1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
/*
* Copyright (C) 2025 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#if ENABLE(JIT) && USE(JSVALUE64)
#include "BytecodeStructs.h"
#include "CodeBlock.h"
#include "Opcode.h"
#include "SimpleRegisterAllocator.h"
#include "VirtualRegister.h"
namespace JSC::LOL {
// TODO: Pack this.
struct Location {
GPRReg gpr() const { return regs.gpr(); }
void dumpInContext(PrintStream& out, const auto*) const
{
if (!isFlushed)
out.print("!"_s);
}
JSValueRegs regs { InvalidGPRReg };
bool isFlushed { false };
};
template<size_t useCount, size_t defCount, size_t scratchCount = 0>
struct AllocationBindings {
std::array<JSValueRegs, useCount> uses;
std::array<JSValueRegs, defCount> defs;
std::array<JSValueRegs, scratchCount> scratches;
};
template<typename Backend>
class RegisterAllocator {
public:
#ifdef NDEBUG
static constexpr bool verbose = false;
#else
static constexpr bool verbose = true;
#endif
static constexpr GPRReg s_scratch = GPRInfo::nonPreservedNonArgumentGPR0;
struct GPRBank {
using JITBackend = RegisterAllocator;
using Register = GPRReg;
static constexpr Register invalidRegister = InvalidGPRReg;
// FIXME: Make this more precise
static constexpr unsigned numberOfRegisters = 32;
static constexpr Width defaultWidth = widthForBytes(sizeof(CPURegister));
};
using SpillHint = uint32_t;
using RegisterBinding = VirtualRegister;
template<typename> friend class JSC::SimpleRegisterAllocator;
RegisterAllocator(Backend& backend, CodeBlock* codeBlock)
: m_numVars(codeBlock->numVars())
, m_constantsOffset(codeBlock->numCalleeLocals())
, m_headersOffset(m_constantsOffset + codeBlock->constantRegisters().size())
, m_locations(codeBlock->numCalleeLocals() + codeBlock->constantRegisters().size() + CallFrame::headerSizeInRegisters + codeBlock->numParameters())
, m_backend(backend)
{
RegisterSetBuilder gprs = RegisterSetBuilder::allGPRs();
gprs.exclude(RegisterSetBuilder::specialRegisters());
gprs.exclude(RegisterSetBuilder::macroClobberedGPRs());
gprs.exclude(RegisterSetBuilder::vmCalleeSaveRegisters());
gprs.remove(s_scratch);
m_allocator.initialize(gprs.buildAndValidate(), verbose ? "LOL"_s : ASCIILiteral());
}
RegisterSet allocatedRegisters() const { return m_allocator.allocatedRegisters(); }
Location locationOf(VirtualRegister operand) const { return const_cast<RegisterAllocator<Backend>*>(this)->locationOfImpl(operand); }
VirtualRegister bindingFor(GPRReg reg) const { return m_allocator.bindingFor(reg); }
// In general, it's somewhat important that these don't change how they allocate based on profiling data as when someone
// replays that profiling data could have changed and the register state they'd get would be out of sync with reality.
// returns an AllocationBindings struct with the allocated registers + any scratches (if needed).
// FIXME: We should be able to verify that the register allocation state is consistent by saving it on the CodeBlock somewhere and validating when we replay.
#define DECLARE_SPECIALIZATION(Op) ALWAYS_INLINE auto allocate(Backend& jit, const Op& instruction, BytecodeIndex);
FOR_EACH_BYTECODE_STRUCT(DECLARE_SPECIALIZATION)
#undef DECLARE_SPECIALIZATION
void flushAllRegisters(Backend&) { m_allocator.flushAllRegisters(*this); }
void dump(PrintStream& out) const { m_allocator.dumpInContext(out, this); }
// FIXME: Do we even need this, we could just unbind the scratches immediately after picking them since we can't add more allocations for the same instruction.
template<size_t useCount, size_t defCount, size_t scratchCount>
ALWAYS_INLINE void releaseScratches(const AllocationBindings<useCount, defCount, scratchCount>& allocations)
{
for (JSValueRegs scratch : allocations.scratches) {
ASSERT(!bindingFor(scratch.gpr()).isValid());
m_allocator.unbind(scratch.gpr());
}
}
private:
template<size_t scratchCount, size_t useCount, size_t defCount>
ALWAYS_INLINE AllocationBindings<useCount, defCount, scratchCount> allocateImpl(Backend& jit, const auto& instruction, BytecodeIndex index, const std::array<VirtualRegister, useCount>& uses, const std::array<VirtualRegister, defCount>& defs)
{
// TODO: Validation.
UNUSED_PARAM(instruction);
// Bump the spill count for our uses so we don't spill them when allocating below.
for (auto operand : uses) {
if (auto current = locationOf(operand).regs)
m_allocator.setSpillHint(current.gpr(), index.offset());
}
auto doAllocate = [&](VirtualRegister operand, bool isDef) ALWAYS_INLINE_LAMBDA {
ASSERT_IMPLIES(isDef, operand.isLocal() || operand.isArgument());
Location& location = locationOfImpl(operand);
if (location.regs) {
// Uses might be dirty from a previous instruction, so don't touch them.
if (isDef)
location.isFlushed = false;
return location.regs;
}
// TODO: Consider LRU insertion policy here (i.e. 0 for hint). Might need locking so these don't spill on the next allocation in the same bytecode.
