1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
|
/*
* Copyright (C) 2008, 2012, 2014 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef MacroAssemblerX86_64_h
#define MacroAssemblerX86_64_h
#if ENABLE(ASSEMBLER) && CPU(X86_64)
#include "MacroAssemblerX86Common.h"
#if USE(MASM_PROBE)
#include <wtf/StdLibExtras.h>
#endif
#define REPTACH_OFFSET_CALL_R11 3
inline bool CAN_SIGN_EXTEND_32_64(int64_t value) { return value == (int64_t)(int32_t)value; }
namespace JSC {
class MacroAssemblerX86_64 : public MacroAssemblerX86Common {
public:
static const Scale ScalePtr = TimesEight;
using MacroAssemblerX86Common::add32;
using MacroAssemblerX86Common::and32;
using MacroAssemblerX86Common::branchAdd32;
using MacroAssemblerX86Common::or32;
using MacroAssemblerX86Common::sub32;
using MacroAssemblerX86Common::load8;
using MacroAssemblerX86Common::load32;
using MacroAssemblerX86Common::store32;
using MacroAssemblerX86Common::store8;
using MacroAssemblerX86Common::call;
using MacroAssemblerX86Common::jump;
using MacroAssemblerX86Common::addDouble;
using MacroAssemblerX86Common::loadDouble;
using MacroAssemblerX86Common::convertInt32ToDouble;
void add32(TrustedImm32 imm, AbsoluteAddress address)
{
move(TrustedImmPtr(address.m_ptr), scratchRegister);
add32(imm, Address(scratchRegister));
}
void and32(TrustedImm32 imm, AbsoluteAddress address)
{
move(TrustedImmPtr(address.m_ptr), scratchRegister);
and32(imm, Address(scratchRegister));
}
void add32(AbsoluteAddress address, RegisterID dest)
{
move(TrustedImmPtr(address.m_ptr), scratchRegister);
add32(Address(scratchRegister), dest);
}
void or32(TrustedImm32 imm, AbsoluteAddress address)
{
move(TrustedImmPtr(address.m_ptr), scratchRegister);
or32(imm, Address(scratchRegister));
}
void or32(RegisterID reg, AbsoluteAddress address)
{
move(TrustedImmPtr(address.m_ptr), scratchRegister);
or32(reg, Address(scratchRegister));
}
void sub32(TrustedImm32 imm, AbsoluteAddress address)
{
move(TrustedImmPtr(address.m_ptr), scratchRegister);
sub32(imm, Address(scratchRegister));
}
void load8(const void* address, RegisterID dest)
{
move(TrustedImmPtr(address), dest);
load8(dest, dest);
}
void load32(const void* address, RegisterID dest)
{
if (dest == X86Registers::eax)
m_assembler.movl_mEAX(address);
else {
move(TrustedImmPtr(address), dest);
load32(dest, dest);
}
}
void addDouble(AbsoluteAddress address, FPRegisterID dest)
{
move(TrustedImmPtr(address.m_ptr), scratchRegister);
m_assembler.addsd_mr(0, scratchRegister, dest);
}
void convertInt32ToDouble(TrustedImm32 imm, FPRegisterID dest)
{
move(imm, scratchRegister);
m_assembler.cvtsi2sd_rr(scratchRegister, dest);
}
void store32(TrustedImm32 imm, void* address)
{
move(TrustedImmPtr(address), scratchRegister);
store32(imm, scratchRegister);
}
void store32(RegisterID source, void* address)
{
if (source == X86Registers::eax)
m_assembler.movl_EAXm(address);
else {
move(TrustedImmPtr(address), scratchRegister);
store32(source, scratchRegister);
}
}
void store8(TrustedImm32 imm, void* address)
{
move(TrustedImmPtr(address), scratchRegister);
store8(imm, Address(scratchRegister));
}
void store8(RegisterID reg, void* address)
{
move(TrustedImmPtr(address), scratchRegister);
store8(reg, Address(scratchRegister));
}
#if OS(WINDOWS)
Call callWithSlowPathReturnType()
{
// On Win64, when the return type is larger than 8 bytes, we need to allocate space on the stack for the return value.
