif
SK_NO_SANITIZE("float-divide-by-zero")
static constexpr float sk_ieee_float_divide(float numer, float denom) {
return numer / denom;
}
SK_NO_SANITIZE("float-divide-by-zero")
static constexpr double sk_ieee_double_divide(double numer, double denom) {
return numer / denom;
}
#ifdef SK_BUILD_FOR_WIN
#pragma warning( pop )
#endif
// Returns true iff the provided number is within a small epsilon of 0.
bool sk_double_nearly_zero(double a);
// Compare two doubles and return true if they are within maxUlpsDiff of each other.
// * nan as a or b - returns false.
// * infinity, infinity or -infinity, -infinity - returns true.
// * infinity and any other number - returns false.
//
// ulp is an initialism for Units in the Last Place.
bool sk_doubles_nearly_equal_ulps(double a, double b, uint8_t maxUlpsDiff = 16);
#endif
|