1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
|
/*
* Copyright (C) 2024, 2025 Igalia S.L.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "ImageBufferSkiaAcceleratedBackend.h"
#if USE(SKIA)
#include "FontRenderOptions.h"
#include "GLContext.h"
#include "GLFence.h"
#include "GraphicsContextSkia.h"
#include "IntRect.h"
#include "NativeImage.h"
#include "PixelBuffer.h"
#include "PixelBufferConversion.h"
#include "PlatformDisplay.h"
#include "ProcessCapabilities.h"
#include "SkiaRecordingResult.h"
#include "SkiaReplayCanvas.h"
WTF_IGNORE_WARNINGS_IN_THIRD_PARTY_CODE_BEGIN
#include <skia/core/SkPixmap.h>
#include <skia/gpu/ganesh/GrBackendSurface.h>
#include <skia/gpu/ganesh/SkSurfaceGanesh.h>
#include <skia/utils/SkNWayCanvas.h>
WTF_IGNORE_WARNINGS_IN_THIRD_PARTY_CODE_END
#include <wtf/TZoneMallocInlines.h>
#if USE(COORDINATED_GRAPHICS)
#include "BitmapTexture.h"
#include "CoordinatedPlatformLayerBufferNativeImage.h"
#include "CoordinatedPlatformLayerBufferRGB.h"
#include "GraphicsLayerContentsDisplayDelegateCoordinated.h"
#include "TextureMapperFlags.h"
#endif
namespace WebCore {
// A canvas proxy that delegates all drawing operations to a single target canvas,
// which can be dynamically switched. This allows GraphicsContextSkia to hold a
// reference to this canvas while the actual target (recording vs surface) changes.
class SkiaSwitchableCanvas final : public SkNWayCanvas {
WTF_MAKE_TZONE_ALLOCATED(SkiaSwitchableCanvas);
public:
explicit SkiaSwitchableCanvas(const IntSize& size)
: SkNWayCanvas(size.width(), size.height())
{
}
void switchToCanvas(SkCanvas* canvas)
{
SkNWayCanvas::removeAll();
if (canvas)
SkNWayCanvas::addCanvas(canvas);
}
};
WTF_MAKE_TZONE_ALLOCATED_IMPL(ImageBufferSkiaAcceleratedBackend);
static inline bool shouldEnableDynamicMSAA()
{
static std::once_flag onceFlag;
static bool enableDynamicMSAA = false;
std::call_once(onceFlag, [] {
if (const char* enableDynamicMSAAEnv = getenv("WEBKIT_SKIA_ENABLE_DYNAMIC_MSAA")) {
enableDynamicMSAA = *enableDynamicMSAAEnv != '0';
return;
}
#if PLATFORM(GTK)
enableDynamicMSAA = true;
#else
enableDynamicMSAA = false;
#endif
});
return enableDynamicMSAA;
}
std::unique_ptr<ImageBufferSkiaAcceleratedBackend> ImageBufferSkiaAcceleratedBackend::create(const Parameters& parameters, const ImageBufferCreationContext& creationContext)
{
IntSize backendSize = calculateSafeBackendSize(parameters);
if (backendSize.isEmpty())
return nullptr;
// We always want to accelerate the canvas when Accelerated2DCanvas setting is true, even if skia CPU is enabled.