// On entry, rcx should contain a pointer to this stack space. The other parameters are shifted to the right,
// rdx should contain the first argument, r8 should contain the second argument, and r9 should contain the third argument.
// On return, rax contains a pointer to this stack value. See http://msdn.microsoft.com/en-us/library/7572ztz4.aspx.
// We then need to copy the 16 byte return value into rax and rdx, since JIT expects the return value to be split between the two.
// It is assumed that the parameters are already shifted to the right, when entering this method.
// Note: this implementation supports up to 3 parameters.
// JIT relies on the CallerFrame (frame pointer) being put on the stack,
// On Win64 we need to manually copy the frame pointer to the stack, since MSVC may not maintain a frame pointer on 64-bit.
// See http://msdn.microsoft.com/en-us/library/9z1stfyw.aspx where it's stated that rbp MAY be used as a frame pointer.
store64(X86Registers::ebp, Address(X86Registers::esp, -16));
// We also need to allocate the shadow space on the stack for the 4 parameter registers.
// In addition, we need to allocate 16 bytes for the return value.
// Also, we should allocate 16 bytes for the frame pointer, and return address (not populated).
sub64(TrustedImm32(8 * sizeof(int64_t)), X86Registers::esp);
// The first parameter register should contain a pointer to the stack allocated space for the return value.
move(X86Registers::esp, X86Registers::ecx);
add64(TrustedImm32(4 * sizeof(int64_t)), X86Registers::ecx);
DataLabelPtr label = moveWithPatch(TrustedImmPtr(0), scratchRegister);
Call result = Call(m_assembler.call(scratchRegister), Call::Linkable);
add64(TrustedImm32(8 * sizeof(int64_t)), X86Registers::esp);
// Copy the return value into rax and rdx.
load64(Address(X86Registers::eax, sizeof(int64_t)), X86Registers::edx);
load64(Address(X86Registers::eax), X86Registers::eax);
ASSERT_UNUSED(label, differenceBetween(label, result) == REPTACH_OFFSET_CALL_R11);
return result;
}
#endif
Call call()
{
#if OS(WINDOWS)
// JIT relies on the CallerFrame (frame pointer) being put on the stack,
// On Win64 we need to manually copy the frame pointer to the stack, since MSVC may not maintain a frame pointer on 64-bit.
// See http://msdn.microsoft.com/en-us/library/9z1stfyw.aspx where it's stated that rbp MAY be used as a frame pointer.
store64(X86Registers::ebp, Address(X86Registers::esp, -16));
// On Windows we need to copy the arguments that don't fit in registers to the stack location where the callee expects to find them.
// We don't know the number of arguments at this point, so the arguments (5, 6, ...) should always be copied.
// Copy argument 5
load64(Address(X86Registers::esp, 4 * sizeof(int64_t)), scratchRegister);
store64(scratchRegister, Address(X86Registers::esp, -4 * sizeof(int64_t)));
// Copy argument 6
load64(Address(X86Registers::esp, 5 * sizeof(int64_t)), scratchRegister);
store64(scratchRegister, Address(X86Registers::esp, -3 * sizeof(int64_t)));
// We also need to allocate the shadow space on the stack for the 4 parameter registers.
// Also, we should allocate 16 bytes for the frame pointer, and return address (not populated).
