File: IntervalSet.cpp

package info (click to toggle)
webkit2gtk 2.51.4-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 481,584 kB
  • sloc: cpp: 3,903,132; javascript: 198,251; ansic: 165,758; python: 51,432; asm: 21,819; ruby: 18,095; perl: 16,963; xml: 4,623; sh: 2,408; yacc: 2,356; java: 2,019; lex: 1,358; pascal: 372; makefile: 203
file content (537 lines) | stat: -rw-r--r-- 19,259 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
/*
 * Copyright (C) 2025 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"

#include <algorithm>
#include <random>
#include <wtf/DataLog.h>
#include <wtf/IntervalSet.h>
#include <wtf/ListDump.h>
#include <wtf/StringPrintStream.h>
#include <wtf/Vector.h>

namespace TestWebKitAPI {

struct IntervalSetTest {
    static constexpr bool verbose = false;
};

using Point = uint32_t;
using Value = int;
using Interval = Range<Point>;

TEST(WTF_IntervalSet, Basic)
{
    IntervalSet<Point, Value> intervalSet;

    EXPECT_TRUE(intervalSet.isEmpty());
    EXPECT_FALSE(intervalSet.hasOverlap({ 0, 10 }));
    EXPECT_FALSE(intervalSet.find({ 0, 10 }));

    EXPECT_EQ(intervalSet.begin(), intervalSet.end());
}

TEST(WTF_IntervalSet, SingleInterval)
{
    IntervalSet<Point, Value> intervalSet;

    // Insert a single interval [10, 20) with value 42
    intervalSet.insert({ 10, 20 }, 42);

    EXPECT_FALSE(intervalSet.isEmpty());

    EXPECT_NE(intervalSet.begin(), intervalSet.end());
    auto it = intervalSet.begin();
    EXPECT_EQ(it.interval(), Interval(10, 20));
    EXPECT_EQ(it.value(), 42);
    ++it;
    EXPECT_EQ(it, intervalSet.end());

    // Test overlap detection
    EXPECT_TRUE(intervalSet.hasOverlap({ 15, 25 })); // Overlaps
    EXPECT_TRUE(intervalSet.hasOverlap({ 5, 15 })); // Overlaps
    EXPECT_TRUE(intervalSet.hasOverlap({ 10, 20 })); // Exact match
    EXPECT_FALSE(intervalSet.hasOverlap({ 0, 10 })); // No overlap (adjacent)
    EXPECT_FALSE(intervalSet.hasOverlap({ 20, 30 })); // No overlap (adjacent)
    EXPECT_FALSE(intervalSet.hasOverlap({ 0, 5 })); // No overlap (before)
    EXPECT_FALSE(intervalSet.hasOverlap({ 25, 30 })); // No overlap (after)

    // Test find
    auto result = intervalSet.find({ 15, 16 });
    EXPECT_TRUE(result);
    EXPECT_EQ(result->first, Interval(10, 20));
    EXPECT_EQ(result->second, 42);

    // Test find with non-overlapping interval
    EXPECT_FALSE(intervalSet.find({ 0, 5 }));

    // Test erase functionality
    intervalSet.erase({ 10, 20 });

    EXPECT_EQ(intervalSet.begin(), intervalSet.end());

    // After erase, all overlap checks should return false
    EXPECT_FALSE(intervalSet.hasOverlap({ 15, 25 })); // No longer overlaps
    EXPECT_FALSE(intervalSet.hasOverlap({ 5, 15 })); // No longer overlaps
    EXPECT_FALSE(intervalSet.hasOverlap({ 10, 20 })); // No longer overlaps
    EXPECT_FALSE(intervalSet.hasOverlap({ 0, 10 })); // Still no overlap
    EXPECT_FALSE(intervalSet.hasOverlap({ 20, 30 })); // Still no overlap
    EXPECT_FALSE(intervalSet.hasOverlap({ 0, 5 })); // Still no overlap
    EXPECT_FALSE(intervalSet.hasOverlap({ 25, 30 })); // Still no overlap

    // After erase, all find operations should return nullopt
    EXPECT_FALSE(intervalSet.find({ 15, 16 }));
    EXPECT_FALSE(intervalSet.find({ 10, 20 }));
    EXPECT_FALSE(intervalSet.find({ 0, 5 }));
}

TEST(WTF_IntervalSet, EraseTests)
{
    IntervalSet<Point, Value> intervalSet;

