1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
|
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkTArray_DEFINED
#define SkTArray_DEFINED
#include "include/private/base/SkASAN.h" // IWYU pragma: keep
#include "include/private/base/SkAlignedStorage.h"
#include "include/private/base/SkAssert.h"
#include "include/private/base/SkAttributes.h"
#include "include/private/base/SkContainers.h"
#include "include/private/base/SkDebug.h"
#include "include/private/base/SkMalloc.h"
#include "include/private/base/SkMath.h"
#include "include/private/base/SkSpan_impl.h"
#include "include/private/base/SkTo.h"
#include "include/private/base/SkTypeTraits.h" // IWYU pragma: keep
#include <algorithm>
#include <climits>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <initializer_list>
#include <new>
#include <utility>
namespace skia_private {
/** TArray<T> implements a typical, mostly std::vector-like array.
Each T will be default-initialized on allocation, and ~T will be called on destruction.
MEM_MOVE controls the behavior when a T needs to be moved (e.g. when the array is resized)
- true: T will be bit-copied via memcpy.
- false: T will be moved via move-constructors.
*/
template <typename T, bool MEM_MOVE = sk_is_trivially_relocatable_v<T>> class TArray {
public:
using value_type = T;
/**
* Creates an empty array with no initial storage
*/
TArray() : fOwnMemory(true), fCapacity{0} {}
/**
* Creates an empty array that will preallocate space for reserveCount elements.
*/
explicit TArray(int reserveCount) : TArray() { this->reserve_exact(reserveCount); }
/**
* Copies one array to another. The new array will be heap allocated.
*/
TArray(const TArray& that) : TArray(that.fData, that.fSize) {}
TArray(TArray&& that) {
if (that.fOwnMemory) {
this->setData(that);
that.setData({});
} else {
this->initData(that.fSize);
that.move(fData);
}
this->changeSize(that.fSize);
that.changeSize(0);
}
/**
* Creates a TArray by copying contents of a standard C array. The new
* array will be heap allocated. Be careful not to use this constructor
* when you really want the (void*, int) version.
*/
TArray(const T* array, int count) {
this->initData(count);
this->copy(array);
}
/**
* Creates a TArray by copying contents from an SkSpan. The new array will be heap allocated.
*/
TArray(SkSpan<const T> data) : TArray(data.begin(), static_cast<int>(data.size())) {}
/**
* Creates a TArray by copying contents of an initializer list.
*/
TArray(std::initializer_list<T> data) : TArray(data.begin(), data.size()) {}
TArray& operator=(const TArray& that) {
if (this == &that) {
return *this;
}
this->clear();
this->checkRealloc(that.size(), kExactFit);
this->changeSize(that.fSize);
this->copy(that.fData);
return *this;
}
TArray& operator=(TArray&& that) {
if (this != &that) {
this->clear();
this->unpoison();
that.unpoison();
if (that.fOwnMemory) {
// The storage is on the heap, so move the data pointer.
if (fOwnMemory) {
sk_free(fData);
}
fData = std::exchange(that.fData, nullptr);
// Can't use exchange with bitfields.
fCapacity = that.fCapacity;
that.fCapacity = 0;
fOwnMemory = true;
this->changeSize(that.fSize);
} else {
// The data is stored inline in that, so move it element-by-element.
this->checkRealloc(that.size(), kExactFit);
this->changeSize(that.fSize);
that.move(fData);
}
that.changeSize(0);
}
return *this;
}
~TArray() {
this->destroyAll();
this->unpoison();
if (fOwnMemory) {
sk_free(fData);
}
}
/**
* Resets to size() = n newly constructed T objects and resets any reserve count.
*/
void reset(int n) {
SkASSERT(n >= 0);
this->clear();
this->checkRealloc(n, kExactFit);
this->changeSize(n);
for (int i = 0; i < this->size(); ++i) {
new (fData + i) T;
}
}
/**
* Resets to a copy of a C array and resets any reserve count.
