File: IntervalSet.h

package info (click to toggle)
webkit2gtk 2.51.1-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 455,340 kB
  • sloc: cpp: 3,865,253; javascript: 197,710; ansic: 165,177; python: 49,241; asm: 21,868; ruby: 18,095; perl: 16,926; xml: 4,623; sh: 2,409; yacc: 2,356; java: 2,019; lex: 1,330; pascal: 372; makefile: 210
file content (934 lines) | stat: -rw-r--r-- 36,130 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
/*
 * Copyright (C) 2025 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#pragma once

#include <wtf/CommaPrinter.h>
#include <wtf/DataLog.h>
#include <wtf/FastMalloc.h>
#include <wtf/MathExtras.h>
#include <wtf/Range.h>
#include <wtf/Vector.h>

WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN

namespace WTF {

// IntervalSet: Stores a set of Range<T> to Value. Optimized with the following assumptions:
// - hasOverlap() is the most frequent operation.
// - find() is the next most frequent operation.
// - insert() is much less frequent.
// - erase() is the least frequent operation.
//
// Implemented as a cache-line-aware B+ tree specialized for storing Range<T> keys.

template<typename T, typename Value, size_t cacheLinesPerNode = 1>
    requires std::is_trivially_destructible_v<T> && std::is_trivially_destructible_v<Value>
class IntervalSet {
public:
    using Interval = Range<T>;

    static constexpr size_t cpuCacheLineSize = 64;
    static constexpr size_t targetNodeSize = cacheLinesPerNode * cpuCacheLineSize;

    // Calculate optimal order for each node type based on target cache line usage
    static constexpr size_t calculateLeafOrder()
    {
        constexpr size_t sizePerOrder = sizeof(Interval) + sizeof(Value);
        return targetNodeSize / sizePerOrder;
    }

    static constexpr size_t calculateInnerOrder()
    {
        constexpr size_t sizePerOrder = sizeof(Interval) + sizeof(uintptr_t);
        return targetNodeSize / sizePerOrder;
    }

    static constexpr size_t leafOrder = calculateLeafOrder();
    static constexpr size_t innerOrder = calculateInnerOrder();

    // Ensure cacheLinesPerNode parameter is large enough for valid B+ tree orders
    static_assert(leafOrder >= 2, "cacheLinesPerNode parameter too small: LeafNode order must be at least 2 for a valid B+ tree");
    static_assert(innerOrder >= 2, "cacheLinesPerNode parameter too small: InnerNode order must be at least 2 for a valid B+ tree");

    IntervalSet() = default;

    ~IntervalSet()
    {
        freeAllNodes();
        ASSERT(!assertOnlyNumNodes);
    }

    bool isEmpty() const { return !m_rootInterval; }

    // Insert an interval-value pair. The interval must not overlap with an existing interval.
    // Invalidates all iterators.
    void insert(const Interval& interval, const Value& value)
    {
        if (!m_root) [[unlikely]] {
            LeafNode* leaf = allocNode<LeafNode>();
            m_root = NodeRef(leaf, 0);
            m_height = 0;
        }

        Path path;
        NodeRef* nodeRef = &m_root;

        // Descend down the tree, recording the path taken.
        for (unsigned depth = 0; depth < m_height; depth++) {
            InnerNode* inner = nodeRef->asInner();
            size_t index = inner->subtreeForInsert(nodeRef->size(), interval.end());
            path.append({ nodeRef, index });
            nodeRef = &inner->child(index);
        }
        // Found the correct leaf for the insert, now determine the index within that leaf.
        size_t insertionIndex = nodeRef->asLeaf()->firstIntervalEndAfter(nodeRef->size(), interval.end());
        path.append({ nodeRef, insertionIndex });
        ASSERT(path.size() == m_height + 1);

        auto [newNode, newNodeCoverage] = insertInNodeSplitIfNeeded<LeafNode>(path, m_height, interval, value);

        // Ascend back up along the same path, inserting any new children and splitting inner nodes as needed.
        for (int depth = m_height - 1; depth >= 0; depth--) {
            if (!newNode) [[likely]]
                return;
            PathEntry& entry = path[depth];

