1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
/*
* Copyright (C) 2015-2017 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "AirOptimizeBlockOrder.h"
#if ENABLE(B3_JIT)
#include "AirBlockWorklist.h"
#include "AirCode.h"
#include "AirPhaseScope.h"
#include <wtf/BubbleSort.h>
#include <wtf/Deque.h>
namespace JSC { namespace B3 { namespace Air {
namespace {
class ChainWorklist {
public:
ChainWorklist()
: startNewChain(false)
{
}
bool isEmpty() const
{
return blocks.isEmpty();
}
size_t size() const
{
return blocks.size();
}
BasicBlock* pop(IndexSet<BasicBlock*>& done)
{
if (startNewChain) {
startNewChain = false;
return popNewChain(done);
}
return popChain(done);
}
void markStartNewChain()
{
startNewChain = true;
}
void append(BasicBlock* block)
{
blocks.append(block);
}
BasicBlock* popChain(IndexSet<BasicBlock*>& done)
{
// Take the last added successor to continue the chain.
// This transforms a jump into a fallthrough.
while (!blocks.isEmpty()) {
BasicBlock* block = blocks.takeLast();
if (done.contains(block))
continue;
return block;
}
return nullptr;
}
BasicBlock* popNewChain(IndexSet<BasicBlock*>& done)
{
// Take the oldest added successor to start a new chain.
// We prefer this,
// - because that keeps earlier blocks earlier
// - earlier blocks can still have longer chains
// - better locality, instead of iterating further and
// having to backtrack these left-over early blocks
while (!blocks.isEmpty()) {
BasicBlock* block = blocks.takeFirst();
if (done.contains(block))
continue;
return block;
}
return nullptr;
}
private:
bool startNewChain;
Deque<BasicBlock*, 16> blocks;
};
class SortedSuccessors {
public:
SortedSuccessors()
{
}
void append(BasicBlock* block)
{
m_successors.append(block);
}
void process(BlockWorklist& worklist)
{
sort();
// Pushing the successors in ascending order of frequency ensures that the very next block we visit
// is our highest-frequency successor (unless that successor has already been visited).
for (unsigned i = 0; i < m_successors.size(); ++i)
worklist.push(m_successors[i]);
m_successors.shrink(0);
}
void process(ChainWorklist& worklist)
{
sort();
// Pushing the successors in ascending order of frequency ensures that the very next block we visit
// is our highest-frequency successor (unless that successor has already been visited).
for (unsigned i = 0; i < m_successors.size(); ++i)
worklist.append(m_successors[i]);
m_successors.shrink(0);
}
private:
void sort()
{
// We prefer a stable sort, and we don't want it to go off the rails if we see NaN. Also, the number
// of successors is bounded. In fact, it currently cannot be more than 2. :-)
bubbleSort(
m_successors.mutableSpan(),
[] (BasicBlock* left, BasicBlock* right) {
return left->frequency() < right->frequency();
});
}
Vector<BasicBlock*, 2> m_successors;
};
} // anonymous namespace
static bool detectTriangleStructure(BasicBlock* blockA, ChainWorklist& worklist, IndexSet<BasicBlock*>& done)
{
// A*
// |-----.
// | |
// | C
// | |
// |-----'
// B
// Since we don't have actual frequencies,
// it is better to schedule C before B
if (blockA->numSuccessors() != 2)
return false;
if (blockA->successor(0).isRare())
return false;
if (blockA->successor(1).isRare())
return false;
auto attemptToDetect = [&](BasicBlock* blockB, BasicBlock* blockC) {
if ((blockC->numSuccessors() >= 1 && blockC->successor(0).block() == blockB)
|| (blockC->numSuccessors() >= 2 && blockC->successor(1).block() == blockB)) {
if (!done.contains(blockB))
worklist.append(blockB);
if (!done.contains(blockC))
worklist.append(blockC);
return true;
}
return false;
};
auto* block0 = blockA->successor(0).block();
auto* block1 = blockA->successor(1).block();
return attemptToDetect(block0, block1)
|| attemptToDetect(block1, block0);
}
static bool detectDiamondStructure(BasicBlock* blockB, ChainWorklist& worklist, IndexSet<BasicBlock*>& done)
{
// A
// .--'--.
// | |
// B* C
// | |
// '--.--'
// D
// B* is the block we are currently looking at.
// Since we don't have actual frequencies,
// it is better to not decide which branch (B,C) is best and
// assume both have equal chance.
// With a small penalty we better organize it as:
// A B C D
// That way we have one small jump for case B and for case C,
// instead of having no jumps for B and two long jumps for C.
if (blockB->numSuccessors() != 1)
return false;
if (blockB->numPredecessors() != 1)
return false;
if (blockB->successor(0).isRare())
return false;
BasicBlock* blockD = blockB->successor(0).block();
BasicBlock* blockA = blockB->predecessor(0);
if (blockA->numSuccessors() != 2)
return false;
BasicBlock* blockC;
if (blockA->successor(0).block() == blockB) {
if (blockA->successor(1).isRare())
return false;
blockC = blockA->successor(1).block();
} else if (blockA->successor(1).block() == blockB) {
if (blockA->successor(0).isRare())
return false;
blockC = blockA->successor(0).block();
} else
return false;
if (blockC->numSuccessors() != 1)
return false;
if (blockC->numPredecessors() != 1)
return false;
if (blockC->successor(0).block() != blockD)
return false;
if (!done.contains(blockD))
worklist.append(blockD);
if (!done.contains(blockC))
worklist.append(blockC);
return true;
}
static bool detectExclusiveSuccessor(BasicBlock* blockA, ChainWorklist& worklist, IndexSet<BasicBlock*>& done)
{
// A* D
// .--'--. |
// | |.---'
// B C
// A* is the block we are currently looking at.