    // Test basic erase functionality
    intervalSet.insert({ 10, 20 }, 100);
    intervalSet.insert({ 30, 40 }, 200);
    intervalSet.insert({ 50, 60 }, 300);

    // Verify iterator traverses all three intervals
    size_t count = 0;
    for (auto it = intervalSet.begin(); it != intervalSet.end(); ++it)
        count++;
    EXPECT_EQ(count, 3u);

    // Verify all intervals are present
    EXPECT_FALSE(intervalSet.isEmpty());
    EXPECT_TRUE(intervalSet.hasOverlap({ 10, 20 }));
    EXPECT_TRUE(intervalSet.hasOverlap({ 30, 40 }));
    EXPECT_TRUE(intervalSet.hasOverlap({ 50, 60 }));

    // Erase middle interval
    intervalSet.erase({ 30, 40 });

    // Verify iterator now traverses only two intervals
    count = 0;
    for (auto it = intervalSet.begin(); it != intervalSet.end(); ++it)
        count++;
    EXPECT_EQ(count, 2u);

    // Verify middle interval is gone, others remain
    EXPECT_FALSE(intervalSet.isEmpty());
    EXPECT_TRUE(intervalSet.hasOverlap({ 10, 20 }));
    EXPECT_FALSE(intervalSet.hasOverlap({ 30, 40 }));
    EXPECT_TRUE(intervalSet.hasOverlap({ 50, 60 }));

    // Verify find operations
    auto result = intervalSet.find({ 15, 16 });
    EXPECT_TRUE(result);
    EXPECT_EQ(result->first, Interval(10, 20));
    EXPECT_EQ(result->second, 100);

    EXPECT_FALSE(intervalSet.find({ 35, 36 }));

    result = intervalSet.find({ 55, 56 });
    EXPECT_TRUE(result);
    EXPECT_EQ(result->first, Interval(50, 60));
    EXPECT_EQ(result->second, 300);

    // Erase first interval
    intervalSet.erase({ 10, 20 });

    // Verify iterator now traverses only one interval
    count = 0;
    for (auto it = intervalSet.begin(); it != intervalSet.end(); ++it)
        count++;
    EXPECT_EQ(count, 1u);

    EXPECT_FALSE(intervalSet.isEmpty());
    EXPECT_FALSE(intervalSet.hasOverlap({ 10, 20 }));
    EXPECT_FALSE(intervalSet.hasOverlap({ 30, 40 }));
    EXPECT_TRUE(intervalSet.hasOverlap({ 50, 60 }));

    // Erase last interval (should make set empty)
    intervalSet.erase({ 50, 60 });

    // Verify iterator shows empty set
    EXPECT_EQ(intervalSet.begin(), intervalSet.end());

    EXPECT_TRUE(intervalSet.isEmpty());
    EXPECT_FALSE(intervalSet.hasOverlap({ 10, 20 }));
    EXPECT_FALSE(intervalSet.hasOverlap({ 30, 40 }));
    EXPECT_FALSE(intervalSet.hasOverlap({ 50, 60 }));

    // Verify all finds return nullopt on empty set
    EXPECT_FALSE(intervalSet.find({ 15, 16 }));
    EXPECT_FALSE(intervalSet.find({ 35, 36 }));
    EXPECT_FALSE(intervalSet.find({ 55, 56 }));
}

TEST(WTF_IntervalSet, EdgeCases)
{
    IntervalSet<Point, Value> intervalSet;

    // Insert interval [0, 1) - single unit interval
    intervalSet.insert({ 0, 1 }, 100);

    EXPECT_TRUE(intervalSet.hasOverlap({ 0, 1 }));
    EXPECT_FALSE(intervalSet.hasOverlap({ 1, 2 }));

    auto result = intervalSet.find({ 0, 1 });
    EXPECT_TRUE(result);
    EXPECT_EQ(result->first, Interval(0, 1));
    EXPECT_EQ(result->second, 100);

