File: CodeBlock.h

package info (click to toggle)
webkit2gtk 2.6.2%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 115,572 kB
  • ctags: 216,388
  • sloc: cpp: 1,164,175; ansic: 18,422; perl: 16,884; python: 11,608; ruby: 9,409; xml: 8,376; asm: 4,765; yacc: 2,292; lex: 891; sh: 650; makefile: 79
file content (1319 lines) | stat: -rw-r--r-- 50,248 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
/*
 * Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013, 2014 Apple Inc. All rights reserved.
 * Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca>
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1.  Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 * 2.  Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 * 3.  Neither the name of Apple Inc. ("Apple") nor the names of
 *     its contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef CodeBlock_h
#define CodeBlock_h

#include "ArrayProfile.h"
#include "ByValInfo.h"
#include "BytecodeConventions.h"
#include "BytecodeLivenessAnalysis.h"
#include "CallLinkInfo.h"
#include "CallReturnOffsetToBytecodeOffset.h"
#include "CodeBlockHash.h"
#include "CodeBlockSet.h"
#include "ConcurrentJITLock.h"
#include "CodeOrigin.h"
#include "CodeType.h"
#include "CompactJITCodeMap.h"
#include "DFGCommon.h"
#include "DFGCommonData.h"
#include "DFGExitProfile.h"
#include "DeferredCompilationCallback.h"
#include "EvalCodeCache.h"
#include "ExecutionCounter.h"
#include "ExpressionRangeInfo.h"
#include "HandlerInfo.h"
#include "ObjectAllocationProfile.h"
#include "Options.h"
#include "PutPropertySlot.h"
#include "Instruction.h"
#include "JITCode.h"
#include "JITWriteBarrier.h"
#include "JSGlobalObject.h"
#include "JumpTable.h"
#include "LLIntCallLinkInfo.h"
#include "LazyOperandValueProfile.h"
#include "ProfilerCompilation.h"
#include "ProfilerJettisonReason.h"
#include "RegExpObject.h"
#include "StructureStubInfo.h"
#include "UnconditionalFinalizer.h"
#include "ValueProfile.h"
#include "VirtualRegister.h"
#include "Watchpoint.h"
#include <wtf/Bag.h>
#include <wtf/FastMalloc.h>
#include <wtf/PassOwnPtr.h>
#include <wtf/RefCountedArray.h>
#include <wtf/RefPtr.h>
#include <wtf/SegmentedVector.h>
#include <wtf/Vector.h>
#include <wtf/text/WTFString.h>

namespace JSC {

class ExecState;
class LLIntOffsetsExtractor;
class RepatchBuffer;
class TypeLocation;

inline VirtualRegister unmodifiedArgumentsRegister(VirtualRegister argumentsRegister) { return VirtualRegister(argumentsRegister.offset() + 1); }

static ALWAYS_INLINE int missingThisObjectMarker() { return std::numeric_limits<int>::max(); }

enum ReoptimizationMode { DontCountReoptimization, CountReoptimization };

class CodeBlock : public ThreadSafeRefCounted<CodeBlock>, public UnconditionalFinalizer, public WeakReferenceHarvester {
    WTF_MAKE_FAST_ALLOCATED;
    friend class BytecodeLivenessAnalysis;
    friend class JIT;
    friend class LLIntOffsetsExtractor;
public:
    enum CopyParsedBlockTag { CopyParsedBlock };
protected:
    CodeBlock(CopyParsedBlockTag, CodeBlock& other);
        
    CodeBlock(ScriptExecutable* ownerExecutable, UnlinkedCodeBlock*, JSScope*, PassRefPtr<SourceProvider>, unsigned sourceOffset, unsigned firstLineColumnOffset);

    WriteBarrier<JSGlobalObject> m_globalObject;
    Heap* m_heap;

public:
    JS_EXPORT_PRIVATE virtual ~CodeBlock();

    UnlinkedCodeBlock* unlinkedCodeBlock() const { return m_unlinkedCode.get(); }

    CString inferredName() const;
    CodeBlockHash hash() const;
    bool hasHash() const;
    bool isSafeToComputeHash() const;
    CString hashAsStringIfPossible() const;
    CString sourceCodeForTools() const; // Not quite the actual source we parsed; this will do things like prefix the source for a function with a reified signature.
    CString sourceCodeOnOneLine() const; // As sourceCodeForTools(), but replaces all whitespace runs with a single space.
    void dumpAssumingJITType(PrintStream&, JITCode::JITType) const;
    void dump(PrintStream&) const;

    int numParameters() const { return m_numParameters; }
    void setNumParameters(int newValue);

    int* addressOfNumParameters() { return &m_numParameters; }
    static ptrdiff_t offsetOfNumParameters() { return OBJECT_OFFSETOF(CodeBlock, m_numParameters); }