            ASSERT(entry.nodeRef->asInner()->child(entry.index).size() + newNode.size() == (static_cast<unsigned>(depth + 1) == m_height ? leafOrder : innerOrder) + 1);
            ASSERT(newNodeCoverage);
            entry.index++; // Insert new parent immediately after the existing parent
            std::tie(newNode, newNodeCoverage) = insertInNodeSplitIfNeeded<InnerNode>(path, depth, newNodeCoverage, newNode);
        }

        // If there's a new node at depth 0 then a new level is required.
        if (newNode) [[unlikely]] {
            ASSERT(m_root.size() + newNode.size() == (m_height ? innerOrder : leafOrder) + 1);
            // Need to add another level to the tree.
            InnerNode* newRoot = allocNode<InnerNode>();
            newRoot->interval(0) = m_rootInterval;
            newRoot->child(0) = m_root;
            newRoot->interval(1) = newNodeCoverage;
            newRoot->child(1) = newNode;
            m_height++;
            m_root = NodeRef(newRoot, 2);
            m_rootInterval = newRoot->coverage(2);
        }
    }

    // Remove the given interval from the IntervalSet. The interval must be present.
    // Invalidates all iterators.
    void erase(const Interval& interval)
    {
        Path path;
        ASSERT(interval.overlaps(m_rootInterval));
        ASSERT(m_root);
        NodeRef* nodeRef = &m_root;

        for (unsigned depth = 0; depth < m_height; ++depth) {
            InnerNode* inner = nodeRef->asInner();
            size_t index = inner->firstIntervalEndAfter(nodeRef->size(), interval.begin());
            ASSERT(index < nodeRef->size());
            ASSERT(inner->interval(index).begin() < interval.end());
            path.append({ nodeRef, index });
            nodeRef = &inner->child(index);
        }
        LeafNode* leaf = nodeRef->asLeaf();
        size_t eraseIndex = leaf->firstIntervalEndAfter(nodeRef->size(), interval.begin());
        ASSERT(leaf->interval(eraseIndex).begin() == interval.begin() && leaf->interval(eraseIndex).end() == interval.end());
        path.append({ nodeRef, eraseIndex });

        bool removedNode = eraseFromNode<LeafNode>(path, m_height);

        // Ascend removing references to any child that was removed, which may in turn cause the parent to become empty.
        for (int depth = m_height - 1; depth >= 0; depth--) {
            if (!removedNode) [[likely]]
                return;
            removedNode = eraseFromNode<InnerNode>(path, depth);
        }

        // If removedNode was true at every depth, the tree is now empty.
        if (removedNode) [[unlikely]] {
            ASSERT(!assertOnlyNumNodes);
            ASSERT(!m_root);
            m_rootInterval = Interval();
            m_height = 0;
        }
    }

    // Returns the Interval and Value for the first interval that overlaps with the query interval,
    // if an overlapping interval exists. Otherwise, returns std::nullopt.
    std::optional<std::pair<Interval, Value>> find(const Interval& query) const
    {
        if (!query.overlaps(m_rootInterval))
            return std::nullopt;

        ASSERT(m_root);
        NodeRef nodeRef = m_root;
        for (unsigned depth = 0; depth < m_height; ++depth) {
            InnerNode* inner = nodeRef.asInner();
            size_t index = inner->firstIntervalEndAfter(nodeRef.size(), query.begin());
            if (index == nodeRef.size())
                return std::nullopt; // query is entirely after this subtree
            if (query.end() <= inner->interval(index).begin())
                return std::nullopt; // query is entirely before this subtree
            nodeRef = inner->child(index);
        }
        LeafNode* leaf = nodeRef.asLeaf();
        size_t index = leaf->firstIntervalEndAfter(nodeRef.size(), query.begin());
        ASSERT(index < nodeRef.size()); // coverage check at parent level ensures this
        ASSERT(query.begin() < leaf->interval(index).end());
        if (query.end() <= leaf->interval(index).begin())
            return std::nullopt;
        return std::make_pair(leaf->interval(index), leaf->value(index));
    }

    // Returns true iff an interval in the set overlaps with the query interval. Similar to find() but
    // can sometimes terminate before descending the full depth since the Interval-Value result is not needed.
    bool hasOverlap(const Interval& query) const
    {
        if (!query.overlaps(m_rootInterval))
            return false;