location.regs = JSValueRegs(m_allocator.allocate(*this, operand, index.offset()));
location.isFlushed = !isDef;
if (!isDef)
jit.fill(operand, location.regs.gpr());
return location.regs;
};
AllocationBindings<useCount, defCount, scratchCount> result;
for (size_t i = 0; i < uses.size(); ++i)
result.uses[i] = doAllocate(uses[i], false);
for (size_t i = 0; i < defs.size(); ++i)
result.defs[i] = doAllocate(defs[i], true);
// TODO: Maybe lock the register here for debugging purposes.
for (size_t i = 0; i < result.scratches.size(); ++i)
result.scratches[i] = JSValueRegs(m_allocator.allocate(*this, VirtualRegister(), 0));
return result;
}
template<size_t scratchCount = 0>
ALWAYS_INLINE auto allocateUnaryOp(Backend& jit, const auto& instruction, BytecodeIndex index, VirtualRegister source)
{
std::array<VirtualRegister, 1> uses = { source };
std::array<VirtualRegister, 1> defs = { instruction.m_dst };
return allocateImpl<scratchCount>(jit, instruction, index, uses, defs);
}
template<size_t scratchCount = 0>
ALWAYS_INLINE auto allocateBinaryOp(Backend& jit, const auto& instruction, BytecodeIndex index)
{
std::array<VirtualRegister, 2> uses = { instruction.m_lhs, instruction.m_rhs };
std::array<VirtualRegister, 1> defs = { instruction.m_dst };
return allocateImpl<scratchCount>(jit, instruction, index, uses, defs);
}
friend class SimpleRegisterAllocator<GPRBank>;
void flush(GPRReg gpr, VirtualRegister binding)
{
Location& location = locationOfImpl(binding);
ASSERT(location.gpr() == gpr);
m_backend.flush(location, gpr, binding);
location = Location();
}
Location& locationOfImpl(VirtualRegister operand)
{
ASSERT(operand.isValid());
// Locals are first since they are the most common and we want to be able to access them without loading offsets.
if (operand.isLocal())
return m_locations[operand.toLocal()];
if (operand.isConstant())
return m_locations[operand.toConstantIndex() + m_constantsOffset];
ASSERT(operand.isArgument() || operand.isHeader());
// arguments just naturally follow the headers.
return m_locations[operand.offset() + m_headersOffset];
}
// Only used for debugging.
const uint32_t m_numVars;
const uint32_t m_constantsOffset;
const uint32_t m_headersOffset;
// This is laid out as [ locals, constants, headers, arguments ]
FixedVector<Location> m_locations;
SimpleRegisterAllocator<GPRBank> m_allocator;
Backend& m_backend;
};
class ReplayBackend {
public:
ReplayBackend() = default;
ALWAYS_INLINE void flush(const Location&, GPRReg, VirtualRegister) { }
ALWAYS_INLINE void fill(VirtualRegister, GPRReg) { }
};
using ReplayRegisterAllocator = RegisterAllocator<ReplayBackend>;
#define FOR_EACH_UNARY_OP(macro) \
macro(OpToNumber, m_operand, 0) \
macro(OpNegate, m_operand, 0) \
macro(OpToString, m_operand, 0) \
macro(OpToObject, m_operand, 0) \
macro(OpToNumeric, m_operand, 0) \
macro(OpBitnot, m_operand, 0) \
macro(OpResolveScope, m_scope, 1) \
macro(OpGetFromScope, m_scope, 1)
#define ALLOCATE_USE_DEFS_FOR_UNARY_OP(Struct, operand, scratchCount) \
template<typename Backend> \
auto RegisterAllocator<Backend>::allocate(Backend& jit, const Struct& instruction, BytecodeIndex index) \
{ \
return allocateUnaryOp<scratchCount>(jit, instruction, index, instruction.operand); \
}
FOR_EACH_UNARY_OP(ALLOCATE_USE_DEFS_FOR_UNARY_OP)
#undef ALLOCATE_USE_DEFS_FOR_UNARY_OP
#undef FOR_EACH_UNARY_OP
#define FOR_EACH_BINARY_OP(macro) \
macro(OpAdd) \
macro(OpMul) \
macro(OpSub) \
macro(OpEq) \
macro(OpNeq) \
macro(OpLess) \
macro(OpLesseq) \
macro(OpGreater) \
macro(OpGreatereq) \
macro(OpLshift) \
macro(OpRshift) \
macro(OpUrshift) \
macro(OpBitand) \
macro(OpBitor) \
macro(OpBitxor)
#define ALLOCATE_USE_DEFS_FOR_BINARY_OP(Struct) \
template<typename Backend> \
auto RegisterAllocator<Backend>::allocate(Backend& jit, const Struct& instruction, BytecodeIndex index) \
{ \
return allocateBinaryOp(jit, instruction, index); \
}
FOR_EACH_BINARY_OP(ALLOCATE_USE_DEFS_FOR_BINARY_OP)
#undef ALLOCATE_USE_DEFS_FOR_BINARY_OP
#undef FOR_EACH_BINARY_OP
template<typename Backend>
auto RegisterAllocator<Backend>::allocate(Backend& jit, const OpPutToScope& instruction, BytecodeIndex index)
{
std::array<VirtualRegister, 2> uses = { instruction.m_scope, instruction.m_value };
std::array<VirtualRegister, 0> defs = { };
return allocateImpl<1>(jit, instruction, index, uses, defs); // 1 scratch for metadata
}
} // namespace JSC
#endif
|