// In addition, we need to allocate 16 bytes for two more parameters, since the call can have up to 6 parameters.
sub64(TrustedImm32(8 * sizeof(int64_t)), X86Registers::esp);
#endif
DataLabelPtr label = moveWithPatch(TrustedImmPtr(0), scratchRegister);
Call result = Call(m_assembler.call(scratchRegister), Call::Linkable);
#if OS(WINDOWS)
add64(TrustedImm32(8 * sizeof(int64_t)), X86Registers::esp);
#endif
ASSERT_UNUSED(label, differenceBetween(label, result) == REPTACH_OFFSET_CALL_R11);
return result;
}
// Address is a memory location containing the address to jump to
void jump(AbsoluteAddress address)
{
move(TrustedImmPtr(address.m_ptr), scratchRegister);
jump(Address(scratchRegister));
}
Call tailRecursiveCall()
{
DataLabelPtr label = moveWithPatch(TrustedImmPtr(0), scratchRegister);
Jump newJump = Jump(m_assembler.jmp_r(scratchRegister));
ASSERT_UNUSED(label, differenceBetween(label, newJump) == REPTACH_OFFSET_CALL_R11);
return Call::fromTailJump(newJump);
}
Call makeTailRecursiveCall(Jump oldJump)
{
oldJump.link(this);
DataLabelPtr label = moveWithPatch(TrustedImmPtr(0), scratchRegister);
Jump newJump = Jump(m_assembler.jmp_r(scratchRegister));
ASSERT_UNUSED(label, differenceBetween(label, newJump) == REPTACH_OFFSET_CALL_R11);
return Call::fromTailJump(newJump);
}
Jump branchAdd32(ResultCondition cond, TrustedImm32 src, AbsoluteAddress dest)
{
move(TrustedImmPtr(dest.m_ptr), scratchRegister);
add32(src, Address(scratchRegister));
return Jump(m_assembler.jCC(x86Condition(cond)));
}
void add64(RegisterID src, RegisterID dest)
{
m_assembler.addq_rr(src, dest);
}
void add64(Address src, RegisterID dest)
{
m_assembler.addq_mr(src.offset, src.base, dest);
}
void add64(AbsoluteAddress src, RegisterID dest)
{
move(TrustedImmPtr(src.m_ptr), scratchRegister);
add64(Address(scratchRegister), dest);
}
void add64(TrustedImm32 imm, RegisterID srcDest)
{
if (imm.m_value == 1)
m_assembler.incq_r(srcDest);
else
m_assembler.addq_ir(imm.m_value, srcDest);
}
void add64(TrustedImm64 imm, RegisterID dest)
{
if (imm.m_value == 1)
m_assembler.incq_r(dest);
else {
move(imm, scratchRegister);
add64(scratchRegister, dest);
}
}
void add64(TrustedImm32 imm, RegisterID src, RegisterID dest)
{
m_assembler.leaq_mr(imm.m_value, src, dest);
}
void add64(TrustedImm32 imm, Address address)
{
m_assembler.addq_im(imm.m_value, address.offset, address.base);
}
void add64(TrustedImm32 imm, AbsoluteAddress address)
{
move(TrustedImmPtr(address.m_ptr), scratchRegister);
add64(imm, Address(scratchRegister));
}
void addPtrNoFlags(TrustedImm32 imm, RegisterID srcDest)
{
m_assembler.leaq_mr(imm.m_value, srcDest, srcDest);
}
void and64(RegisterID src, RegisterID dest)
{
m_assembler.andq_rr(src, dest);
}
void and64(TrustedImm32 imm, RegisterID srcDest)
{
m_assembler.andq_ir(imm.m_value, srcDest);
}
void and64(TrustedImmPtr imm, RegisterID srcDest)
{
move(imm, scratchRegister);
and64(scratchRegister, srcDest);
}
void lshift64(TrustedImm32 imm, RegisterID dest)
{
m_assembler.shlq_i8r(imm.m_value, dest);
}
void rshift64(TrustedImm32 imm, RegisterID dest)
{
m_assembler.sarq_i8r(imm.m_value, dest);
}
void mul64(RegisterID src, RegisterID dest)
{
m_assembler.imulq_rr(src, dest);
}
void neg64(RegisterID dest)
{
m_assembler.negq_r(dest);
}
void or64(RegisterID src, RegisterID dest)
{
m_assembler.orq_rr(src, dest);
}
void or64(TrustedImm64 imm, RegisterID dest)
{
move(imm, scratchRegister);
or64(scratchRegister, dest);
}