*/
void reset(const T* array, int count) {
SkASSERT(count >= 0);
this->clear();
this->checkRealloc(count, kExactFit);
this->changeSize(count);
this->copy(array);
}
/**
* Ensures there is enough reserved space for at least n elements. This is guaranteed at least
* until the array size grows above n and subsequently shrinks below n, any version of reset()
* is called, or reserve() is called again.
*/
void reserve(int n) {
SkASSERT(n >= 0);
if (n > this->size()) {
this->checkRealloc(n - this->size(), kGrowing);
}
}
/**
* Ensures there is enough reserved space for exactly n elements. The same capacity guarantees
* as above apply.
*/
void reserve_exact(int n) {
SkASSERT(n >= 0);
if (n > this->size()) {
this->checkRealloc(n - this->size(), kExactFit);
}
}
void removeShuffle(int n) {
SkASSERT(n < this->size());
int newCount = fSize - 1;
fData[n].~T();
if (n != newCount) {
this->move(n, newCount);
}
this->changeSize(newCount);
}
// Is the array empty.
bool empty() const { return fSize == 0; }
/**
* Adds one new default-initialized T value and returns it by reference. Note that the reference
* only remains valid until the next call that adds or removes elements.
*/
T& push_back() {
void* newT = this->push_back_raw(1);
return *new (newT) T;
}
/**
* Adds one new T value which is copy-constructed, returning it by reference. As always,
* the reference only remains valid until the next call that adds or removes elements.
*/
T& push_back(const T& t) {
this->unpoison();
T* newT;
if (this->capacity() > fSize) SK_LIKELY {
// Copy over the element directly.
newT = new (fData + fSize) T(t);
} else {
newT = this->growAndConstructAtEnd(t);
}
this->changeSize(fSize + 1);
return *newT;
}
/**
* Adds one new T value which is copy-constructed, returning it by reference.
*/
T& push_back(T&& t) {
this->unpoison();
T* newT;
if (this->capacity() > fSize) SK_LIKELY {
// Move over the element directly.
newT = new (fData + fSize) T(std::move(t));
} else {
newT = this->growAndConstructAtEnd(std::move(t));
}
this->changeSize(fSize + 1);
return *newT;
}
/**
* Constructs a new T at the back of this array, returning it by reference.
*/
template <typename... Args> T& emplace_back(Args&&... args) {
this->unpoison();
T* newT;
if (this->capacity() > fSize) SK_LIKELY {
// Emplace the new element in directly.
newT = new (fData + fSize) T(std::forward<Args>(args)...);
} else {
newT = this->growAndConstructAtEnd(std::forward<Args>(args)...);
}
this->changeSize(fSize + 1);
return *newT;
}
/**
* Allocates n more default-initialized T values, and returns the address of
* the start of that new range. Note: this address is only valid until the
* next API call made on the array that might add or remove elements.
*/
T* push_back_n(int n) {
SkASSERT(n >= 0);
T* newTs = TCast(this->push_back_raw(n));
for (int i = 0; i < n; ++i) {
new (&newTs[i]) T;
}
return newTs;
}
/**
* Version of above that uses a copy constructor to initialize all n items
* to the same T.
*/
T* push_back_n(int n, const T& t) {
SkASSERT(n >= 0);
T* newTs = TCast(this->push_back_raw(n));
for (int i = 0; i < n; ++i) {
new (&newTs[i]) T(t);
}
return static_cast<T*>(newTs);
}
/**
* Version of above that uses a copy constructor to initialize the n items
* to separate T values.
*/
T* push_back_n(int n, const T t[]) {
SkASSERT(n >= 0);
this->checkRealloc(n, kGrowing);
T* end = this->end();
this->changeSize(fSize + n);
for (int i = 0; i < n; ++i) {
new (end + i) T(t[i]);
}
return end;
}
/**
* Version of above that uses the move constructor to set n items.
