1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
|
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkTemplates_DEFINED
#define SkTemplates_DEFINED
#include "include/private/base/SkAlign.h"
#include "include/private/base/SkAssert.h"
#include "include/private/base/SkDebug.h"
#include "include/private/base/SkMalloc.h"
#include "include/private/base/SkTLogic.h"
#include "include/private/base/SkTo.h"
#include <algorithm>
#include <array>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <memory>
#include <type_traits>
#include <utility>
/** \file SkTemplates.h
This file contains light-weight template classes for type-safe and exception-safe
resource management.
*/
/**
* Marks a local variable as known to be unused (to avoid warnings).
* Note that this does *not* prevent the local variable from being optimized away.
*/
template<typename T> inline void sk_ignore_unused_variable(const T&) { }
/**
* This is a general purpose absolute-value function.
* See SkAbs32 in (SkSafe32.h) for a 32-bit int specific version that asserts.
*/
template <typename T> static inline T SkTAbs(T value) {
if (value < 0) {
value = -value;
}
return value;
}
/**
* Returns a pointer to a D which comes immediately after S[count].
*/
template <typename D, typename S> inline D* SkTAfter(S* ptr, size_t count = 1) {
return reinterpret_cast<D*>(ptr + count);
}
/**
* Returns a pointer to a D which comes byteOffset bytes after S.
*/
template <typename D, typename S> inline D* SkTAddOffset(S* ptr, ptrdiff_t byteOffset) {
// The intermediate char* has the same cv-ness as D as this produces better error messages.
// This relies on the fact that reinterpret_cast can add constness, but cannot remove it.
return reinterpret_cast<D*>(reinterpret_cast<sknonstd::same_cv_t<char, D>*>(ptr) + byteOffset);
}
template <typename T, T* P> struct SkOverloadedFunctionObject {
template <typename... Args>
auto operator()(Args&&... args) const -> decltype(P(std::forward<Args>(args)...)) {
return P(std::forward<Args>(args)...);
}
};
template <auto F> using SkFunctionObject =
SkOverloadedFunctionObject<std::remove_pointer_t<decltype(F)>, F>;
/** \class SkAutoTCallVProc
Call a function when this goes out of scope. The template uses two
parameters, the object, and a function that is to be called in the destructor.
If release() is called, the object reference is set to null. If the object
reference is null when the destructor is called, we do not call the
function.
*/
template <typename T, void (*P)(T*)> class SkAutoTCallVProc
: public std::unique_ptr<T, SkFunctionObject<P>> {
using inherited = std::unique_ptr<T, SkFunctionObject<P>>;
public:
using inherited::inherited;
SkAutoTCallVProc(const SkAutoTCallVProc&) = delete;
SkAutoTCallVProc(SkAutoTCallVProc&& that) : inherited(std::move(that)) {}
operator T*() const { return this->get(); }
};
namespace skia_private {
/** Allocate an array of T elements on the heap. Once this goes out of scope, the
* elements will be cleaned up "auto"matically.
*/
template <typename T> class AutoTArray {
public:
AutoTArray() {}
// Allocate size number of T elements
explicit AutoTArray(size_t size)
: fData(size > 0 ? new T[check_size_bytes_too_big<T>(size)] : nullptr)
, fSize(size) {}
// TODO: remove when all uses are gone.
explicit AutoTArray(int size) : AutoTArray(SkToSizeT(size)) {}
AutoTArray(AutoTArray&& other)
: fData(std::move(other.fData))
, fSize(std::exchange(other.fSize, 0)) {}
AutoTArray& operator=(AutoTArray&& other) {
if (this != &other) {
fData = std::move(other.fData);
fSize = std::exchange(other.fSize, 0);
}
return *this;
}
// Reallocates given a new count. Reallocation occurs even if new count equals old count.
[[clang::reinitializes]]
void reset(size_t count = 0) {
*this = AutoTArray(count);
}
T* get() const { return fData.get(); }
T& operator[](size_t index) const {
return fData[sk_collection_check_bounds(index, fSize)];
}
const T* data() const { return fData.get(); }
T* data() { return fData.get(); }
size_t size() const { return fSize; }
bool empty() const { return fSize == 0; }
size_t size_bytes() const { return sizeof(T) * fSize; }
T* begin() {
return fData;
}
const T* begin() const {
return fData;
}
// It's safe to use fItemArray + fSize because if fItemArray is nullptr then adding 0 is
// valid and returns nullptr. See [expr.add] in the C++ standard.
T* end() {
if (fData == nullptr) {
SkASSERT(fSize == 0);
}
return fData + fSize;
}
const T* end() const {
if (fData == nullptr) {
SkASSERT(fSize == 0);
}
return fData + fSize;
}
private:
std::unique_ptr<T[]> fData;
size_t fSize = 0;
};
/** Like AutoTArray with storage for some number of elements "nested within". The requested number
* of elements to fit in the storage is specified by kCountRequested. kCount is the actual number
* of elements that will fit in the storage. If the runtime number of elements exceeds the space of
* the storage, the elements will live on the heap.