        ASSERT(m_root);
        NodeRef nodeRef = m_root;
        for (unsigned depth = 0; depth < m_height; ++depth) {
            InnerNode* inner = nodeRef.asInner();
            size_t index = inner->firstIntervalEndAfter(nodeRef.size(), query.begin());
            if (index == nodeRef.size())
                return false; // query starts after all intervals
            // query start lands either within the subtree or the gap immediately preceding that subtree
            ASSERT(query.begin() < inner->interval(index).end());
            if (query.end() <= inner->interval(index).begin())
                return false; // query is entirely in the gap before this subtree
            if (inner->interval(index).end() <= query.end())
                return true; // query spans subtree end point so it must overlap the last interval
            if (query.begin() <= inner->interval(index).begin())
                return true; // query spans subtree start point so it must overlap the first interval
            // Otherwise, subtree encompasses query so need to search subtree
            ASSERT(inner->interval(index).begin() < query.begin() && query.end() < inner->interval(index).end());
            nodeRef = inner->child(index);
        }

        LeafNode* leaf = nodeRef.asLeaf();
        size_t index = leaf->firstIntervalEndAfter(nodeRef.size(), query.begin());
        ASSERT(query.begin() < leaf->interval(index).end());
        return leaf->interval(index).begin() < query.end();
    }

    void dump(PrintStream& out) const
    {
        out.print("IntervalSet(height=", m_height, ", leafOrder=", leafOrder, ", innerOrder=", innerOrder, ")");
        if (!m_root) {
            out.print(" <empty>");
            return;
        }
        out.println(" coverage=", m_rootInterval);
        dumpSubtree(out, m_root, m_height, 0);
    }

    // Height indicates the number of edges to reach the leaf level in a non-empty tree.
    unsigned height() const { return m_height; }

private:
    struct LeafNode;
    struct InnerNode;

    // Common base class for all nodes - provides type identity for NodeRef
    struct Node { };

    template<typename Payload, size_t order>
    struct NodeImpl : public Node {
        using PayloadType = Payload;
        static constexpr size_t capacity = order;

        Interval& interval(size_t index)
        {
            ASSERT(index < capacity);
            return intervals[index];
        }

        const Interval coverage(size_t size) const
        {
            RELEASE_ASSERT(size);
            return { intervals[0].begin(), intervals[size - 1].end() };
        }

        // Transfer count intervals and values from the rightNode to this node, where the rightNode
        // is the immediate right cousin of this.
        void shiftLeftFrom(size_t& size, NodeImpl* rightNode, size_t& rightSize, size_t count)
        {
            ASSERT(size + count <= capacity);
            ASSERT(count <= rightSize);
            for (size_t i = 0; i < count; i++) {
                intervals[i + size] = rightNode->intervals[i];
                payloads[i + size] = rightNode->payloads[i];
            }
            for (size_t i = 0; i < rightSize - count; i++) {
                rightNode->intervals[i] = rightNode->intervals[i + count];
                rightNode->payloads[i] = rightNode->payloads[i + count];
            }
            size += count;
            rightSize -= count;
        }

        // Transfer count intervals and values from this node to the rightNode, where the rightNode
        // is the immediate right cousin of this.
        void shiftRightTo(size_t& size, NodeImpl* rightNode, size_t& rightSize, size_t count)
        {
            ASSERT(rightSize + count <= capacity);
            ASSERT(count <= size);
            for (size_t i = rightSize + count - 1; i >= count; i--) {
                rightNode->intervals[i] = rightNode->intervals[i - count];
                rightNode->payloads[i] = rightNode->payloads[i - count];
            }
            for (size_t i = 0; i < count; i++) {
                rightNode->intervals[i] = intervals[size - count + i];
                rightNode->payloads[i] = payloads[size - count + i];
            }
            size -= count;
            rightSize += count;
        }

        void insertAt(size_t& size, size_t index, const Interval& interval, const Payload& value)
        {
            ASSERT(size < capacity);
            ASSERT(index <= size);
            for (size_t i = size; i > index; --i) {
                intervals[i] = intervals[i - 1];
                payloads[i] = payloads[i - 1];
            }
            intervals[index] = interval;
            payloads[index] = value;
            size++;
        }

        void removeAt(size_t& size, size_t index)
        {
            ASSERT(size <= capacity);
            ASSERT(index < size);
            for (size_t i = index; i < size - 1; ++i) {
                intervals[i] = intervals[i + 1];
                payloads[i] = payloads[i + 1];
            }
            size--;
        }

