1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
/*
* Copyright (C) 2024 Samuel Weinig <sam@webkit.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <algorithm>
#include <bit>
#include <concepts>
#include <functional>
#include <type_traits>
#include <wtf/GetPtr.h>
#include <wtf/StdLibExtras.h>
#include <wtf/Variant.h>
#include <wtf/VariantExtras.h>
namespace WTF {
template<typename T> struct CompactVariantTraits {
static constexpr bool hasAlternativeRepresentation = false;
/*
If `hasAlternativeRepresentation` is set to `true`, you must also implement the following functions.
static constexpr uint64_t encodeFromArguments(...) { ... }
static constexpr uint64_t encode(const T&) { ... }
static constexpr uint64_t encode(T&&) { ... }
static constexpr T decode(uint64_t) { ... }
*/
};
template<typename T> concept CompactVariantAlternativeSmallEnough = sizeof(T) <= 4;
template<typename T> concept CompactVariantAlternativePointer =
std::is_pointer_v<T>
|| IsSmartPtr<T>::value;
template<typename T> concept CompactVariantAlternative =
CompactVariantAlternativePointer<T>
|| CompactVariantAlternativeSmallEnough<T>
|| CompactVariantTraits<T>::hasAlternativeRepresentation;
// A CompactVariant stores data by bit-packing the variant index
// and data into a storage of type Storage (uint64_t):
// * Bit 63-56: if pointer/smart pointer, bit 63-56 of the pointer. Useful
// if the architecture supports top-byte ignore, and information
// is stored there. Otherwise zeroes.
// * Bit 55-48: variant index (indicates the data type of the variant)
// * Bit 47-0 : if pointer/smart pointer, bit 48-0 of the pointer. If other
// types of data, the encoded data.
// This struct provides operations on the packed storage in a CompactVariant.
template<CompactVariantAlternative... Ts> struct CompactVariantOperations {
using StdVariant = Variant<Ts...>;
using Index = uint8_t;
using Storage = uint64_t;
static constexpr Storage movedFromDataValue = std::numeric_limits<Storage>::max();
static constexpr Storage indexShift = 48;
static constexpr Storage indexMask = 0xFFULL << indexShift;
static constexpr Storage payloadMask = ~indexMask;
static constexpr Storage topByteShift = 64 - 8;
static constexpr Storage topByteMask = 0xFFULL << topByteShift;
static constexpr Storage encodedIndex(Index index)
{
return static_cast<Storage>(index) << indexShift;
}
static constexpr Index decodedIndex(Storage value)
{
return static_cast<Index>(static_cast<uint8_t>((value & indexMask) >> indexShift));
}
template<typename T, typename U> static constexpr Storage encodedPayload(U&& payload)
{
Storage data = 0;
if constexpr (CompactVariantTraits<T>::hasAlternativeRepresentation)
data = CompactVariantTraits<T>::encode(std::forward<U>(payload));
else
new (NotNull, &data) T(std::forward<U>(payload));
// For data other than pointers, ensure the data doesn't overwrite the top byte.
// (i.e top byte should be zero)
// (pointers may store arbitrary data in the top byte, and that's okay due to TBI)
if constexpr (!CompactVariantAlternativePointer<T>)
RELEASE_ASSERT(!(data & topByteMask));
// Ensure the bits in the index area are zeroes.
// Sanity check to make sure the data doesn't overwrite the index.
RELEASE_ASSERT(!(data & indexMask));
data &= payloadMask;
return data;
}
template<typename T, typename... Args> static constexpr Storage encodedPayloadFromArguments(Args&&... arguments)
{
Storage data = 0;
if constexpr (CompactVariantTraits<T>::hasAlternativeRepresentation)
data = CompactVariantTraits<T>::encodeFromArguments(std::forward<Args>(arguments)...);
else
new (NotNull, &data) T(std::forward<Args>(arguments)...);
// For data other than pointers, ensure the data doesn't overwrite the top byte.
// (i.e top byte should be zero)
// (pointers may store arbitrary data in the top byte, and that's okay due to TBI)
if constexpr (!CompactVariantAlternativePointer<T>)
RELEASE_ASSERT(!(data & topByteMask));
// Ensure the bits in the index area are zeroes.
// Sanity check to make sure the data doesn't overwrite the index.
RELEASE_ASSERT(!(data & indexMask));
data &= payloadMask;
return data;
}
template<typename T, typename F> static constexpr decltype(auto) decodedPayload(Storage value, NOESCAPE F&& f)
{
Storage maskedData = value & payloadMask;
if constexpr (CompactVariantTraits<T>::hasAlternativeRepresentation) {
T decodedData = CompactVariantTraits<T>::decode(maskedData);
return f(decodedData);
} else {
T& decodedData = *std::launder(reinterpret_cast<T*>(&maskedData));
return f(decodedData);
}
}
template<typename T, typename F> static constexpr decltype(auto) decodedConstPayload(Storage value, NOESCAPE F&& f)
{
Storage maskedData = value & payloadMask;
if constexpr (CompactVariantTraits<T>::hasAlternativeRepresentation) {
T decodedData = CompactVariantTraits<T>::decode(maskedData);
return f(std::as_const(decodedData));
} else {
T& decodedData = *std::launder(reinterpret_cast<T*>(&maskedData));
return f(std::as_const(decodedData));
}
}
template<typename T, typename U> static Storage encode(U&& argument)
{
return encodedPayload<T>(std::forward<U>(argument)) | encodedIndex(alternativeIndexV<T, StdVariant>);
}
template<typename T, typename... Args> static Storage encodeFromArguments(Args&&... arguments)
{
return encodedPayloadFromArguments<T>(std::forward<Args>(arguments)...) | encodedIndex(alternativeIndexV<T, StdVariant>);
}
template<typename... F> static decltype(auto) payloadForData(Storage data, F&&... f)
{
auto visitor = makeVisitor(std::forward<F>(f)...);
return typeForIndex<StdVariant>(decodedIndex(data), [&]<typename T>() {
return decodedPayload<T>(data, visitor);
});
}
template<typename... F> static decltype(auto) constPayloadForData(Storage data, F&&... f)
{
auto visitor = makeVisitor(std::forward<F>(f)...);
return typeForIndex<StdVariant>(decodedIndex(data), [&]<typename T>() {
return decodedConstPayload<T>(data, visitor);
});
}
static void destruct(Storage data)
{
if (data == movedFromDataValue)
return;
payloadForData(data, [&]<typename T>(T& value) {
if constexpr (!std::is_trivially_destructible_v<T>)
value.~T();
});
}
static void copy(Storage& to, Storage from)
{
if (from == movedFromDataValue) {
to = from;
return;
}
payloadForData(from, [&]<typename T>(T& value) {
to = encodedPayload<T>(value) | encodedIndex(alternativeIndexV<T, StdVariant>);
});
}
static void move(Storage& to, Storage from)
{
if (from == movedFromDataValue) {
to = from;
return;
}
payloadForData(from, [&]<typename T>(T& value) {
to = encodedPayload<T>(WTFMove(value)) | encodedIndex(alternativeIndexV<T, StdVariant>);
});
}
template<typename T> static bool equal(Storage a, Storage b)
{
Storage maskedA = a & payloadMask;
Storage maskedB = b & payloadMask;
if constexpr (CompactVariantTraits<T>::hasAlternativeRepresentation)
return CompactVariantTraits<T>::decode(maskedA) == CompactVariantTraits<T>::decode(maskedB);
else
return *std::launder(reinterpret_cast<T*>(&maskedA)) == *std::launder(reinterpret_cast<T*>(&maskedB));
}
};
} // namespace WTF
|