*/
template <int kCountRequested, typename T> class AutoSTArray {
public:
AutoSTArray(const AutoSTArray&) = delete;
AutoSTArray& operator=(const AutoSTArray&) = delete;
AutoSTArray(AutoSTArray&& that) {
if (that.fArray == nullptr) {
fArray = nullptr;
fCount = 0;
} else if (that.fArray == (T*) that.fStorage) {
fArray = (T*) fStorage;
fCount = that.fCount;
std::uninitialized_move(that.fArray, that.fArray + that.fCount, fArray);
} else {
fArray = std::exchange(that.fArray, nullptr);
fCount = std::exchange(that.fCount, 0);
}
}
AutoSTArray& operator=(AutoSTArray&&) = delete;
/** Initialize with no objects */
AutoSTArray() {
fArray = nullptr;
fCount = 0;
}
/** Allocate count number of T elements */
AutoSTArray(int count) {
fArray = nullptr;
fCount = 0;
this->reset(count);
}
~AutoSTArray() {
this->reset(0);
}
/** Destroys previous objects in the array and default constructs count number of objects */
[[clang::reinitializes]]
void reset(int count) {
T* start = begin();
T* iter = end();
while (iter > start) {
(--iter)->~T();
}
SkASSERT(count >= 0);
if (fCount != count) {
if (fArray != (T*) fStorage) {
sk_free(fArray);
}
if (count > kCount) {
fArray = (T*) sk_malloc_throw(count, sizeof(T));
} else if (count > 0) {
fArray = (T*) fStorage;
} else {
fArray = nullptr;
}
fCount = count;
}
iter = begin();
T* stop = end();
while (iter < stop) {
new (iter++) T;
}
}
/* Removes elements with index >= count */
void trimTo(int count) {
SkASSERT(count >= 0);
if (count >= fCount) {
return;
}
T* start = begin() + count;
T* iter = end();
while (iter > start) {
(--iter)->~T();
}
fCount = count;
}
/** Return the number of T elements in the array */
int count() const { return fCount; }
/** Return the array of T elements. Will be nullptr if count == 0 */
T* get() const { return fArray; }
T* begin() { return fArray; }
const T* begin() const { return fArray; }
T* end() { return fArray + fCount; }
const T* end() const { return fArray + fCount; }
/** Return the nth element in the array */
T& operator[](int index) const {
return fArray[sk_collection_check_bounds(index, fCount)];
}
/** Aliases matching other types, like std::vector. */
const T* data() const { return fArray; }
T* data() { return fArray; }
size_t size() const { return fCount; }
private:
#if defined(SK_BUILD_FOR_GOOGLE3)
// Stack frame size is limited for SK_BUILD_FOR_GOOGLE3. 4k is less than the actual max,
// but some functions have multiple large stack allocations.
static constexpr int kMaxBytes = 4 * 1024;
static constexpr int kMinCount = kCountRequested * sizeof(T) > kMaxBytes
? kMaxBytes / sizeof(T)
: kCountRequested;
#else
static constexpr int kMinCount = kCountRequested;
#endif
// Because we are also storing an int, there is a tiny bit of padding that
// the C++ compiler adds after fStorage if sizeof(T) <= alignof(T*).
// Thus, we can expand how many elements are stored on the stack to make use of this
// (e.g. 1 extra element for 4 byte T if kCountRequested was even).
static_assert(alignof(int) <= alignof(T*) || alignof(int) <= alignof(T));
public:
static constexpr int kCount =
SkAlignTo(kMinCount*sizeof(T) + sizeof(int), std::max(alignof(T*), alignof(T))) / sizeof(T);
private:
T* fArray;
alignas(T) std::byte fStorage[kCount * sizeof(T)];
int fCount;
};
/** Manages an array of T elements, freeing the array in the destructor.
* Does NOT call any constructors/destructors on T (T must be POD).
*/
template <typename T,
typename = std::enable_if_t<std::is_trivially_default_constructible<T>::value &&
std::is_trivially_destructible<T>::value>>
class AutoTMalloc {
public:
/** Takes ownership of the ptr. The ptr must be a value which can be passed to sk_free. */
explicit AutoTMalloc(T* ptr = nullptr) : fPtr(ptr) {}
/** Allocates space for 'count' Ts. */
explicit AutoTMalloc(size_t count)
: fPtr(count ? (T*)sk_malloc_throw(count, sizeof(T)) : nullptr) {}
AutoTMalloc(AutoTMalloc&&) = default;
AutoTMalloc& operator=(AutoTMalloc&&) = default;
/** Resize the memory area pointed to by the current ptr preserving contents. */
void realloc(size_t count) {
fPtr.reset(count ? (T*)sk_realloc_throw(fPtr.release(), count * sizeof(T)) : nullptr);
}
/** Resize the memory area pointed to by the current ptr without preserving contents. */
[[clang::reinitializes]]
T* reset(size_t count = 0) {
fPtr.reset(count ? (T*)sk_malloc_throw(count, sizeof(T)) : nullptr);
return this->get();
}
T* get() const { return fPtr.get(); }
operator T*() { return fPtr.get(); }
operator const T*() const { return fPtr.get(); }
T& operator[](int index) { return fPtr.get()[index]; }
const T& operator[](int index) const { return fPtr.get()[index]; }
/** Aliases matching other types, like std::vector. */
const T* data() const { return fPtr.get(); }
T* data() { return fPtr.get(); }
/**
* Transfer ownership of the ptr to the caller, setting the internal
* pointer to NULL. Note that this differs from get(), which also returns
* the pointer, but it does not transfer ownership.