void or64(TrustedImm32 imm, RegisterID dest)
{
m_assembler.orq_ir(imm.m_value, dest);
}
void or64(RegisterID op1, RegisterID op2, RegisterID dest)
{
if (op1 == op2)
move(op1, dest);
else if (op1 == dest)
or64(op2, dest);
else {
move(op2, dest);
or64(op1, dest);
}
}
void or64(TrustedImm32 imm, RegisterID src, RegisterID dest)
{
move(src, dest);
or64(imm, dest);
}
void rotateRight64(TrustedImm32 imm, RegisterID srcDst)
{
m_assembler.rorq_i8r(imm.m_value, srcDst);
}
void sub64(RegisterID src, RegisterID dest)
{
m_assembler.subq_rr(src, dest);
}
void sub64(TrustedImm32 imm, RegisterID dest)
{
if (imm.m_value == 1)
m_assembler.decq_r(dest);
else
m_assembler.subq_ir(imm.m_value, dest);
}
void sub64(TrustedImm64 imm, RegisterID dest)
{
if (imm.m_value == 1)
m_assembler.decq_r(dest);
else {
move(imm, scratchRegister);
sub64(scratchRegister, dest);
}
}
void xor64(RegisterID src, RegisterID dest)
{
m_assembler.xorq_rr(src, dest);
}
void xor64(RegisterID src, Address dest)
{
m_assembler.xorq_rm(src, dest.offset, dest.base);
}
void xor64(TrustedImm32 imm, RegisterID srcDest)
{
m_assembler.xorq_ir(imm.m_value, srcDest);
}
void load64(ImplicitAddress address, RegisterID dest)
{
m_assembler.movq_mr(address.offset, address.base, dest);
}
void load64(BaseIndex address, RegisterID dest)
{
m_assembler.movq_mr(address.offset, address.base, address.index, address.scale, dest);
}
void load64(const void* address, RegisterID dest)
{
if (dest == X86Registers::eax)
m_assembler.movq_mEAX(address);
else {
move(TrustedImmPtr(address), dest);
load64(dest, dest);
}
}
DataLabel32 load64WithAddressOffsetPatch(Address address, RegisterID dest)
{
padBeforePatch();
m_assembler.movq_mr_disp32(address.offset, address.base, dest);
return DataLabel32(this);
}
DataLabelCompact load64WithCompactAddressOffsetPatch(Address address, RegisterID dest)
{
padBeforePatch();
m_assembler.movq_mr_disp8(address.offset, address.base, dest);
return DataLabelCompact(this);
}
void store64(RegisterID src, ImplicitAddress address)
{
m_assembler.movq_rm(src, address.offset, address.base);
}
void store64(RegisterID src, BaseIndex address)
{
m_assembler.movq_rm(src, address.offset, address.base, address.index, address.scale);
}
void store64(RegisterID src, void* address)
{
if (src == X86Registers::eax)
m_assembler.movq_EAXm(address);
else {
move(TrustedImmPtr(address), scratchRegister);
store64(src, scratchRegister);
}
}
void store64(TrustedImm64 imm, ImplicitAddress address)
{
if (CAN_SIGN_EXTEND_32_64(imm.m_value))
m_assembler.movq_i32m(static_cast<int>(imm.m_value), address.offset, address.base);
else {
move(imm, scratchRegister);
store64(scratchRegister, address);
}
}
void store64(TrustedImm64 imm, BaseIndex address)
{
move(imm, scratchRegister);
m_assembler.movq_rm(scratchRegister, address.offset, address.base, address.index, address.scale);
}
DataLabel32 store64WithAddressOffsetPatch(RegisterID src, Address address)
{
padBeforePatch();
m_assembler.movq_rm_disp32(src, address.offset, address.base);
return DataLabel32(this);
}
void move64ToDouble(RegisterID src, FPRegisterID dest)
{
m_assembler.movq_rr(src, dest);
}
void moveDoubleTo64(FPRegisterID src, RegisterID dest)
{
m_assembler.movq_rr(src, dest);
}
void compare64(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest)
{
if (((cond == Equal) || (cond == NotEqual)) && !right.m_value)
m_assembler.testq_rr(left, left);
else
m_assembler.cmpq_ir(right.m_value, left);