        // Find the least interval with end greater than the given point, and return the index, if exists.
        // Otherwise, returns size if no such interval exists.
        size_t firstIntervalEndAfter(size_t size, T point) const
        {
            ASSERT(size <= capacity);
            for (size_t i = 0; i < size; i++) {
                if (point < intervals[i].end())
                    return i;
            }
            return size;
        }

        // Intervals and payloads are stored separately for better cache access patterns in the case
        // that cacheLinesPerNode > 1.
        std::array<Interval, order> intervals;
        std::array<Payload, order> payloads; // Either the NodeRefs to children (InnerNode) or the values (LeafNode)
    };

    // NodeRef is used to hold links from parent to children. The NodeRef contains both the pointer to the
    // child node (which may be either another InnerNode or a LeafNode) and the number of elements stored
    // in that pointed to node. This is more space and cache efficient than storing the size in each node
    // because it uses less storage and the size of a child node can be determined without accessing the
    // child node's cacheline.
    class NodeRef {
    public:
        static_assert(isPowerOfTwo(cpuCacheLineSize));

        static constexpr uintptr_t sizeMask = cpuCacheLineSize - 1;
        static_assert(leafOrder <= sizeMask && innerOrder <= sizeMask);

        NodeRef()
            : m_bits(0) { }

        NodeRef(Node* ptr, size_t size)
            : m_bits(reinterpret_cast<uintptr_t>(ptr) | size)
        {
            ASSERT(!(reinterpret_cast<uintptr_t>(ptr) & sizeMask));
            ASSERT(size <= sizeMask);
        }

        Node* node() const
        {
            return reinterpret_cast<Node*>(m_bits & ~sizeMask);
        }

        size_t size() const
        {
            return m_bits & sizeMask;
        }

        void setSize(size_t newSize)
        {
            ASSERT(newSize <= sizeMask);
            m_bits = (m_bits & ~sizeMask) | newSize;
        }

        explicit operator bool() const { return m_bits; }

        template<typename NodeType> requires std::is_base_of_v<Node, NodeType>
        NodeType* as() const
        {
            return static_cast<NodeType*>(node());
        }

        LeafNode* asLeaf() const
        {
            return as<LeafNode>();
        }

        InnerNode* asInner() const
        {
            return as<InnerNode>();
        }

    private:
        uintptr_t m_bits;
    };

    // LeafNodes are always at depth of m_height.
    struct LeafNode : public NodeImpl<Value, leafOrder> {
        Value& value(size_t index)
        {
            ASSERT(index < leafOrder);
            return this->payloads[index];
        }
    };

    // InnerNode are at all depths != m_height.
    struct InnerNode : public NodeImpl<NodeRef, innerOrder> {
        NodeRef& child(size_t index)
        {
            ASSERT(index < innerOrder);
            return this->payloads[index];
        }

        size_t subtreeForInsert(size_t size, T endPoint) const
        {
            ASSERT(size);
            ASSERT(size <= innerOrder);
            for (size_t i = 0; i < size - 1; i++) {
                if (endPoint <= this->intervals[i + 1].begin())
                    return i;
            }
            return size - 1;
        }
    };

private:
    struct PathEntry {
        NodeRef* nodeRef; // Indirection allows insert/erase to perform tree modifications
        size_t index;

        bool operator==(const PathEntry& other) const
        {
            return nodeRef->node() == other.nodeRef->node() && index == other.index;
        }
    };

    // Path specifies which NodeRef and index were traversed at each depth to reach a particular payload within the tree.
    class Path : public Vector<PathEntry, 8> {
        using Base = Vector<PathEntry, 8>;

    public:
        Path() = default;

        Path(const Path& from, unsigned depth)
            : Base(from)
        {
            ASSERT(this->size() > depth);
            this->shrink(depth + 1);
        }