    // Test with larger intervals that span the small one
    EXPECT_TRUE(intervalSet.hasOverlap({ 0, 10 }));
    result = intervalSet.find({ 0, 10 });
    EXPECT_TRUE(result);
    EXPECT_EQ(result->first, Interval(0, 1));
    EXPECT_EQ(result->second, 100);
}

enum class IntervalOrdering {
    Ascending,
    Descending,
    Random,
};

template<unsigned numCacheLines>
static void stressTest(IntervalOrdering ordering)
{
    constexpr size_t numberTestIntervals = 10000;
    constexpr size_t maxGap = 1000;
    constexpr size_t maxSize = 1000;
    constexpr size_t maxPoint = numberTestIntervals * (maxGap + maxSize);

    struct TestCase : public std::pair<Interval, Value> {
        TestCase() = default;
        TestCase(const Interval& interval, const Value& value)
            : std::pair<Interval, Value>(interval, value) { }

        void dump(PrintStream& out) const
        {
            out.print("{ ", first, ", ", second, " }");
        }
    };

    using TestIntervalSet = IntervalSet<Point, Value, numCacheLines>;
    TestIntervalSet intervalSet;

    std::mt19937 gen(testing::UnitTest::GetInstance()->random_seed());
    std::uniform_int_distribution<size_t> gapDist(0, maxGap);
    std::uniform_int_distribution<size_t> sizeDist(1, maxSize);
    std::uniform_int_distribution<Value> valueDist(0, 10000);

    // Generate non-overlapping intervals by sorting start points
    Vector<TestCase> testData;
    Point end = 0;
    for (unsigned i = 0; i < numberTestIntervals; ++i) {
        Point start = end + gapDist(gen);
        end = start + sizeDist(gen);
        Value value = valueDist(gen);
        testData.append(TestCase({ start, end }, value));
    }
    dataLogLnIf(IntervalSetTest::verbose, "Test data: ", WTF::listDump(testData));

    auto shuffledTestData = testData;

    switch (ordering) {
    case IntervalOrdering::Ascending:
        break;
    case IntervalOrdering::Descending:
        std::reverse(shuffledTestData.begin(), shuffledTestData.end());
        break;
    case IntervalOrdering::Random:
        // Shuffle the intervals to insert them in random order
        std::shuffle(shuffledTestData.begin(), shuffledTestData.end(), gen);
        break;
    }
    dataLogLnIf(IntervalSetTest::verbose, "After shuffle: ", WTF::listDump(shuffledTestData));

    // Track which intervals are currently in the set for erase operations
    Vector<TestCase> currentlyInserted;
    std::uniform_int_distribution<int> eraseDist(1, 4); // 1 in 4 chance to erase

    auto maybeEraseInterval = [&]() {
        if (currentlyInserted.size() > 1 && eraseDist(gen) == 1) {
            std::uniform_int_distribution<size_t> eraseIndexDist(0, currentlyInserted.size() - 1);
            size_t eraseIndex = eraseIndexDist(gen);
            TestCase toErase = currentlyInserted[eraseIndex];

            intervalSet.erase(toErase.first);
            currentlyInserted.removeAt(eraseIndex);
            dataLogLnIf(IntervalSetTest::verbose, "Erased ", toErase.first, "=", toErase.second, ": ", intervalSet);
        }
    };

    for (const auto& entry : shuffledTestData) {
        intervalSet.insert(entry.first, entry.second);
        currentlyInserted.append(entry);
        dataLogLnIf(IntervalSetTest::verbose, "Added ", entry.first, "=", entry.second, ": ", intervalSet);

        maybeEraseInterval();
    }

    // Validate that nodes are densely populated.
    size_t capacity = TestIntervalSet::leafOrder;
    unsigned expectedHeight = 0;
    while (capacity < currentlyInserted.size()) {
        capacity *= TestIntervalSet::innerOrder;
        expectedHeight++;
    }
    EXPECT_EQ(intervalSet.height(), expectedHeight);

    // Validate iterator traversal: count and ordering
    size_t iteratorCount = 0;
    Point lastEnd = 0;
    for (auto it = intervalSet.begin(); it != intervalSet.end(); ++it) {
        iteratorCount++;
        auto interval = (*it).first;
        // Verify intervals are in sorted order (non-overlapping by construction)
        EXPECT_GE(interval.begin(), lastEnd);
        lastEnd = interval.end();
    }
    EXPECT_EQ(iteratorCount, currentlyInserted.size());

    // Test that all currently inserted intervals can be found with correct values
    std::shuffle(currentlyInserted.begin(), currentlyInserted.end(), gen);
    for (const auto& data : currentlyInserted) {
        dataLogLnIf(IntervalSetTest::verbose, "Testing: interval=", data.first, " value=", data.second);
        EXPECT_TRUE(intervalSet.hasOverlap(data.first));
        auto found = intervalSet.find(data.first);
        EXPECT_TRUE(found);
        EXPECT_EQ(found->first, data.first);
        EXPECT_EQ(found->second, data.second);
    }