m_assembler.setCC_r(x86Condition(cond), dest);
m_assembler.movzbl_rr(dest, dest);
}
void compare64(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID dest)
{
m_assembler.cmpq_rr(right, left);
m_assembler.setCC_r(x86Condition(cond), dest);
m_assembler.movzbl_rr(dest, dest);
}
Jump branch64(RelationalCondition cond, RegisterID left, RegisterID right)
{
m_assembler.cmpq_rr(right, left);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branch64(RelationalCondition cond, RegisterID left, TrustedImm64 right)
{
if (((cond == Equal) || (cond == NotEqual)) && !right.m_value) {
m_assembler.testq_rr(left, left);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
move(right, scratchRegister);
return branch64(cond, left, scratchRegister);
}
Jump branch64(RelationalCondition cond, RegisterID left, Address right)
{
m_assembler.cmpq_mr(right.offset, right.base, left);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branch64(RelationalCondition cond, AbsoluteAddress left, RegisterID right)
{
move(TrustedImmPtr(left.m_ptr), scratchRegister);
return branch64(cond, Address(scratchRegister), right);
}
Jump branch64(RelationalCondition cond, Address left, RegisterID right)
{
m_assembler.cmpq_rm(right, left.offset, left.base);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branch64(RelationalCondition cond, Address left, TrustedImm64 right)
{
move(right, scratchRegister);
return branch64(cond, left, scratchRegister);
}
Jump branch64(RelationalCondition cond, BaseIndex address, RegisterID right)
{
m_assembler.cmpq_rm(right, address.offset, address.base, address.index, address.scale);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchPtr(RelationalCondition cond, BaseIndex left, RegisterID right)
{
return branch64(cond, left, right);
}
Jump branchPtr(RelationalCondition cond, BaseIndex left, TrustedImmPtr right)
{
move(right, scratchRegister);
return branchPtr(cond, left, scratchRegister);
}
Jump branchTest64(ResultCondition cond, RegisterID reg, RegisterID mask)
{
m_assembler.testq_rr(reg, mask);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchTest64(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1))
{
// if we are only interested in the low seven bits, this can be tested with a testb
if (mask.m_value == -1)
m_assembler.testq_rr(reg, reg);
else if ((mask.m_value & ~0x7f) == 0)
m_assembler.testb_i8r(mask.m_value, reg);
else
m_assembler.testq_i32r(mask.m_value, reg);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
void test64(ResultCondition cond, RegisterID reg, TrustedImm32 mask, RegisterID dest)
{
if (mask.m_value == -1)
m_assembler.testq_rr(reg, reg);
else if ((mask.m_value & ~0x7f) == 0)
m_assembler.testb_i8r(mask.m_value, reg);
else
m_assembler.testq_i32r(mask.m_value, reg);
set32(x86Condition(cond), dest);
}
void test64(ResultCondition cond, RegisterID reg, RegisterID mask, RegisterID dest)
{
m_assembler.testq_rr(reg, mask);
set32(x86Condition(cond), dest);
}
Jump branchTest64(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1))
{
load64(address.m_ptr, scratchRegister);
return branchTest64(cond, scratchRegister, mask);
}
Jump branchTest64(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1))
{
if (mask.m_value == -1)
m_assembler.cmpq_im(0, address.offset, address.base);
else
m_assembler.testq_i32m(mask.m_value, address.offset, address.base);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchTest64(ResultCondition cond, Address address, RegisterID reg)
{
