1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
/*
* Copyright (C) 2025 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include <wtf/DataLog.h>
#if ENABLE(WEBASSEMBLY)
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
#include "InitializeThreading.h"
#include "Options.h"
#include "TestUtilities.h"
#include "WasmVirtualAddress.h"
#include <wtf/HexNumber.h>
#include <wtf/text/MakeString.h>
#include <wtf/text/WTFString.h>
#if OS(WINDOWS)
#include <wtf/win/WTFCRTDebug.h>
#endif
using namespace JSC;
using namespace JSC::Wasm;
// Test counters for VirtualAddress tests
static int testsRun = 0;
static int testsPassed = 0;
static int testsFailed = 0;
static void testWASMVirtualAddressConstants()
{
dataLogLn("=== Testing VirtualAddress Design ===");
// Test virtualAddress encoding constants
TEST_ASSERT(VirtualAddress::MODULE_BASE == 0x4000000000000000ULL,
"MODULE_BASE should be 0x4000000000000000");
TEST_ASSERT(VirtualAddress::MEMORY_BASE == 0x0000000000000000ULL,
"MEMORY_BASE should be 0x0000000000000000");
TEST_ASSERT(VirtualAddress::INVALID_BASE == 0x8000000000000000ULL,
"INVALID_BASE should be 0x8000000000000000");
// Test virtualAddress encoding for different module IDs
VirtualAddress module0Obj = VirtualAddress::createModule(0, 0);
VirtualAddress module1Obj = VirtualAddress::createModule(1, 0);
VirtualAddress module0Mem = VirtualAddress::createMemory(0, 0);
TEST_ASSERT(module0Obj == 0x4000000000000000ULL, "Module 0 obj should be at encoded address");
TEST_ASSERT(module1Obj == 0x4000000100000000ULL, "Module 1 obj should be at encoded address");
TEST_ASSERT(module0Mem == 0x0000000000000000ULL, "Module 0 memory should be at encoded address");
// Test address decoding
TEST_ASSERT(module0Obj.type() == VirtualAddress::Type::Module, "Should decode as Module");
TEST_ASSERT(!module0Obj.id(), "Should decode module ID 0");
TEST_ASSERT(!module0Obj.offset(), "Should decode offset 0");
dataLogLn("VirtualAddress design tests completed");
}
static void testWASMVirtualAddressEncoding()
{
dataLogLn("=== Testing VirtualAddress Encoding/Decoding ===");
// Test all address type combinations
struct AddressTest {
VirtualAddress::Type type;
uint32_t moduleId;
uint32_t offset;
const char* description;
};
AddressTest tests[] = {
{ VirtualAddress::Type::Memory, 0, 0, "Module 0 memory base" },
{ VirtualAddress::Type::Memory, 1, 0x1000, "Module 1 memory offset" },
{ VirtualAddress::Type::Memory, 0x1000, 0x2000, "Module 4096 memory offset" },
{ VirtualAddress::Type::Module, 0, 0, "Module 0 obj base" },
{ VirtualAddress::Type::Module, 1, 0x2000, "Module 1 obj offset" },
{ VirtualAddress::Type::Module, 0x2000, 0x3000, "Module 8192 obj offset" }
};
for (const auto& test : tests) {
VirtualAddress encoded = (test.type == VirtualAddress::Type::Memory)
? VirtualAddress::createMemory(test.moduleId, test.offset)
: VirtualAddress::createModule(test.moduleId, test.offset);
VirtualAddress::Type decodedType = encoded.type();
uint32_t decodedId = encoded.id();
uint32_t decodedOffset = encoded.offset();
TEST_ASSERT(decodedType == test.type,
makeString("Address encoding/decoding type mismatch for "_s, String::fromLatin1(test.description)).utf8().data());
TEST_ASSERT(decodedId == test.moduleId,
makeString("Address encoding/decoding ID mismatch for "_s, String::fromLatin1(test.description)).utf8().data());
TEST_ASSERT(decodedOffset == test.offset,
makeString("Address encoding/decoding offset mismatch for "_s, String::fromLatin1(test.description)).utf8().data());