    // Sort currentlyInserted by interval start for correct expected value calculation
    std::ranges::sort(currentlyInserted, [](const TestCase& a, const TestCase& b) {
        return a.first.begin() < b.first.begin();
    });

    std::uniform_int_distribution<size_t> pointDist(0, maxPoint);
    // Test random queries with occasional erase operations
    for (unsigned i = 0; i < 500; ++i) {
        Point start = pointDist(gen);
        Point end = start + sizeDist(gen);
        Interval query = { start, end };

        std::optional<std::pair<Interval, Value>> expected;
        for (const auto& data : currentlyInserted) {
            if (query.overlaps(data.first)) {
                expected = std::make_pair(data.first, data.second);
                break;
            }
        }
        dataLogLnIf(IntervalSetTest::verbose, "Testing: random interval=", query);

        EXPECT_EQ(expected.has_value(), intervalSet.hasOverlap(query));
        auto found = intervalSet.find(query);
        if (expected) {
            EXPECT_TRUE(found);
            EXPECT_EQ(found->first, expected->first);
            EXPECT_EQ(found->second, expected->second);
        } else
            EXPECT_FALSE(found);

        // Occasionally erase an interval during query phase (reduced frequency)
        if (i % 2)
            maybeEraseInterval();
    }
}

static constexpr unsigned stressNumCacheLines = 2;

TEST(WTF_IntervalSet, AscendingStressTest)
{
    stressTest<stressNumCacheLines>(IntervalOrdering::Ascending);
}

TEST(WTF_IntervalSet, DescendingStressTest)
{
    stressTest<stressNumCacheLines>(IntervalOrdering::Descending);
}

TEST(WTF_IntervalSet, RandomStressTest)
{
    stressTest<stressNumCacheLines>(IntervalOrdering::Random);
}

TEST(WTF_IntervalSet, Dump)
{
    IntervalSet<int, const char*> intervalSet;

    // Test empty tree
    StringPrintStream emptyOutput;
    intervalSet.dump(emptyOutput);
    String emptyResult = emptyOutput.toString();
    EXPECT_EQ(emptyResult, String("IntervalSet(height=0, leafOrder=4, innerOrder=4) <empty>"_s));

    intervalSet.insert({ 10, 20 }, "first");
    intervalSet.insert({ 30, 40 }, "second");
    intervalSet.insert({ 50, 60 }, "third");

    // Single leaf node
    StringPrintStream basicOutput;
    intervalSet.dump(basicOutput);
    String basicResult = basicOutput.toString();
    String expectedBasic = "IntervalSet(height=0, leafOrder=4, innerOrder=4) coverage=10...60\nLeaf(size=3): 10...20=first, 30...40=second, 50...60=third\n"_s;
    EXPECT_EQ(basicResult, expectedBasic);

    // Add more intervals to cause split
    intervalSet.insert({ 5, 8 }, "before");
    intervalSet.insert({ 25, 28 }, "middle");
    intervalSet.insert({ 65, 70 }, "after");

    StringPrintStream fullOutput;
    intervalSet.dump(fullOutput);
    String fullResult = fullOutput.toString();
    String expectedFull = "IntervalSet(height=1, leafOrder=4, innerOrder=4) coverage=5...70\nInner(size=2, coverage=5...70):\n  [0] 5...28\n    Leaf(size=3): 5...8=before, 10...20=first, 25...28=middle\n  [1] 30...70\n    Leaf(size=3): 30...40=second, 50...60=third, 65...70=after\n"_s;
    EXPECT_EQ(fullResult, expectedFull);
}

TEST(WTF_IntervalSet, DestructorMemoryManagement)
{
    // Test destructor with single leaf node
    {
        IntervalSet<Point, Value> intervalSet;
        intervalSet.insert({ 10, 20 }, 42);
        intervalSet.insert({ 30, 40 }, 84);
    }

    // Test destructor with multi-level tree (force tree growth)
    {
        IntervalSet<Point, Value> intervalSet;