m_assembler.testq_rm(reg, address.offset, address.base);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchTest64(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1))
{
if (mask.m_value == -1)
m_assembler.cmpq_im(0, address.offset, address.base, address.index, address.scale);
else
m_assembler.testq_i32m(mask.m_value, address.offset, address.base, address.index, address.scale);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchAdd64(ResultCondition cond, TrustedImm32 imm, RegisterID dest)
{
add64(imm, dest);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchAdd64(ResultCondition cond, RegisterID src, RegisterID dest)
{
add64(src, dest);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchMul64(ResultCondition cond, RegisterID src, RegisterID dest)
{
mul64(src, dest);
if (cond != Overflow)
m_assembler.testq_rr(dest, dest);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchSub64(ResultCondition cond, TrustedImm32 imm, RegisterID dest)
{
sub64(imm, dest);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchSub64(ResultCondition cond, RegisterID src, RegisterID dest)
{
sub64(src, dest);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchSub64(ResultCondition cond, RegisterID src1, TrustedImm32 src2, RegisterID dest)
{
move(src1, dest);
return branchSub64(cond, src2, dest);
}
Jump branchNeg64(ResultCondition cond, RegisterID srcDest)
{
neg64(srcDest);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
void abortWithReason(AbortReason reason)
{
move(TrustedImm32(reason), X86Registers::r11);
breakpoint();
}
void abortWithReason(AbortReason reason, intptr_t misc)
{
move(TrustedImm64(misc), X86Registers::r10);
abortWithReason(reason);
}
ConvertibleLoadLabel convertibleLoadPtr(Address address, RegisterID dest)
{
ConvertibleLoadLabel result = ConvertibleLoadLabel(this);
m_assembler.movq_mr(address.offset, address.base, dest);
return result;
}
DataLabelPtr moveWithPatch(TrustedImmPtr initialValue, RegisterID dest)
{
padBeforePatch();
m_assembler.movq_i64r(initialValue.asIntptr(), dest);
return DataLabelPtr(this);
}
DataLabelPtr moveWithPatch(TrustedImm32 initialValue, RegisterID dest)
{
padBeforePatch();
m_assembler.movq_i64r(initialValue.m_value, dest);
return DataLabelPtr(this);
}
Jump branchPtrWithPatch(RelationalCondition cond, RegisterID left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0))
{
dataLabel = moveWithPatch(initialRightValue, scratchRegister);
return branch64(cond, left, scratchRegister);
}
Jump branchPtrWithPatch(RelationalCondition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0))
{
dataLabel = moveWithPatch(initialRightValue, scratchRegister);
return branch64(cond, left, scratchRegister);
}
Jump branch32WithPatch(RelationalCondition cond, Address left, DataLabel32& dataLabel, TrustedImm32 initialRightValue = TrustedImm32(0))
{
padBeforePatch();
m_assembler.movl_i32r(initialRightValue.m_value, scratchRegister);
dataLabel = DataLabel32(this);
return branch32(cond, left, scratchRegister);
}
DataLabelPtr storePtrWithPatch(TrustedImmPtr initialValue, ImplicitAddress address)
{
DataLabelPtr label = moveWithPatch(initialValue, scratchRegister);
store64(scratchRegister, address);
return label;
}
using MacroAssemblerX86Common::branch8;
Jump branch8(RelationalCondition cond, AbsoluteAddress left, TrustedImm32 right)
{
MacroAssemblerX86Common::move(TrustedImmPtr(left.m_ptr), scratchRegister);
return MacroAssemblerX86Common::branch8(cond, Address(scratchRegister), right);