// It's better to use successor B as the fallthrough block,
// because C can still become the fallthrough block from the other predecessors.
if (blockA->numSuccessors() != 2)
return false;
if (blockA->successor(0).isRare())
return false;
if (blockA->successor(1).isRare())
return false;
if (blockA->successor(0).block()->frequency() != blockA->successor(1).block()->frequency())
return false;
BasicBlock* blockB = blockA->successor(0).block();
BasicBlock* blockC = blockA->successor(1).block();
if (blockB->numPredecessors() == 1
&& blockC->numPredecessors() > 1) {
// Same frequency, with succ[0] having only one predecessor.
// and succ[1] having multiple predecessors.
// It is better to add succ[0] as last to get a fallthrough.
// Since except here there is no chance succ[0] can fallthrough, but succ[1] still can.
if (!done.contains(blockC))
worklist.append(blockC);
if (!done.contains(blockB))
worklist.append(blockB);
return true;
}
return false;
}
Vector<BasicBlock*> blocksInOptimizedOrder(Code& code)
{
Vector<BasicBlock*> blocksInOrder;
SortedSuccessors sortedSlowSuccessors;
SortedSuccessors sortedSuccessors;
ChainWorklist chainWorklist;
IndexSet<BasicBlock*> done;
// We expect entrypoint lowering to have already happened.
RELEASE_ASSERT(code.numEntrypoints());
auto appendSuccessor = [&] (const FrequentedBlock& block) {
if (block.isRare())
sortedSlowSuccessors.append(block.block());
else
sortedSuccessors.append(block.block());
};
// For everything but the first entrypoint, we push them in order of frequency and frequency
// class.
for (unsigned i = 1; i < code.numEntrypoints(); ++i)
appendSuccessor(code.entrypoint(i));
// Always push the primary successor last so that it gets highest priority.
chainWorklist.append(code.entrypoint(0).block());
while (BasicBlock* block = chainWorklist.pop(done)) {
ASSERT(!done.contains(block));
done.add(block);
blocksInOrder.append(block);
size_t size = chainWorklist.size();
if (!detectTriangleStructure(block, chainWorklist, done)
&& !detectDiamondStructure(block, chainWorklist, done)
&& !detectExclusiveSuccessor(block, chainWorklist, done)) {
for (FrequentedBlock& successor : block->successors()) {
if (!done.contains(successor.block()))
appendSuccessor(successor);
}
}
sortedSuccessors.process(chainWorklist);
// Detect if we added a successor. If not decide for a good candidate.
if (size == chainWorklist.size())
chainWorklist.markStartNewChain();
}
BlockWorklist slowWorklist;
sortedSlowSuccessors.process(slowWorklist);
while (BasicBlock* block = slowWorklist.pop()) {
// We might have already processed this block.
if (done.contains(block))
continue;
done.add(block);
blocksInOrder.append(block);
for (BasicBlock* successor : block->successorBlocks())
sortedSlowSuccessors.append(successor);
sortedSlowSuccessors.process(slowWorklist);
}
ASSERT(chainWorklist.isEmpty());
ASSERT(slowWorklist.isEmpty());
return blocksInOrder;
}
void optimizeBlockOrder(Code& code)
{
PhaseScope phaseScope(code, "optimizeBlockOrder"_s);
Vector<BasicBlock*> blocksInOrder = blocksInOptimizedOrder(code);
// Place blocks into Code's block list according to the ordering in blocksInOrder. We do this by leaking
// all of the blocks and then readopting them.
for (auto& entry : code.blockList())
entry.release();
code.blockList().shrink(0);
for (unsigned i = 0; i < blocksInOrder.size(); ++i) {
BasicBlock* block = blocksInOrder[i];
block->setIndex(i);
code.blockList().append(std::unique_ptr<BasicBlock>(block));
}
// Finally, flip any branches that we recognize. It's most optimal if the taken successor does not point
// at the next block.
for (BasicBlock* block : code) {
Inst& branch = block->last();
// It's somewhat tempting to just say that if the block has two successors and the first arg is
// invertible, then we can do the optimization. But that's wagging the dog. The fact that an
// instruction happens to have an argument that is invertible doesn't mean it's a branch, even though
// it is true that currently only branches have invertible arguments. It's also tempting to say that
// the /branch flag in AirOpcode.opcodes tells us that something is a branch - except that there,
// /branch also means Jump. The approach taken here means that if you add new branch instructions and
// forget about this phase, then at worst your new instructions won't opt into the inversion
// optimization. You'll probably realize that as soon as you look at the disassembly, and it
// certainly won't cause any correctness issues.
switch (branch.kind.opcode) {
case Branch8:
case Branch32:
case Branch64:
case BranchTest8:
case BranchTest32:
case BranchTest64:
case BranchFloat:
case BranchDouble:
case BranchAdd32:
case BranchAdd64:
case BranchMul32:
case BranchMul64:
case BranchSub32:
case BranchSub64:
case BranchNeg32:
case BranchNeg64:
case BranchAtomicStrongCAS8:
case BranchAtomicStrongCAS16:
case BranchAtomicStrongCAS32:
case BranchAtomicStrongCAS64:
if (code.findNextBlock(block) == block->successorBlock(0) && branch.args[0].isInvertible()) {
std::swap(block->successor(0), block->successor(1));
branch.args[0] = branch.args[0].inverted();
}
break;
default:
break;
}
}
}
} } } // namespace JSC::B3::Air
#endif // ENABLE(B3_JIT)
|