*/
T* move_back_n(int n, T* t) {
SkASSERT(n >= 0);
this->checkRealloc(n, kGrowing);
T* end = this->end();
this->changeSize(fSize + n);
for (int i = 0; i < n; ++i) {
new (end + i) T(std::move(t[i]));
}
return end;
}
/**
* Removes the last element. Not safe to call when size() == 0.
*/
void pop_back() {
sk_collection_not_empty(this->empty());
fData[fSize - 1].~T();
this->changeSize(fSize - 1);
}
/**
* Removes the last n elements. Not safe to call when size() < n.
*/
void pop_back_n(int n) {
SkASSERT(n >= 0);
SkASSERT(this->size() >= n);
int i = fSize;
while (i-- > fSize - n) {
(*this)[i].~T();
}
this->changeSize(fSize - n);
}
/**
* Pushes or pops from the back to resize. Pushes will be default initialized.
*/
void resize_back(int newCount) {
SkASSERT(newCount >= 0);
if (newCount > this->size()) {
if (this->empty()) {
// When the container is completely empty, grow to exactly the requested size.
this->checkRealloc(newCount, kExactFit);
}
this->push_back_n(newCount - fSize);
} else if (newCount < this->size()) {
this->pop_back_n(fSize - newCount);
}
}
/** Swaps the contents of this array with that array. Does a pointer swap if possible,
otherwise copies the T values. */
void swap(TArray& that) {
using std::swap;
if (this == &that) {
return;
}
if (fOwnMemory && that.fOwnMemory) {
swap(fData, that.fData);
swap(fSize, that.fSize);
// Can't use swap because fCapacity is a bit field.
auto allocCount = fCapacity;
fCapacity = that.fCapacity;
that.fCapacity = allocCount;
} else {
// This could be more optimal...
TArray copy(std::move(that));
that = std::move(*this);
*this = std::move(copy);
}
}
/**
* Moves all elements of `that` to the end of this array, leaving `that` empty.
* This is a no-op if `that` is empty or equal to this array.
*/
void move_back(TArray& that) {
if (that.empty() || &that == this) {
return;
}
void* dst = this->push_back_raw(that.size());
// After move() returns, the contents of `dst` will have either been in-place initialized
// using a the move constructor (per-item from `that`'s elements), or will have been
// mem-copied into when MEM_MOVE is true (now valid objects).
that.move(dst);
// All items in `that` have either been destroyed (when MEM_MOVE is false) or should be
// considered invalid (when MEM_MOVE is true). Reset fSize to 0 directly to skip any further
// per-item destruction.
that.changeSize(0);
}
T* begin() {
return fData;
}
const T* begin() const {
return fData;
}
// It's safe to use fItemArray + fSize because if fItemArray is nullptr then adding 0 is
// valid and returns nullptr. See [expr.add] in the C++ standard.
T* end() {
if (fData == nullptr) {
SkASSERT(fSize == 0);
}
return fData + fSize;
}
const T* end() const {
if (fData == nullptr) {
SkASSERT(fSize == 0);
}
return fData + fSize;
}
T* data() { return fData; }
const T* data() const { return fData; }
int size() const { return fSize; }
size_t size_bytes() const { return Bytes(fSize); }
void resize(size_t count) { this->resize_back((int)count); }
void clear() {
this->destroyAll();
this->changeSize(0);
}
void shrink_to_fit() {
if (!fOwnMemory || fSize == fCapacity) {
return;
}
this->unpoison();
if (fSize == 0) {
sk_free(fData);
fData = nullptr;
fCapacity = 0;
} else {
SkSpan<std::byte> allocation = Allocate(fSize);
this->move(TCast(allocation.data()));
if (fOwnMemory) {
sk_free(fData);
}
// Poison is applied in `setDataFromBytes`.
this->setDataFromBytes(allocation);
}
}
/**
* Get the i^th element.