}
dataLogLn("VirtualAddress encoding/decoding tests completed");
}
static void testWASMVirtualAddressBoundaries()
{
dataLogLn("=== Testing VirtualAddress Boundaries ===");
// Test memory region boundaries
TEST_ASSERT(VirtualAddress::MEMORY_BASE == 0x0000000000000000ULL, "Memory base should be 0");
TEST_ASSERT(VirtualAddress::MEMORY_END == 0x3FFFFFFFFFFFFFFFULL, "Memory end should be correct");
TEST_ASSERT(VirtualAddress::MODULE_BASE == 0x4000000000000000ULL, "Module base should be correct");
TEST_ASSERT(VirtualAddress::MODULE_END == 0x7FFFFFFFFFFFFFFFULL, "Module end should be correct");
TEST_ASSERT(VirtualAddress::INVALID_BASE == 0x8000000000000000ULL, "Invalid base should be correct");
TEST_ASSERT(VirtualAddress::INVALID_END == 0xFFFFFFFFFFFFFFFFULL, "Invalid end should be correct");
// Test reasonable boundary addresses (avoid overflow with max values)
VirtualAddress memoryBoundary = VirtualAddress::createMemory(0x1000, 0x1000);
VirtualAddress moduleBoundary = VirtualAddress::createModule(0x1000, 0x1000);
TEST_ASSERT(memoryBoundary.value() >= VirtualAddress::MEMORY_BASE && memoryBoundary.value() <= VirtualAddress::MEMORY_END, "Memory boundary should be within range");
TEST_ASSERT(moduleBoundary.value() >= VirtualAddress::MODULE_BASE && moduleBoundary.value() <= VirtualAddress::MODULE_END, "Module boundary should be within range");
// Test that the address ranges are properly defined
TEST_ASSERT(VirtualAddress::MEMORY_BASE < VirtualAddress::MODULE_BASE, "Memory range should be before module range");
TEST_ASSERT(VirtualAddress::MODULE_END < VirtualAddress::INVALID_BASE, "Module range should be before invalid range");
dataLogLn("VirtualAddress boundaries tests completed");
}
static void testWASMVirtualAddressLLDBEnumeration()
{
dataLogLn("=== Testing VirtualAddress LLDB Enumeration ===");
struct RegionTest {
uint64_t address;
const char* description;
bool shouldBeValid;
};
RegionTest regionTests[] = {
// Core WASM addresses
{ VirtualAddress::createMemory(0, 0), "Module 0 memory base", true },
{ VirtualAddress::createModule(0, 0), "Module 0 module base", true },
{ 0x8000000000000000ULL, "Invalid type probe", true }, // Invalid type (0x02)
{ 0xC000000000000000ULL, "Invalid2 type probe", true }, // Invalid2 type (0x03)
};
for (const auto& test : regionTests) {
VirtualAddress testAddr(test.address);
VirtualAddress::Type addressType = testAddr.type();
bool isValidType = (addressType == VirtualAddress::Type::Module || addressType == VirtualAddress::Type::Memory || testAddr.isInvalidType());
if (test.shouldBeValid) {
TEST_ASSERT(isValidType,
makeString("Address "_s, String::fromLatin1(test.description), " (0x"_s, hex(test.address, Lowercase), ") should decode to valid type"_s).utf8().data());
} else {
TEST_ASSERT(!isValidType,
makeString("Address "_s, String::fromLatin1(test.description), " (0x"_s, hex(test.address, Lowercase), ") should not decode to valid type"_s).utf8().data());
}
}
dataLogLn("VirtualAddress LLDB enumeration tests completed");
}
static void testWASMVirtualAddressEdgeCases()
{
dataLogLn("=== Testing VirtualAddress Edge Cases ===");
// Test maximum values for each field
uint32_t maxId = 0x3FFFFFFF; // 30 bits
uint32_t maxOffset = 0xFFFFFFFF; // 32 bits
// Test maximum ID values
VirtualAddress maxMemoryId = VirtualAddress::createMemory(maxId, 0);
VirtualAddress maxModuleId = VirtualAddress::createModule(maxId, 0);