        // Insert enough intervals to force tree growth beyond single leaf
        for (Point i = 0; i < 100; ++i) {
            Point start = i * 10;
            Point end = start + 5;
            intervalSet.insert({ start, end }, static_cast<Value>(i));
        }
    }

    // Test destructor with empty tree
    {
        IntervalSet<Point, Value> intervalSet;
    }
}

TEST(WTF_IntervalSet, EraseLastItemSingleLeaf)
{
    IntervalSet<Point, Value> intervalSet;

    // Test case: Tree with only a single leaf node, erase the last (and only) item
    intervalSet.insert({ 10, 20 }, 42);

    // Verify the interval is present
    EXPECT_TRUE(intervalSet.hasOverlap({ 10, 20 }));
    auto result = intervalSet.find({ 15, 16 });
    EXPECT_TRUE(result);
    EXPECT_EQ(result->first, Interval(10, 20));
    EXPECT_EQ(result->second, 42);

    // Erase the only interval - this should make the tree empty
    intervalSet.erase({ 10, 20 });

    // Verify the tree is now empty
    EXPECT_FALSE(intervalSet.hasOverlap({ 10, 20 }));
    EXPECT_FALSE(intervalSet.find({ 15, 16 }));
    EXPECT_FALSE(intervalSet.find({ 0, 100 })); // Any query should return nullopt

    // Test that we can still insert after emptying the tree
    intervalSet.insert({ 30, 40 }, 100);
    EXPECT_TRUE(intervalSet.hasOverlap({ 30, 40 }));
    result = intervalSet.find({ 35, 36 });
    EXPECT_TRUE(result);
    EXPECT_EQ(result->first, Interval(30, 40));
    EXPECT_EQ(result->second, 100);
}

TEST(WTF_IntervalSet, EraseLastItemWithInnerNodes)
{
    IntervalSet<Point, Value> intervalSet;

    // Build a tree with inner nodes by inserting many intervals
    Vector<Interval> intervals;
    for (Point i = 0; i < 50; ++i) {
        Point start = i * 10;
        Point end = start + 5;
        Interval interval = { start, end };
        intervals.append(interval);
        intervalSet.insert(interval, static_cast<Value>(i));
    }

    // Verify we have a multi-level tree by checking all intervals are present
    for (size_t i = 0; i < intervals.size(); ++i) {
        EXPECT_TRUE(intervalSet.hasOverlap(intervals[i]));
        auto result = intervalSet.find(intervals[i]);
        EXPECT_TRUE(result);
        EXPECT_EQ(result->first, intervals[i]);
        EXPECT_EQ(result->second, static_cast<Value>(i));
    }

    // Erase all intervals one by one until only one remains
    for (size_t i = 0; i < intervals.size() - 1; ++i) {
        intervalSet.erase(intervals[i]);

        // Verify the erased interval is gone
        EXPECT_FALSE(intervalSet.hasOverlap(intervals[i]));
        EXPECT_FALSE(intervalSet.find(intervals[i]));

        // Verify remaining intervals are still present
        for (size_t j = i + 1; j < intervals.size(); ++j)
            EXPECT_TRUE(intervalSet.hasOverlap(intervals[j]));
    }

    // Now erase the very last interval - this should collapse the tree to empty
    Interval lastInterval = intervals.last();
    Value lastValue = static_cast<Value>(intervals.size() - 1);

    // Verify the last interval is still present
    EXPECT_TRUE(intervalSet.hasOverlap(lastInterval));
    auto result = intervalSet.find(lastInterval);
    EXPECT_TRUE(result);
    EXPECT_EQ(result->first, lastInterval);
    EXPECT_EQ(result->second, lastValue);

    intervalSet.erase(lastInterval);

    EXPECT_FALSE(intervalSet.hasOverlap(lastInterval));
    EXPECT_FALSE(intervalSet.find(lastInterval));

    EXPECT_FALSE(intervalSet.hasOverlap({ 0, 1000 }));
    EXPECT_FALSE(intervalSet.find({ 0, 1000 }));

    // Verify we can still insert after completely emptying a complex tree
    intervalSet.insert({ 1000, 2000 }, 999);
    EXPECT_TRUE(intervalSet.hasOverlap({ 1000, 2000 }));
    result = intervalSet.find({ 1500, 1600 });
    EXPECT_TRUE(result);
    EXPECT_EQ(result->first, Interval(1000, 2000));
    EXPECT_EQ(result->second, 999);
}

} // namespace TestWebKitAPI