        // Advances to the next index of the leaf node, if exists. If the current leaf node is exhausted,
        // advances to the leaf node to the immediate right and set index to 0.
        void nextIndexInLeaf()
        {
            ASSERT(this->size());
            PathEntry& leafEntry = this->last();
            if (++leafEntry.index < leafEntry.nodeRef->size()) [[likely]]
                return;
            // Move on to the next leaf node, if exists.
            toRightCousin();
            ASSERT(!this->size() || !this->last().index);
        }

        // Cousin means node at the same depth (includes siblings, aka 0th cousin). The immediate
        // left and right cousins may be in different subtrees, i.e. not necessarily siblings.
        void toLeftCousin() { toCousin<TraverseLeft>(); }
        void toRightCousin() { toCousin<TraverseRight>(); }

    private:
        struct TraverseLeft {
            static bool hasMoreChildren(const PathEntry& entry)
            {
                // If index != 0, then we can traverse left at this level.
                return !!entry.index;
            }

            static size_t nextSubtreeIndex(const PathEntry& entry)
            {
                ASSERT(entry.index);
                // Left sibling is in the previous subtree.
                return entry.index - 1;
            }

            static size_t descendIndex(const NodeRef nodeRef)
            {
                ASSERT(nodeRef.size());
                // Descend down the right-most branches.
                return nodeRef.size() - 1;
            }
        };

        struct TraverseRight {
            static bool hasMoreChildren(const PathEntry& entry)
            {
                // If index != size() - 1, then we can traverse right at this level.
                return entry.index < entry.nodeRef->size() - 1;
            }

            static size_t nextSubtreeIndex(const PathEntry& entry)
            {
                ASSERT(entry.index < entry.nodeRef->size() - 1);
                // Right sibling is in the next subtree.
                return entry.index + 1;
            }

            static size_t descendIndex(const NodeRef nodeRef)
            {
                ASSERT_UNUSED(nodeRef, nodeRef.size());
                // Descend down the left-most branches.
                return 0;
            }
        };

        // Modifies the path so that it becomes the path to the immediate left or right cousin.
        template<typename Traverser>
        void toCousin()
        {
            int initialDepth = this->size() - 1;
            if (!initialDepth) {
                this->clear(); // Root has no cousins
                return;
            }
            // Ascend up until we find a node with indicies to the left.
            int depth = initialDepth - 1;
            for (; depth >= 0; depth--) {
                PathEntry& innerEntry = this->at(depth);
                if (Traverser::hasMoreChildren(innerEntry))
                    break;
            }
            if (depth < 0) {
                // Exhausted all indicies of the root node.
                this->clear();
                return;
            }
            // Descend down the right-most edge of the left subtree.
            PathEntry& innerEntry = this->at(depth);
            innerEntry.index = Traverser::nextSubtreeIndex(innerEntry);
            depth++;
            NodeRef* childRef = &innerEntry.nodeRef->asInner()->child(innerEntry.index);
            for (; depth < initialDepth; depth++) {
                ASSERT(childRef->size());
                size_t childIndex = Traverser::descendIndex(*childRef);
                this->at(depth).nodeRef = childRef;
                this->at(depth).index = childIndex;
                childRef = &childRef->asInner()->child(childIndex);
            }
            ASSERT(childRef->size());
            this->at(depth).nodeRef = childRef;
            this->at(depth).index = Traverser::descendIndex(*childRef);
        }
    };

public:
    class iterator {
    public:
        iterator() = default;

        iterator(Path&& path)
            : m_path(WTFMove(path)) { }

        const Interval& interval() const
        {
            auto [leaf, index] = leafAndIndex();
            return leaf->interval(index);
        }

        const Value& value() const
        {
            auto [leaf, index] = leafAndIndex();
            return leaf->value(index);
        }

        const std::pair<Interval, Value> operator*() const
        {
            return { interval(), value() };
        }

        iterator& operator++()
        {
            m_path.nextIndexInLeaf();
            return *this;
        }

        bool operator==(const iterator& other) const
        {
            return m_path == other.m_path;
        }

        bool operator!=(const iterator& other) const
        {
            return !(*this == other);
        }

    private:
        const std::pair<LeafNode*, unsigned> leafAndIndex() const
        {
            const PathEntry& entry = m_path.last();
            return { entry.nodeRef->asLeaf(), entry.index };
        }

        Path m_path;
    };