*/
T* release() { return fPtr.release(); }
private:
std::unique_ptr<T, SkOverloadedFunctionObject<void(void*), sk_free>> fPtr;
};
template <size_t kCountRequested,
typename T,
typename = std::enable_if_t<std::is_trivially_default_constructible<T>::value &&
std::is_trivially_destructible<T>::value>>
class AutoSTMalloc {
public:
AutoSTMalloc() : fPtr(fTStorage) {}
AutoSTMalloc(size_t count) {
if (count > kCount) {
fPtr = (T*)sk_malloc_throw(count, sizeof(T));
} else if (count) {
fPtr = fTStorage;
} else {
fPtr = nullptr;
}
}
AutoSTMalloc(const AutoSTMalloc&) = delete;
AutoSTMalloc& operator=(const AutoSTMalloc&) = delete;
AutoSTMalloc(AutoSTMalloc&& that) {
if (that.fPtr == nullptr) {
fPtr = nullptr;
} else if (that.fPtr == that.fTStorage) {
fPtr = fTStorage;
memcpy(fPtr, that.fPtr, kCount * sizeof(T));
} else {
fPtr = std::exchange(that.fPtr, nullptr);
}
}
AutoSTMalloc& operator=(AutoSTMalloc&&) = delete;
~AutoSTMalloc() {
if (fPtr != fTStorage) {
sk_free(fPtr);
}
}
// doesn't preserve contents
[[clang::reinitializes]]
T* reset(size_t count) {
if (fPtr != fTStorage) {
sk_free(fPtr);
}
if (count > kCount) {
fPtr = (T*)sk_malloc_throw(count, sizeof(T));
} else if (count) {
fPtr = fTStorage;
} else {
fPtr = nullptr;
}
return fPtr;
}
T* get() const { return fPtr; }
operator T*() {
return fPtr;
}
operator const T*() const {
return fPtr;
}
T& operator[](int index) {
return fPtr[index];
}
const T& operator[](int index) const {
return fPtr[index];
}
/** Aliases matching other types, like std::vector. */
const T* data() const { return fPtr; }
T* data() { return fPtr; }
// Reallocs the array, can be used to shrink the allocation. Makes no attempt to be intelligent
void realloc(size_t count) {
if (count > kCount) {
if (fPtr == fTStorage) {
fPtr = (T*)sk_malloc_throw(count, sizeof(T));
memcpy((void*)fPtr, fTStorage, kCount * sizeof(T));
} else {
fPtr = (T*)sk_realloc_throw(fPtr, count, sizeof(T));
}
} else if (count) {
if (fPtr != fTStorage) {
fPtr = (T*)sk_realloc_throw(fPtr, count, sizeof(T));
}
} else {
this->reset(0);
}
}
private:
// Since we use uint32_t storage, we might be able to get more elements for free.
static constexpr size_t kCountWithPadding = SkAlign4(kCountRequested*sizeof(T)) / sizeof(T);
#if defined(SK_BUILD_FOR_GOOGLE3)
// Stack frame size is limited for SK_BUILD_FOR_GOOGLE3. 4k is less than the actual max, but some functions
// have multiple large stack allocations.
static constexpr size_t kMaxBytes = 4 * 1024;
static constexpr size_t kMinCount = kCountRequested * sizeof(T) > kMaxBytes
? kMaxBytes / sizeof(T)
: kCountWithPadding;
#else
static constexpr size_t kMinCount = kCountWithPadding;
#endif
public:
static constexpr size_t kCount = kMinCount;
private:
T* fPtr;
union {
uint32_t fStorage32[SkAlign4(kCount*sizeof(T)) >> 2];
T fTStorage[1]; // do NOT want to invoke T::T()
};
};
using UniqueVoidPtr = std::unique_ptr<void, SkOverloadedFunctionObject<void(void*), sk_free>>;
} // namespace skia_private
template<typename C, std::size_t... Is>
constexpr auto SkMakeArrayFromIndexSequence(C c, std::index_sequence<Is...> is)
-> std::array<decltype(c(std::declval<typename decltype(is)::value_type>())), sizeof...(Is)> {
return {{ c(Is)... }};
}
template<size_t N, typename C> constexpr auto SkMakeArray(C c)
-> std::array<decltype(c(std::declval<typename std::index_sequence<N>::value_type>())), N> {
return SkMakeArrayFromIndexSequence(c, std::make_index_sequence<N>{});
}
#endif
|