*/
T& operator[] (int i) {
return fData[sk_collection_check_bounds(i, this->size())];
}
const T& operator[] (int i) const {
return fData[sk_collection_check_bounds(i, this->size())];
}
T& at(int i) { return (*this)[i]; }
const T& at(int i) const { return (*this)[i]; }
/**
* equivalent to operator[](0)
*/
T& front() {
sk_collection_not_empty(this->empty());
return fData[0];
}
const T& front() const {
sk_collection_not_empty(this->empty());
return fData[0];
}
/**
* equivalent to operator[](size() - 1)
*/
T& back() {
sk_collection_not_empty(this->empty());
return fData[fSize - 1];
}
const T& back() const {
sk_collection_not_empty(this->empty());
return fData[fSize - 1];
}
/**
* equivalent to operator[](size()-1-i)
*/
T& fromBack(int i) {
return (*this)[fSize - i - 1];
}
const T& fromBack(int i) const {
return (*this)[fSize - i - 1];
}
bool operator==(const TArray<T, MEM_MOVE>& right) const {
int leftCount = this->size();
if (leftCount != right.size()) {
return false;
}
for (int index = 0; index < leftCount; ++index) {
if (fData[index] != right.fData[index]) {
return false;
}
}
return true;
}
bool operator!=(const TArray<T, MEM_MOVE>& right) const {
return !(*this == right);
}
int capacity() const {
return fCapacity;
}
protected:
// Creates an empty array that will use the passed storage block until it is insufficiently
// large to hold the entire array.
template <int InitialCapacity>
TArray(SkAlignedSTStorage<InitialCapacity, T>* storage, int size = 0) {
static_assert(InitialCapacity >= 0);
SkASSERT(size >= 0);
SkASSERT(storage->get() != nullptr);
if (size > InitialCapacity) {
this->initData(size);
} else {
this->setDataFromBytes(*storage);
this->changeSize(size);
// setDataFromBytes always sets fOwnMemory to true, but we are actually using static
// storage here, which shouldn't ever be freed.
fOwnMemory = false;
}
}
// Copy a C array, using pre-allocated storage if preAllocCount >= count. Otherwise, storage
// will only be used when array shrinks to fit.
template <int InitialCapacity>
TArray(const T* array, int size, SkAlignedSTStorage<InitialCapacity, T>* storage)
: TArray{storage, size} {
this->copy(array);
}
template <int InitialCapacity>
TArray(SkSpan<const T> data, SkAlignedSTStorage<InitialCapacity, T>* storage)
: TArray{storage, static_cast<int>(data.size())} {
this->copy(data.begin());
}
private:
// Growth factors for checkRealloc.
static constexpr double kExactFit = 1.0;
static constexpr double kGrowing = 1.5;
static constexpr int kMinHeapAllocCount = 8;
static_assert(SkIsPow2(kMinHeapAllocCount), "min alloc count not power of two.");
// Note for 32-bit machines kMaxCapacity will be <= SIZE_MAX. For 64-bit machines it will
// just be INT_MAX if the sizeof(T) < 2^32.
static constexpr int kMaxCapacity = SkToInt(std::min(SIZE_MAX / sizeof(T), (size_t)INT_MAX));
void setDataFromBytes(SkSpan<std::byte> allocation) {
T* data = TCast(allocation.data());
// We have gotten extra bytes back from the allocation limit, pin to kMaxCapacity. It
// would seem like the SkContainerAllocator should handle the divide, but it would have
// to a full divide instruction. If done here the size is known at compile, and usually
// can be implemented by a right shift. The full divide takes ~50X longer than the shift.