    // Returns an iterator with the path to the left-most leaf node and index 0
    iterator begin() const
    {
        if (isEmpty())
            return end();
        Path path;
        NodeRef* nodeRef = const_cast<NodeRef*>(&m_root);
        // Generate path to the left-most leaf node.
        for (unsigned depth = 0; depth < m_height; depth++) {
            ASSERT(nodeRef->size());
            path.append({ nodeRef, 0 });
            nodeRef = &nodeRef->asInner()->child(0);
        }
        // Leaf node
        ASSERT(nodeRef->size());
        path.append({ nodeRef, 0 });
        ASSERT(path.size() == m_height + 1);
        return iterator(WTFMove(path));
    }

    iterator end() const
    {
        return iterator();
    }

private:
    bool isFirstOrLastIndex(NodeRef nodeRef, size_t index)
    {
        ASSERT(index < nodeRef.size());
        return !index || index == nodeRef.size() - 1;
    }

    // After an interval within a node, give by path and depth, is modified, propagate the new interval
    // information upwards, as necessary, in order to keep inner nodes' "coverage" intervals consistent.
    void updateCoverage(const Path& path, int depth, Interval coverage)
    {
        ASSERT(depth >= 0);
        depth--; // So that depth is at the parent of the node with 'coverage'.
        while (depth >= 0) {
            const PathEntry& entry = path[depth];
            InnerNode* inner = entry.nodeRef->asInner();
            inner->interval(entry.index) = coverage;

            if (!isFirstOrLastIndex(*entry.nodeRef, entry.index)) {
                // Since first/last of this node was not modified, its coverage hasn't changed - no need to continue upward.
                verifyCoverageConsistency(path, depth, inner->coverage(entry.nodeRef->size()));
                return;
            }
            coverage = inner->coverage(entry.nodeRef->size());
            depth--;
        }
        m_rootInterval = coverage;
    }

    void verifyCoverageConsistency(const Path& path, int depth, Interval coverage)
    {
#ifdef ASSERT_ENABLED
        ASSERT(depth >= 0);
        depth--;
        while (depth >= 0) {
            const PathEntry& entry = path[depth];
            InnerNode* inner = entry.nodeRef->asInner();
            ASSERT(inner->interval(entry.index) == coverage);
            coverage = inner->coverage(entry.nodeRef->size());
            depth--;
        }
        if (m_rootInterval != coverage)
            dataLogLn("FAIL: m_rootInterval=", m_rootInterval, " coverage=", coverage, " Tree=", *this);
        ASSERT(m_rootInterval == coverage);
#endif
    }

    // Inserts interval and payload into the node referred to by path at the given depth. Updates affected NodePtr
    // sizes and coverages for the affected subtree. If the node needed to be split then returns the NodePtr and
    // coverage interval for the new node so that the caller can insert the new node into the parent.
    template<typename NodeType>
    std::pair<NodeRef, Interval> insertInNodeSplitIfNeeded(const Path& path, int depth, const Interval& interval, const typename NodeType::PayloadType& payload)
    {
        NodeRef* nodeRef = path[depth].nodeRef;
        size_t nodeSize = nodeRef->size();
        ASSERT(nodeSize <= NodeType::capacity);

        if (nodeSize < NodeType::capacity) [[likely]] {
            auto insertionIndex = path[depth].index;
            auto node = nodeRef->template as<NodeType>();
            node->insertAt(nodeSize, insertionIndex, interval, payload);
            nodeRef->setSize(nodeSize);
            if (isFirstOrLastIndex(*nodeRef, insertionIndex))
                updateCoverage(path, depth, node->coverage(nodeSize));
            return { NodeRef(), Interval() };
        }
        if (tryRedistributeLeftAndInsert<NodeType>(path, depth, interval, payload))
            return { NodeRef(), Interval() };
        if (tryRedistributeRightAndInsert<NodeType>(path, depth, interval, payload))
            return { NodeRef(), Interval() };
        return splitNodeAndInsert<NodeType>(path, depth, interval, payload);
    }

    template<typename NodeType>
    bool tryRedistributeLeftAndInsert(const Path& path, int depth, const Interval& interval, const typename NodeType::PayloadType& payload)
    {
        NodeRef* nodeRef = path[depth].nodeRef;
        auto insertionIndex = path[depth].index;
        auto node = nodeRef->template as<NodeType>();
        size_t nodeSize = nodeRef->size();