if (parameters.purpose != RenderingPurpose::Canvas && !ProcessCapabilities::canUseAcceleratedBuffers())
return nullptr;
auto* glContext = PlatformDisplay::sharedDisplay().skiaGLContext();
if (!glContext || !glContext->makeContextCurrent())
return nullptr;
auto* grContext = PlatformDisplay::sharedDisplay().skiaGrContext();
RELEASE_ASSERT(grContext);
auto imageInfo = SkImageInfo::Make(backendSize.width(), backendSize.height(), kRGBA_8888_SkColorType, kPremul_SkAlphaType, parameters.colorSpace.platformColorSpace());
auto msaaSampleCount = PlatformDisplay::sharedDisplay().msaaSampleCount();
uint32_t flags = 0;
if (parameters.purpose == RenderingPurpose::Canvas && msaaSampleCount && shouldEnableDynamicMSAA()) {
flags |= SkSurfaceProps::kDynamicMSAA_Flag;
msaaSampleCount = 1;
}
SkSurfaceProps properties { flags, FontRenderOptions::singleton().subpixelOrder() };
auto surface = SkSurfaces::RenderTarget(grContext, skgpu::Budgeted::kNo, imageInfo, msaaSampleCount, kTopLeft_GrSurfaceOrigin, &properties);
if (!surface || !surface->getCanvas())
return nullptr;
return create(parameters, creationContext, WTF::move(surface));
}
std::unique_ptr<ImageBufferSkiaAcceleratedBackend> ImageBufferSkiaAcceleratedBackend::create(const Parameters& parameters, const ImageBufferCreationContext&, sk_sp<SkSurface>&& surface)
{
ASSERT(surface);
ASSERT(surface->getCanvas());
return std::unique_ptr<ImageBufferSkiaAcceleratedBackend>(new ImageBufferSkiaAcceleratedBackend(parameters, WTF::move(surface)));
}
ImageBufferSkiaAcceleratedBackend::ImageBufferSkiaAcceleratedBackend(const Parameters& parameters, sk_sp<SkSurface>&& surface)
: ImageBufferSkiaSurfaceBackend(parameters, WTF::move(surface), RenderingMode::Accelerated)
{
#if USE(COORDINATED_GRAPHICS)
// Use a content layer for canvas.
if (parameters.purpose == RenderingPurpose::Canvas)
m_layerContentsDisplayDelegate = GraphicsLayerContentsDisplayDelegateCoordinated::create();
#endif
}
ImageBufferSkiaAcceleratedBackend::~ImageBufferSkiaAcceleratedBackend()
{
// Unwind the surface context's save/restore stack before destruction
if (parameters().purpose == RenderingPurpose::Canvas)
m_context.unwindStateStack();
}
GraphicsContext& ImageBufferSkiaAcceleratedBackend::context()
{
if (parameters().purpose != RenderingPurpose::Canvas || !m_shouldUseCanvasRecording)
return ImageBufferSkiaSurfaceBackend::context();
ensureCanvasRecordingContext();
return *m_canvasRecordingContext;
}
void ImageBufferSkiaAcceleratedBackend::ensureCanvasRecordingContext()
{
if (m_canvasRecordingContext)
return;
// Create a switchable canvas that will delegate to either recording or surface canvas.
// GraphicsContextSkia holds a reference to this canvas, which never changes - only the
// target canvas it delegates to changes.
m_switchableCanvas = makeUnique<SkiaSwitchableCanvas>(size());
auto* recordingCanvas = m_pictureRecorder.beginRecording(size().width(), size().height());
m_switchableCanvas->switchToCanvas(recordingCanvas);
// Dont' use Canvas purpose: SkPictureRecorder is CPU-side, doesn't need GL context.
m_canvasRecordingContext = makeUnique<GraphicsContextSkia>(static_cast<SkCanvas&>(*m_switchableCanvas), RenderingMode::Accelerated, RenderingPurpose::LayerBacking);
m_canvasRecordingContext->applyDeviceScaleFactor(resolutionScale());
m_canvasRecordingContext->beginRecording();
}
void ImageBufferSkiaAcceleratedBackend::copyGraphicsState(const GraphicsContextSkia& from, GraphicsContextSkia& to)
{
const auto& fromState = from.state();
to.setFillBrush(fromState.fillBrush());
to.setFillRule(fromState.fillRule());
to.setStrokeBrush(fromState.strokeBrush());
to.setStrokeThickness(fromState.strokeThickness());
to.setStrokeStyle(fromState.strokeStyle());
to.setAlpha(fromState.alpha());
to.setCompositeOperation(fromState.compositeMode().operation, fromState.compositeMode().blendMode);
to.setImageInterpolationQuality(fromState.imageInterpolationQuality());
// Copy Skia-specific state (lineCap, lineJoin, miterLimit, lineDash)
to.m_skiaState = from.m_skiaState;
}
std::unique_ptr<GLFence> ImageBufferSkiaAcceleratedBackend::flushCanvasRecordingContextIfNeeded()
{
// Only flush if we have an active recording (not already flushed).
if (!m_canvasRecordingContext || !m_shouldUseCanvasRecording)
return nullptr;
if (!PlatformDisplay::sharedDisplay().skiaGLContext()->makeContextCurrent())
return nullptr;
// Copy the canvas state from the recording context to the base context before unwinding.