size_t size = std::min(allocation.size() / sizeof(T), SkToSizeT(kMaxCapacity));
this->setData(SkSpan<T>(data, size));
}
void setData(SkSpan<T> array) {
this->unpoison();
fData = array.data();
fCapacity = SkToU32(array.size());
fOwnMemory = true;
this->poison();
}
void unpoison() {
#ifdef SK_SANITIZE_ADDRESS
if (fData && fPoisoned) {
// SkDebugf("UNPOISONING %p : 0 -> %zu\n", fData, Bytes(fCapacity));
sk_asan_unpoison_memory_region(this->begin(), Bytes(fCapacity));
fPoisoned = false;
}
#endif
}
void poison() {
#ifdef SK_SANITIZE_ADDRESS
if (fData && fCapacity > fSize) {
// SkDebugf(" POISONING %p : %zu -> %zu\n", fData, Bytes(fSize), Bytes(fCapacity));
sk_asan_poison_memory_region(this->end(), Bytes(fCapacity - fSize));
fPoisoned = true;
}
#endif
}
void changeSize(int n) {
this->unpoison();
fSize = n;
this->poison();
}
// We disable Control-Flow Integrity sanitization (go/cfi) when casting item-array buffers.
// CFI flags this code as dangerous because we are casting `buffer` to a T* while the buffer's
// contents might still be uninitialized memory. When T has a vtable, this is especially risky
// because we could hypothetically access a virtual method on fItemArray and jump to an
// unpredictable location in memory. Of course, TArray won't actually use fItemArray in this
// way, and we don't want to construct a T before the user requests one. There's no real risk
// here, so disable CFI when doing these casts.
SK_NO_SANITIZE_CFI
static T* TCast(void* buffer) {
return (T*)buffer;
}
static size_t Bytes(int n) {
SkASSERT(n <= kMaxCapacity);
return SkToSizeT(n) * sizeof(T);
}
static SkSpan<std::byte> Allocate(int capacity, double growthFactor = 1.0) {
return SkContainerAllocator{sizeof(T), kMaxCapacity}.allocate(capacity, growthFactor);
}
void initData(int count) {
this->setDataFromBytes(Allocate(count));
this->changeSize(count);
}
void destroyAll() {
if (!this->empty()) {
T* cursor = this->begin();
T* const end = this->end();
do {
cursor->~T();
cursor++;
} while (cursor < end);
}
}
/** In the following move and copy methods, 'dst' is assumed to be uninitialized raw storage.
* In the following move methods, 'src' is destroyed leaving behind uninitialized raw storage.
*/
void copy(const T* src) {
if constexpr (std::is_trivially_copyable_v<T>) {
if (!this->empty() && src != nullptr) {
sk_careful_memcpy(fData, src, this->size_bytes());
}
} else {
for (int i = 0; i < this->size(); ++i) {
new (fData + i) T(src[i]);
}
}
}
void move(int dst, int src) {
if constexpr (MEM_MOVE) {
memcpy(static_cast<void*>(&fData[dst]),
static_cast<const void*>(&fData[src]),
sizeof(T));
} else {
new (&fData[dst]) T(std::move(fData[src]));
fData[src].~T();
}
}
void move(void* dst) {
if constexpr (MEM_MOVE) {
sk_careful_memcpy(dst, fData, Bytes(fSize));
} else {
for (int i = 0; i < this->size(); ++i) {
new (static_cast<char*>(dst) + Bytes(i)) T(std::move(fData[i]));
fData[i].~T();
}
}
}
// Helper function that makes space for n objects, adjusts the count, but does not initialize
// the new objects.
void* push_back_raw(int n) {
this->checkRealloc(n, kGrowing);
void* ptr = fData + fSize;
this->changeSize(fSize + n);
return ptr;
}
template <typename... Args>
SK_ALWAYS_INLINE T* growAndConstructAtEnd(Args&&... args) {
SkSpan<std::byte> buffer = this->preallocateNewData(/*delta=*/1, kGrowing);
T* newT = new (TCast(buffer.data()) + fSize) T(std::forward<Args>(args)...);
this->installDataAndUpdateCapacity(buffer);
return newT;
}
void checkRealloc(int delta, double growthFactor) {
SkASSERT(delta >= 0);
SkASSERT(fSize >= 0);
SkASSERT(fCapacity >= 0);
// Check if there are enough remaining allocated elements to satisfy the request.