        Path leftPath(path, depth);
        leftPath.toLeftCousin();
        if (leftPath.isEmpty())
            return false;

        // Note that since interval begin is used as the boundary between nodes and intervals are not allowed to
        // overlap, insertionIndex will never be 0 if there is a left node -- the left node would have been chosen instead.
        // Therefore if there is only one empty slot, the empty slot can be put into the right node without danger of
        // shifting the insertionIndex into the left node.
        ASSERT(0 < insertionIndex && insertionIndex <= nodeSize);

        NodeRef* leftNodeRef = leftPath[depth].nodeRef;
        size_t leftNodeSize = leftNodeRef->size();
        if (leftNodeSize == NodeType::capacity)
            return false;

        auto leftNode = leftNodeRef->template as<NodeType>();
        size_t newSize = (leftNodeSize + nodeSize) / 2;
        ASSERT(newSize < NodeType::capacity);
        size_t numToMove = nodeSize - newSize;
        leftNode->shiftLeftFrom(leftNodeSize, node, nodeSize, numToMove);
        ASSERT(nodeSize == newSize);
        if (insertionIndex < numToMove)
            leftNode->insertAt(leftNodeSize, leftNodeSize + insertionIndex - numToMove, interval, payload);
        else
            node->insertAt(nodeSize, insertionIndex - numToMove, interval, payload);
        leftNodeRef->setSize(leftNodeSize);
        updateCoverage(leftPath, depth, leftNode->coverage(leftNodeSize));
        nodeRef->setSize(nodeSize);
        updateCoverage(path, depth, node->coverage(nodeSize));
        return true;
    }

    template<typename NodeType>
    bool tryRedistributeRightAndInsert(const Path& path, int depth, const Interval& interval, const typename NodeType::PayloadType& payload)
    {
        NodeRef* nodeRef = path[depth].nodeRef;
        auto insertionIndex = path[depth].index;
        auto node = nodeRef->template as<NodeType>();
        size_t nodeSize = nodeRef->size();

        Path rightPath(path, depth);
        rightPath.toRightCousin();
        if (rightPath.isEmpty())
            return false;

        NodeRef* rightNodeRef = rightPath[depth].nodeRef;
        size_t rightNodeSize = rightNodeRef->size();
        if (rightNodeSize == NodeType::capacity)
            return false;

        auto rightNode = rightNodeRef->template as<NodeType>();
        // If the insertion index is after all items of the left node and we only have one empty slot
        // we need to insert into the head of the right node.
        if (insertionIndex == NodeType::capacity) {
            rightNode->insertAt(rightNodeSize, 0, interval, payload);
            rightNodeRef->setSize(rightNodeSize);
            updateCoverage(rightPath, depth, rightNode->coverage(rightNodeSize));
            return true;
        }
        // Now, we know that insertionINdex < capacity, so if there's only one empty slot between both nodes,
        // we should put it in the left node and the insertion point will still always be in the left node.
        size_t newSize = (rightNodeSize + nodeSize) / 2;
        ASSERT(newSize < NodeType::capacity);
        size_t numToMove = nodeSize - newSize;
        node->shiftRightTo(nodeSize, rightNode, rightNodeSize, numToMove);
        ASSERT(nodeSize == newSize);
        if (insertionIndex <= nodeSize)
            node->insertAt(nodeSize, insertionIndex, interval, payload);
        else
            rightNode->insertAt(rightNodeSize, insertionIndex - nodeSize, interval, payload);
        nodeRef->setSize(nodeSize);
        updateCoverage(path, depth, node->coverage(nodeSize));
        rightNodeRef->setSize(rightNodeSize);
        updateCoverage(rightPath, depth, rightNode->coverage(rightNodeSize));
        return true;
    }

    template<typename NodeType>
    std::pair<NodeRef, Interval> splitNodeAndInsert(const Path& path, int depth, const Interval& interval, const typename NodeType::PayloadType& payload)
    {
        NodeRef* nodeRef = path[depth].nodeRef;
        auto insertionIndex = path[depth].index;
        auto node = nodeRef->template as<NodeType>();
        size_t nodeSize = nodeRef->size();
        constexpr size_t splitPoint = (NodeType::capacity + 1) / 2;
        auto newNode = allocNode<NodeType>();