// This ensures we capture the current drawing state (fillColor, strokeColor, etc.).
if (m_canvasRecordingContext->stackSize()) {
auto& baseContext = static_cast<GraphicsContextSkia&>(ImageBufferSkiaSurfaceBackend::context());
copyGraphicsState(*m_canvasRecordingContext, baseContext);
}
// Save the current CTM before unwinding, so we can restore user transforms
// after redirecting the recording context to the base canvas
auto savedCTM = m_canvasRecordingContext->getCTM(GraphicsContext::IncludeDeviceScale::PossiblyIncludeDeviceScale);
// Unwind the state stack before finishing the recording, while the canvas is still valid
m_canvasRecordingContext->unwindStateStack();
IntRect recordRect(IntPoint(), size());
auto imageToFenceMap = m_canvasRecordingContext->endRecording();
auto picture = m_pictureRecorder.finishRecordingAsPicture();
RefPtr<SkiaRecordingResult> recording = SkiaRecordingResult::create(WTF::move(picture), WTF::move(imageToFenceMap), recordRect, RenderingMode::Accelerated, false, 1.0);
auto* canvas = m_surface->getCanvas();
if (recording->hasFences()) {
auto replayCanvas = SkiaReplayCanvas::create(size(), recording);
replayCanvas->addCanvas(canvas);
replayCanvas->picture()->playback(&replayCanvas.get());
replayCanvas->removeCanvas(canvas);
} else
recording->picture()->playback(canvas);
// Switch the switchable canvas to target the surface canvas instead of the recording canvas.
m_switchableCanvas->switchToCanvas(m_surface->getCanvas());
// The stack unwinding reset the CTM to identity, losing all user-applied transforms.
// Therefore restore the CTM that was active before unwinding.
m_canvasRecordingContext->setCTM(savedCTM);
m_shouldUseCanvasRecording = false;
auto* recordingContext = m_surface->recordingContext();
auto* grContext = recordingContext ? recordingContext->asDirectContext() : nullptr;
auto& glDisplay = PlatformDisplay::sharedDisplay().glDisplay();
if (GLFence::isSupported(glDisplay)) {
grContext->flushAndSubmit(m_surface.get(), GrSyncCpu::kNo);
if (auto fence = GLFence::create(glDisplay))
return fence;
grContext->submit(GrSyncCpu::kYes);
return nullptr;
}
grContext->flushAndSubmit(m_surface.get(), GrSyncCpu::kYes);
return nullptr;
}
void ImageBufferSkiaAcceleratedBackend::flushContext()
{
// For canvas recording, flush the recording and wait for GPU completion.
// flushCanvasRecordingContextIfNeeded() already checks m_canvasRecordingContext && m_shouldUseCanvasRecording.
if (auto fence = flushCanvasRecordingContextIfNeeded()) {
fence->serverWait();
return;
}
// Normal surface flush.
if (!m_surface)
return;
if (auto fence = GraphicsContextSkia::createAcceleratedRenderingFence(m_surface.get()))
fence->serverWait();
}
void ImageBufferSkiaAcceleratedBackend::prepareForDisplay()
{
#if USE(COORDINATED_GRAPHICS)
if (!m_layerContentsDisplayDelegate)
return;
// Flush and get fence for async GPU→display synchronization
auto fence = flushCanvasRecordingContextIfNeeded();
// If not using canvas recording (or recording already flushed), create a fence the traditional way
if (!fence)
fence = GLFence::create(PlatformDisplay::sharedDisplay().glDisplay());
auto image = createNativeImageReference();
if (!image)
return;
m_layerContentsDisplayDelegate->setDisplayBuffer(CoordinatedPlatformLayerBufferNativeImage::create(image.releaseNonNull(), WTF::move(fence)));
// Re-enable recording mode for subsequent drawing operations.