}
using MacroAssemblerX86Common::branchTest8;
Jump branchTest8(ResultCondition cond, ExtendedAddress address, TrustedImm32 mask = TrustedImm32(-1))
{
TrustedImmPtr addr(reinterpret_cast<void*>(address.offset));
MacroAssemblerX86Common::move(addr, scratchRegister);
return MacroAssemblerX86Common::branchTest8(cond, BaseIndex(scratchRegister, address.base, TimesOne), mask);
}
Jump branchTest8(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1))
{
MacroAssemblerX86Common::move(TrustedImmPtr(address.m_ptr), scratchRegister);
return MacroAssemblerX86Common::branchTest8(cond, Address(scratchRegister), mask);
}
void convertInt64ToDouble(RegisterID src, FPRegisterID dest)
{
m_assembler.cvtsi2sdq_rr(src, dest);
}
static bool supportsFloatingPoint() { return true; }
// See comment on MacroAssemblerARMv7::supportsFloatingPointTruncate()
static bool supportsFloatingPointTruncate() { return true; }
static bool supportsFloatingPointSqrt() { return true; }
static bool supportsFloatingPointAbs() { return true; }
static FunctionPtr readCallTarget(CodeLocationCall call)
{
return FunctionPtr(X86Assembler::readPointer(call.dataLabelPtrAtOffset(-REPTACH_OFFSET_CALL_R11).dataLocation()));
}
static bool haveScratchRegisterForBlinding() { return true; }
static RegisterID scratchRegisterForBlinding() { return scratchRegister; }
static bool canJumpReplacePatchableBranchPtrWithPatch() { return true; }
static bool canJumpReplacePatchableBranch32WithPatch() { return true; }
static CodeLocationLabel startOfBranchPtrWithPatchOnRegister(CodeLocationDataLabelPtr label)
{
const int rexBytes = 1;
const int opcodeBytes = 1;
const int immediateBytes = 8;
const int totalBytes = rexBytes + opcodeBytes + immediateBytes;
ASSERT(totalBytes >= maxJumpReplacementSize());
return label.labelAtOffset(-totalBytes);
}
static CodeLocationLabel startOfBranch32WithPatchOnRegister(CodeLocationDataLabel32 label)
{
const int rexBytes = 1;
const int opcodeBytes = 1;
const int immediateBytes = 4;
const int totalBytes = rexBytes + opcodeBytes + immediateBytes;
ASSERT(totalBytes >= maxJumpReplacementSize());
return label.labelAtOffset(-totalBytes);
}
static CodeLocationLabel startOfPatchableBranchPtrWithPatchOnAddress(CodeLocationDataLabelPtr label)
{
return startOfBranchPtrWithPatchOnRegister(label);
}
static CodeLocationLabel startOfPatchableBranch32WithPatchOnAddress(CodeLocationDataLabel32 label)
{
return startOfBranch32WithPatchOnRegister(label);
}
static void revertJumpReplacementToPatchableBranchPtrWithPatch(CodeLocationLabel instructionStart, Address, void* initialValue)
{
X86Assembler::revertJumpTo_movq_i64r(instructionStart.executableAddress(), reinterpret_cast<intptr_t>(initialValue), scratchRegister);
}
static void revertJumpReplacementToPatchableBranch32WithPatch(CodeLocationLabel instructionStart, Address, int32_t initialValue)
{
X86Assembler::revertJumpTo_movl_i32r(instructionStart.executableAddress(), initialValue, scratchRegister);
}
static void revertJumpReplacementToBranchPtrWithPatch(CodeLocationLabel instructionStart, RegisterID, void* initialValue)
{
X86Assembler::revertJumpTo_movq_i64r(instructionStart.executableAddress(), reinterpret_cast<intptr_t>(initialValue), scratchRegister);
}
#if USE(MASM_PROBE)
// This function emits code to preserve the CPUState (e.g. registers),
// call a user supplied probe function, and restore the CPUState before
// continuing with other JIT generated code.