        ASSERT(nodeSize == NodeType::capacity);

        for (size_t i = splitPoint; i < nodeSize; ++i) {
            newNode->intervals[i - splitPoint] = node->intervals[i];
            newNode->payloads[i - splitPoint] = node->payloads[i];
        }
        size_t newNodeSize = nodeSize - splitPoint;
        nodeSize = splitPoint;

        if (insertionIndex <= nodeSize)
            node->insertAt(nodeSize, insertionIndex, interval, payload);
        else
            newNode->insertAt(newNodeSize, insertionIndex - nodeSize, interval, payload);
        nodeRef->setSize(nodeSize);
        updateCoverage(path, depth, node->coverage(nodeSize));
        return { NodeRef(newNode, newNodeSize), newNode->coverage(newNodeSize) };
    }

    template<typename NodeType>
    bool eraseFromNode(const Path& path, int depth)
    {
        NodeRef* nodeRef = path[depth].nodeRef;
        auto eraseIndex = path[depth].index;
        auto node = nodeRef->template as<NodeType>();
        size_t nodeSize = nodeRef->size();
        ASSERT(nodeSize <= NodeType::capacity);

        if (nodeSize == 1) [[unlikely]] {
            ASSERT(!eraseIndex);
            freeNode(node);
            *nodeRef = NodeRef();
            return true;
        }
        node->removeAt(nodeSize, eraseIndex);
        if (isFirstOrLastIndex(*nodeRef, eraseIndex))
            updateCoverage(path, depth, node->coverage(nodeSize));
        nodeRef->setSize(nodeSize);
        return false;
    }

    template<typename NodeType>
    NodeType* allocNode()
    {
        ASSERT(++assertOnlyNumNodes);
        return static_cast<NodeType*>(fastAlignedMalloc(cpuCacheLineSize, sizeof(NodeType)));
    }

    template<typename NodeType>
    void freeNode(NodeType* node)
    {
        ASSERT(assertOnlyNumNodes--);
        fastAlignedFree(node);
    }

    void freeAllNodes()
    {
        if (!m_root)
            return;

        Vector<std::pair<NodeRef, unsigned>, 16> stack;
        stack.append({ m_root, m_height });

        while (!stack.isEmpty()) {
            auto [node, distanceToLeaf] = stack.takeLast();

            if (!distanceToLeaf) {
                freeNode(node.asLeaf());
                continue;
            }
            InnerNode* inner = node.asInner();
            for (size_t i = 0; i < node.size(); ++i)
                stack.append({ inner->child(i), distanceToLeaf - 1 });
            freeNode(inner);
        }
    }

    void dumpSubtree(PrintStream& out, NodeRef nodeRef, unsigned distanceToLeaf, unsigned indent) const
    {
        auto printIndent = [&] {
            for (unsigned i = 0; i < indent; ++i)
                out.print("  ");
        };

        if (distanceToLeaf) {
            InnerNode* inner = nodeRef.asInner();
            printIndent();
            out.println("Inner(size=", nodeRef.size(), ", coverage=", inner->coverage(nodeRef.size()), "):");

            for (size_t i = 0; i < nodeRef.size(); ++i) {
                printIndent();
                out.println("  [", i, "] ", inner->interval(i));
                dumpSubtree(out, inner->child(i), distanceToLeaf - 1, indent + 2);
            }
        } else {
            CommaPrinter comma;
            LeafNode* leaf = nodeRef.asLeaf();
            printIndent();
            out.print("Leaf(size=", nodeRef.size(), "): ");
            for (size_t i = 0; i < nodeRef.size(); ++i)
                out.print(comma, leaf->interval(i), "=", leaf->value(i));
            out.println();
        }
    }

    NodeRef m_root { };
    Interval m_rootInterval { };
    unsigned m_height { 0 };

#if ASSERT_ENABLED
    unsigned assertOnlyNumNodes { 0 };
#endif
};

} // namespace WTF

WTF_ALLOW_UNSAFE_BUFFER_USAGE_END

using WTF::IntervalSet;