TEST_ASSERT(maxMemoryId.id() == maxId, "Should handle maximum memory ID");
TEST_ASSERT(maxModuleId.id() == maxId, "Should handle maximum module ID");
TEST_ASSERT(maxMemoryId.type() == VirtualAddress::Type::Memory, "Max ID should preserve memory type");
TEST_ASSERT(maxModuleId.type() == VirtualAddress::Type::Module, "Max ID should preserve module type");
// Test maximum offset values
VirtualAddress maxMemoryOffset = VirtualAddress::createMemory(0, maxOffset);
VirtualAddress maxModuleOffset = VirtualAddress::createModule(0, maxOffset);
TEST_ASSERT(maxMemoryOffset.offset() == maxOffset, "Should handle maximum memory offset");
TEST_ASSERT(maxModuleOffset.offset() == maxOffset, "Should handle maximum module offset");
// Test Invalid type addresses
VirtualAddress invalidAddr1(0x8000000000000000ULL);
VirtualAddress invalidAddr2(0xC000000000000000ULL);
TEST_ASSERT(invalidAddr1.type() == VirtualAddress::Type::Invalid, "Should decode as Invalid type");
TEST_ASSERT(invalidAddr2.type() == VirtualAddress::Type::Invalid2, "Should decode as Invalid2 type");
TEST_ASSERT(invalidAddr1.isInvalidType(), "Invalid address should be recognized as invalid");
TEST_ASSERT(invalidAddr2.isInvalidType(), "Invalid2 address should be recognized as invalid");
// Test address range boundaries precisely
VirtualAddress memoryEnd(VirtualAddress::MEMORY_END);
VirtualAddress moduleStart(VirtualAddress::MODULE_BASE);
VirtualAddress moduleEnd(VirtualAddress::MODULE_END);
VirtualAddress invalidStart(VirtualAddress::INVALID_BASE);
TEST_ASSERT(memoryEnd.type() == VirtualAddress::Type::Memory, "Memory end should be Memory type");
TEST_ASSERT(moduleStart.type() == VirtualAddress::Type::Module, "Module start should be Module type");
TEST_ASSERT(moduleEnd.type() == VirtualAddress::Type::Module, "Module end should be Module type");
TEST_ASSERT(invalidStart.type() == VirtualAddress::Type::Invalid, "Invalid start should be Invalid type");
dataLogLn("VirtualAddress edge cases tests completed");
}
static void testWASMVirtualAddressHashTraits()
{
dataLogLn("=== Testing VirtualAddress Hash Traits ===");
// Test empty value
VirtualAddress emptyAddr = WTF::HashTraits<VirtualAddress>::emptyValue();
TEST_ASSERT(!emptyAddr.value(), "Empty value should be 0");
// Test deleted value
VirtualAddress deletedAddr;
WTF::HashTraits<VirtualAddress>::constructDeletedValue(deletedAddr);
TEST_ASSERT(WTF::HashTraits<VirtualAddress>::isDeletedValue(deletedAddr), "Should recognize deleted value");
TEST_ASSERT(deletedAddr.value() == std::numeric_limits<uint64_t>::max(), "Deleted value should be max uint64");
// Test hash function consistency
VirtualAddress addr1 = VirtualAddress::createModule(123, 456);
VirtualAddress addr2 = VirtualAddress::createModule(123, 456);
VirtualAddress addr3 = VirtualAddress::createModule(124, 456);
unsigned hash1 = WTF::DefaultHash<VirtualAddress>::hash(addr1);
unsigned hash2 = WTF::DefaultHash<VirtualAddress>::hash(addr2);
unsigned hash3 = WTF::DefaultHash<VirtualAddress>::hash(addr3);
TEST_ASSERT(hash1 == hash2, "Equal addresses should have equal hashes");
TEST_ASSERT(hash1 != hash3, "Different addresses should have different hashes");
// Test equality function
TEST_ASSERT(WTF::DefaultHash<VirtualAddress>::equal(addr1, addr2), "Equal addresses should be equal");
TEST_ASSERT(!WTF::DefaultHash<VirtualAddress>::equal(addr1, addr3), "Different addresses should not be equal");
dataLogLn("VirtualAddress hash traits tests completed");
}
static void testWASMVirtualAddressOperators()