//
// The user supplied probe function will be called with a single pointer to
// a ProbeContext struct (defined above) which contains, among other things,
// the preserved CPUState. This allows the user probe function to inspect
// the CPUState at that point in the JIT generated code.
//
// If the user probe function alters the register values in the ProbeContext,
// the altered values will be loaded into the CPU registers when the probe
// returns.
//
// The ProbeContext is stack allocated and is only valid for the duration
// of the call to the user probe function.
void probe(ProbeFunction, void* arg1 = 0, void* arg2 = 0);
#endif // USE(MASM_PROBE)
private:
friend class LinkBuffer;
friend class RepatchBuffer;
static void linkCall(void* code, Call call, FunctionPtr function)
{
if (!call.isFlagSet(Call::Near))
X86Assembler::linkPointer(code, call.m_label.labelAtOffset(-REPTACH_OFFSET_CALL_R11), function.value());
else
X86Assembler::linkCall(code, call.m_label, function.value());
}
static void repatchCall(CodeLocationCall call, CodeLocationLabel destination)
{
X86Assembler::repatchPointer(call.dataLabelPtrAtOffset(-REPTACH_OFFSET_CALL_R11).dataLocation(), destination.executableAddress());
}
static void repatchCall(CodeLocationCall call, FunctionPtr destination)
{
X86Assembler::repatchPointer(call.dataLabelPtrAtOffset(-REPTACH_OFFSET_CALL_R11).dataLocation(), destination.executableAddress());
}
#if USE(MASM_PROBE)
inline TrustedImm64 trustedImm64FromPtr(void* ptr)
{
return TrustedImm64(TrustedImmPtr(ptr));
}
inline TrustedImm64 trustedImm64FromPtr(ProbeFunction function)
{
return TrustedImm64(TrustedImmPtr(reinterpret_cast<void*>(function)));
}
inline TrustedImm64 trustedImm64FromPtr(void (*function)())
{
return TrustedImm64(TrustedImmPtr(reinterpret_cast<void*>(function)));
}
#endif
};
#if USE(MASM_PROBE)
extern "C" void ctiMasmProbeTrampoline();
// What code is emitted for the probe?
// ==================================
// We want to keep the size of the emitted probe invocation code as compact as
// possible to minimize the perturbation to the JIT generated code. However,
// we also need to preserve the CPU registers and set up the ProbeContext to be
// passed to the user probe function.
//
// Hence, we do only the minimum here to preserve a scratch register (i.e. rax
// in this case) and the stack pointer (i.e. rsp), and pass the probe arguments.
// We'll let the ctiMasmProbeTrampoline handle the rest of the probe invocation
// work i.e. saving the CPUState (and setting up the ProbeContext), calling the
// user probe function, and restoring the CPUState before returning to JIT
// generated code.
//
// What values are in the saved registers?
// ======================================
// Conceptually, the saved registers should contain values as if the probe
// is not present in the JIT generated code. Hence, they should contain values
// that are expected at the start of the instruction immediately following the
// probe.
//
// Specifcally, the saved stack pointer register will point to the stack
// position before we push the ProbeContext frame. The saved rip will point to
// the address of the instruction immediately following the probe.
inline void MacroAssemblerX86_64::probe(MacroAssemblerX86_64::ProbeFunction function, void* arg1, void* arg2)
{
push(RegisterID::esp);
push(RegisterID::eax);
move(trustedImm64FromPtr(arg2), RegisterID::eax);
push(RegisterID::eax);
move(trustedImm64FromPtr(arg1), RegisterID::eax);
push(RegisterID::eax);
move(trustedImm64FromPtr(function), RegisterID::eax);
push(RegisterID::eax);
move(trustedImm64FromPtr(ctiMasmProbeTrampoline), RegisterID::eax);
call(RegisterID::eax);
}
#endif // USE(MASM_PROBE)
} // namespace JSC
#endif // ENABLE(ASSEMBLER)
#endif // MacroAssemblerX86_64_h
|