// This allows batching to occur again after each prepareForDisplay() cycle.
if (m_canvasRecordingContext) {
auto* recordingCanvas = m_pictureRecorder.beginRecording(size().width(), size().height());
m_switchableCanvas->switchToCanvas(recordingCanvas);
m_canvasRecordingContext->beginRecording();
m_shouldUseCanvasRecording = true;
// Restore state from base context to recording context
auto& baseContext = static_cast<GraphicsContextSkia&>(ImageBufferSkiaSurfaceBackend::context());
copyGraphicsState(baseContext, *m_canvasRecordingContext);
// Restore CTM from base context to recording context
m_canvasRecordingContext->setCTM(baseContext.getCTM(GraphicsContext::IncludeDeviceScale::PossiblyIncludeDeviceScale));
}
#endif
}
RefPtr<NativeImage> ImageBufferSkiaAcceleratedBackend::copyNativeImage()
{
// SkSurface uses a copy-on-write mechanism for makeImageSnapshot(), so it's
// always safe to return the SkImage without copying.
return createNativeImageReference();
}
RefPtr<NativeImage> ImageBufferSkiaAcceleratedBackend::createNativeImageReference()
{
flushCanvasRecordingContextIfNeeded();
auto* recordingContext = m_surface->recordingContext();
auto* grContext = recordingContext ? recordingContext->asDirectContext() : nullptr;
// If we're using MSAA, we need to flush the surface before calling makeImageSnapshot(),
// because that call doesn't force the MSAA resolution, which can produce outdated results
// in the resulting SkImage.
auto& display = PlatformDisplay::sharedDisplay();
if (grContext && display.msaaSampleCount() > 0 && display.skiaGLContext()->makeContextCurrent())
grContext->flush(m_surface.get());
return NativeImage::create(m_surface->makeImageSnapshot(), grContext);
}
void ImageBufferSkiaAcceleratedBackend::getPixelBuffer(const IntRect& srcRect, PixelBuffer& destination)
{
if (!PlatformDisplay::sharedDisplay().skiaGLContext()->makeContextCurrent())
return;
// CPU needs to read pixels now, wait for GPU completion.
if (auto fence = flushCanvasRecordingContextIfNeeded())
fence->serverWait();
const IntRect backendRect { { }, size() };
const auto sourceRectClipped = intersection(backendRect, srcRect);
IntRect destinationRect { IntPoint::zero(), sourceRectClipped.size() };
if (srcRect.x() < 0)
destinationRect.setX(destinationRect.x() - srcRect.x());
if (srcRect.y() < 0)
destinationRect.setY(destinationRect.y() - srcRect.y());
if (destination.size() != sourceRectClipped.size())
destination.zeroFill();
const auto destinationColorType = (destination.format().pixelFormat == PixelFormat::RGBA8)
? SkColorType::kRGBA_8888_SkColorType : SkColorType::kBGRA_8888_SkColorType;
const auto destinationAlphaType = (destination.format().alphaFormat == AlphaPremultiplication::Premultiplied)
? SkAlphaType::kPremul_SkAlphaType : SkAlphaType::kUnpremul_SkAlphaType;
auto destinationInfo = SkImageInfo::Make(destination.size().width(), destination.size().height(),
destinationColorType, destinationAlphaType, destination.format().colorSpace.platformColorSpace());
SkPixmap pixmap(destinationInfo, destination.bytes().data(), destination.size().width() * 4);
SkPixmap dstPixmap;
if (!pixmap.extractSubset(&dstPixmap, destinationRect)) [[unlikely]]
return;
m_surface->readPixels(dstPixmap, sourceRectClipped.x(), sourceRectClipped.y());
}
static std::span<uint8_t> mutableSpan(SkData* data)
{
return unsafeMakeSpan(static_cast<uint8_t*>(data->writable_data()), data->size());
}
void ImageBufferSkiaAcceleratedBackend::putPixelBuffer(const PixelBufferSourceView& pixelBuffer, const IntRect& srcRect, const IntPoint& destPoint, AlphaPremultiplication destFormat)
{
// CPU needs to write pixels now, wait for GPU completion.