{
dataLogLn("=== Testing VirtualAddress Operators ===");
VirtualAddress addr = VirtualAddress::createModule(42, 1000);
uint64_t expectedValue = 0x4000002A000003E8ULL; // Manually calculated
// Test uint64_t conversion operator
uint64_t convertedValue = static_cast<uint64_t>(addr);
TEST_ASSERT(convertedValue == expectedValue, "uint64_t conversion should work correctly");
TEST_ASSERT(convertedValue == addr.value(), "Conversion should match value() method");
// Test operator uint64_t() directly
uint64_t directConversion = addr;
TEST_ASSERT(directConversion == expectedValue, "Direct conversion should work");
// Test hex() method consistency
String hexStr = addr.hex();
String expectedHex = makeString(WTF::hex(expectedValue, WTF::Lowercase));
TEST_ASSERT(hexStr == expectedHex, "hex() method should match expected format");
dataLogLn("VirtualAddress operators tests completed");
}
static int runAllTests()
{
dataLogLn("Starting WASM Debugger Test Suite");
dataLogLn("===============================================");
// VirtualAddress infrastructure tests
dataLogLn("\n--- VirtualAddress Infrastructure Tests ---");
testWASMVirtualAddressConstants();
testWASMVirtualAddressEncoding();
testWASMVirtualAddressBoundaries();
testWASMVirtualAddressLLDBEnumeration();
testWASMVirtualAddressEdgeCases();
testWASMVirtualAddressHashTraits();
testWASMVirtualAddressOperators();
// WASM Debug Info Tests (in separate file)
dataLogLn("\n--- WASM Debug Info Tests ---");
int debugInfoTestsFailed = testWasmDebugInfo();
// Summary combining both test suites
dataLogLn("===============================================");
dataLogLn("Combined Test Results:");
dataLogLn(" VirtualAddress Tests - Passed: ", testsPassed, " / ", testsRun);
dataLogLn(" WASM Debug Info Tests - See detailed results above");
dataLogLn(" Total Failures: ", testsFailed, " (VirtualAddress) + ", debugInfoTestsFailed, " (Debug Info) = ", testsFailed + debugInfoTestsFailed);
int totalFailures = testsFailed + debugInfoTestsFailed;
if (!totalFailures) {
dataLogLn("All tests PASSED!");
dataLogLn("WASM debugger infrastructure is working correctly");
dataLogLn("allWasmDebuggerTestsPassed");
} else {
dataLogLn("Some tests FAILED!");
dataLogLn("WASM debugger infrastructure needs attention");
}
return totalFailures;
}
int main(int argc, char** argv)
{
UNUSED_PARAM(argc);
UNUSED_PARAM(argv);
#if OS(WINDOWS)
// Cygwin calls ::SetErrorMode(SEM_FAILCRITICALERRORS), which we will inherit. This is bad for
// testing/debugging, as it causes the post-mortem debugger not to be invoked. We reset the
// error mode here to work around Cygwin's behavior. See <http://webkit.org/b/55222>.
::SetErrorMode(0);
WTF::disableCRTDebugAssertDialog();
#endif
JSC::initialize();
JSC::Options::setOption("enableWasmDebugger=true");
return runAllTests();
}
#if OS(WINDOWS)
extern "C" __declspec(dllexport) int WINAPI dllLauncherEntryPoint(int argc, const char* argv[])
{
return main(argc, const_cast<char**>(argv));
}
#endif
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
#else // !ENABLE(WEBASSEMBLY)
int main(int argc, char** argv)
{
UNUSED_PARAM(argc);
UNUSED_PARAM(argv);
dataLogLn("WASM debugger tests are disabled (WEBASSEMBLY not enabled)");
dataLogLn("allWasmDebuggerTestsPassed");
return 0;
}
#if OS(WINDOWS)
extern "C" __declspec(dllexport) int WINAPI dllLauncherEntryPoint(int argc, const char* argv[])
{
return main(argc, const_cast<char**>(argv));
}
#endif
#endif // ENABLE(WEBASSEMBLY)
|