if (this->capacity() - fSize < delta) {
// Looks like we need to reallocate.
this->installDataAndUpdateCapacity(this->preallocateNewData(delta, growthFactor));
}
}
SkSpan<std::byte> preallocateNewData(int delta, double growthFactor) {
SkASSERT(delta >= 0);
SkASSERT(fSize >= 0);
SkASSERT(fCapacity >= 0);
// Don't overflow fSize or size_t later in the memory allocation. Overflowing memory
// allocation really only applies to fSizes on 32-bit machines; on 64-bit machines this
// will probably never produce a check. Since kMaxCapacity is bounded above by INT_MAX,
// this also checks the bounds of fSize.
if (delta > kMaxCapacity - fSize) {
sk_report_container_overflow_and_die();
}
const int newCount = fSize + delta;
return Allocate(newCount, growthFactor);
}
void installDataAndUpdateCapacity(SkSpan<std::byte> allocation) {
this->move(TCast(allocation.data()));
if (fOwnMemory) {
sk_free(fData);
}
this->setDataFromBytes(allocation);
SkASSERT(fData != nullptr);
}
T* fData{nullptr};
int fSize{0};
uint32_t fOwnMemory : 1;
uint32_t fCapacity : 31;
#ifdef SK_SANITIZE_ADDRESS
bool fPoisoned = false;
#endif
};
template <typename T, bool M> static inline void swap(TArray<T, M>& a, TArray<T, M>& b) {
a.swap(b);
}
// Subclass of TArray that contains a pre-allocated memory block for the array.
template <int Nreq, typename T, bool MEM_MOVE = sk_is_trivially_relocatable_v<T>>
class STArray : private SkAlignedSTStorage<SkContainerAllocator::RoundUp<T>(Nreq), T>,
public TArray<T, MEM_MOVE> {
// We round up the requested array size to the next capacity multiple.
// This space would likely otherwise go to waste.
static constexpr int N = SkContainerAllocator::RoundUp<T>(Nreq);
static_assert(Nreq > 0);
static_assert(N >= Nreq);
using Storage = SkAlignedSTStorage<N,T>;
public:
STArray()
: Storage{}
, TArray<T, MEM_MOVE>(this) {} // Must use () to avoid confusion with initializer_list
// when T=bool because * are convertable to bool.
STArray(const T* array, int count)
: Storage{}
, TArray<T, MEM_MOVE>{array, count, this} {}
STArray(SkSpan<const T> data)
: Storage{}
, TArray<T, MEM_MOVE>{data, this} {}
STArray(std::initializer_list<T> data)
: STArray{data.begin(), SkToInt(data.size())} {}
explicit STArray(int reserveCount)
: STArray() { this->reserve_exact(reserveCount); }
STArray(const STArray& that)
: STArray() { *this = that; }
explicit STArray(const TArray<T, MEM_MOVE>& that)
: STArray() { *this = that; }
STArray(STArray&& that)
: STArray() { *this = std::move(that); }
explicit STArray(TArray<T, MEM_MOVE>&& that)
: STArray() { *this = std::move(that); }
STArray& operator=(const STArray& that) {
TArray<T, MEM_MOVE>::operator=(that);
return *this;
}
STArray& operator=(const TArray<T, MEM_MOVE>& that) {
TArray<T, MEM_MOVE>::operator=(that);
return *this;
}
STArray& operator=(STArray&& that) {
TArray<T, MEM_MOVE>::operator=(std::move(that));
return *this;
}
STArray& operator=(TArray<T, MEM_MOVE>&& that) {
TArray<T, MEM_MOVE>::operator=(std::move(that));
return *this;
}
// Force the use of TArray for data() and size().
using TArray<T, MEM_MOVE>::data;
using TArray<T, MEM_MOVE>::size;
};
} // namespace skia_private
#endif // SkTArray_DEFINED
|