if (auto fence = flushCanvasRecordingContextIfNeeded())
fence->serverWait();
UNUSED_PARAM(destFormat);
if (!PlatformDisplay::sharedDisplay().skiaGLContext()->makeContextCurrent())
return;
ASSERT(IntRect({ 0, 0 }, pixelBuffer.size()).contains(srcRect));
ASSERT(pixelBuffer.format().pixelFormat == PixelFormat::RGBA8 || pixelBuffer.format().pixelFormat == PixelFormat::BGRA8);
ASSERT(pixelBuffer.format().alphaFormat == AlphaPremultiplication::Premultiplied || pixelBuffer.format().alphaFormat == AlphaPremultiplication::Unpremultiplied);
const auto colorType = (pixelBuffer.format().pixelFormat == PixelFormat::RGBA8)
? SkColorType::kRGBA_8888_SkColorType : SkColorType::kBGRA_8888_SkColorType;
const auto alphaType = (pixelBuffer.format().alphaFormat == AlphaPremultiplication::Premultiplied)
? SkAlphaType::kPremul_SkAlphaType : SkAlphaType::kUnpremul_SkAlphaType;
const IntRect backendRect { { }, size() };
auto sourceRectClipped = intersection({ IntPoint::zero(), pixelBuffer.size() }, srcRect);
auto destinationRect = sourceRectClipped;
destinationRect.moveBy(destPoint);
if (srcRect.x() < 0)
destinationRect.setX(destinationRect.x() - srcRect.x());
if (srcRect.y() < 0)
destinationRect.setY(destinationRect.y() - srcRect.y());
destinationRect.intersect(backendRect);
sourceRectClipped.setSize(destinationRect.size());
auto pixelBufferInfo = SkImageInfo::Make(pixelBuffer.size().width(), pixelBuffer.size().height(),
colorType, alphaType, pixelBuffer.format().colorSpace.platformColorSpace());
SkPixmap pixmap(pixelBufferInfo, pixelBuffer.bytes().data(), pixelBuffer.size().width() * 4);
SkPixmap srcPixmap;
if (!pixmap.extractSubset(&srcPixmap, sourceRectClipped)) [[unlikely]]
return;
const auto destAlphaType = (destFormat == AlphaPremultiplication::Premultiplied)
? SkAlphaType::kPremul_SkAlphaType : SkAlphaType::kUnpremul_SkAlphaType;
// If all the pixels in the source rectangle are opaque, it does not matter which kind
// of alpha is involved: the destination pixels will be replaced by the source ones.
if (m_surface->imageInfo().alphaType() == destAlphaType || srcPixmap.computeIsOpaque()) {
m_surface->writePixels(srcPixmap, destinationRect.x(), destinationRect.y());
return;
}
// Fall back to converting, but only the part covered by sourceRectClipped/srcPixmap.
auto data = SkData::MakeUninitialized(srcPixmap.computeByteSize());
ImageBufferBackend::putPixelBuffer(pixelBuffer, sourceRectClipped, IntPoint::zero(), destFormat, mutableSpan(data.get()));
auto convertedSrcInfo = SkImageInfo::Make(srcPixmap.dimensions(), SkColorType::kBGRA_8888_SkColorType,
SkAlphaType::kPremul_SkAlphaType, colorSpace().platformColorSpace());
SkPixmap convertedSrcPixmap(convertedSrcInfo, data->writable_data(), convertedSrcInfo.minRowBytes64());
m_surface->writePixels(convertedSrcPixmap, destinationRect.x(), destinationRect.y());
}
#if USE(COORDINATED_GRAPHICS)
RefPtr<GraphicsLayerContentsDisplayDelegate> ImageBufferSkiaAcceleratedBackend::layerContentsDisplayDelegate() const
{
return m_layerContentsDisplayDelegate;
}
#endif
} // namespace WebCore
#endif // USE(SKIA)
|