    CodeBlock* alternative() { return m_alternative.get(); }
    PassRefPtr<CodeBlock> releaseAlternative() { return m_alternative.release(); }
    void setAlternative(PassRefPtr<CodeBlock> alternative) { m_alternative = alternative; }

    template <typename Functor> void forEachRelatedCodeBlock(Functor&& functor)
    {
        Functor f(std::forward<Functor>(functor));
        Vector<CodeBlock*, 4> codeBlocks;
        codeBlocks.append(this);

        while (!codeBlocks.isEmpty()) {
            CodeBlock* currentCodeBlock = codeBlocks.takeLast();
            f(currentCodeBlock);

            if (CodeBlock* alternative = currentCodeBlock->alternative())
                codeBlocks.append(alternative);
            if (CodeBlock* osrEntryBlock = currentCodeBlock->specialOSREntryBlockOrNull())
                codeBlocks.append(osrEntryBlock);
        }
    }
    
    CodeSpecializationKind specializationKind() const
    {
        return specializationFromIsConstruct(m_isConstructor);
    }
    
    CodeBlock* baselineAlternative();
    
    // FIXME: Get rid of this.
    // https://bugs.webkit.org/show_bug.cgi?id=123677
    CodeBlock* baselineVersion();

    void visitAggregate(SlotVisitor&);

    void dumpBytecode(PrintStream& = WTF::dataFile());
    void dumpBytecode(
        PrintStream&, unsigned bytecodeOffset,
        const StubInfoMap& = StubInfoMap(), const CallLinkInfoMap& = CallLinkInfoMap());
    void printStructures(PrintStream&, const Instruction*);
    void printStructure(PrintStream&, const char* name, const Instruction*, int operand);

    bool isStrictMode() const { return m_isStrictMode; }
    ECMAMode ecmaMode() const { return isStrictMode() ? StrictMode : NotStrictMode; }

    inline bool isKnownNotImmediate(int index)
    {
        if (index == m_thisRegister.offset() && !m_isStrictMode)
            return true;

        if (isConstantRegisterIndex(index))
            return getConstant(index).isCell();

        return false;
    }

    ALWAYS_INLINE bool isTemporaryRegisterIndex(int index)
    {
        return index >= m_numVars;
    }

    HandlerInfo* handlerForBytecodeOffset(unsigned bytecodeOffset);
    unsigned lineNumberForBytecodeOffset(unsigned bytecodeOffset);
    unsigned columnNumberForBytecodeOffset(unsigned bytecodeOffset);
    void expressionRangeForBytecodeOffset(unsigned bytecodeOffset, int& divot,
                                          int& startOffset, int& endOffset, unsigned& line, unsigned& column);

    void getStubInfoMap(const ConcurrentJITLocker&, StubInfoMap& result);
    void getStubInfoMap(StubInfoMap& result);
    
    void getCallLinkInfoMap(const ConcurrentJITLocker&, CallLinkInfoMap& result);
    void getCallLinkInfoMap(CallLinkInfoMap& result);
    
#if ENABLE(JIT)
    StructureStubInfo* addStubInfo();
    Bag<StructureStubInfo>::iterator stubInfoBegin() { return m_stubInfos.begin(); }
    Bag<StructureStubInfo>::iterator stubInfoEnd() { return m_stubInfos.end(); }
    
    // O(n) operation. Use getStubInfoMap() unless you really only intend to get one
    // stub info.
    StructureStubInfo* findStubInfo(CodeOrigin);

    void resetStub(StructureStubInfo&);
    
    ByValInfo& getByValInfo(unsigned bytecodeIndex)
    {
        return *(binarySearch<ByValInfo, unsigned>(m_byValInfos, m_byValInfos.size(), bytecodeIndex, getByValInfoBytecodeIndex));
    }

    CallLinkInfo* addCallLinkInfo();
    Bag<CallLinkInfo>::iterator callLinkInfosBegin() { return m_callLinkInfos.begin(); }
    Bag<CallLinkInfo>::iterator callLinkInfosEnd() { return m_callLinkInfos.end(); }

    // This is a slow function call used primarily for compiling OSR exits in the case
    // that there had been inlining. Chances are if you want to use this, you're really
    // looking for a CallLinkInfoMap to amortize the cost of calling this.
    CallLinkInfo* getCallLinkInfoForBytecodeIndex(unsigned bytecodeIndex);
#endif // ENABLE(JIT)

    void unlinkIncomingCalls();

#if ENABLE(JIT)
    void unlinkCalls();
        
    void linkIncomingCall(ExecState* callerFrame, CallLinkInfo*);
        
    bool isIncomingCallAlreadyLinked(CallLinkInfo* incoming)
    {
        return m_incomingCalls.isOnList(incoming);
    }
#endif // ENABLE(JIT)

    void linkIncomingCall(ExecState* callerFrame, LLIntCallLinkInfo*);

    void setJITCodeMap(PassOwnPtr<CompactJITCodeMap> jitCodeMap)
    {
        m_jitCodeMap = jitCodeMap;
    }
    CompactJITCodeMap* jitCodeMap()
    {
        return m_jitCodeMap.get();
    }
    
    unsigned bytecodeOffset(Instruction* returnAddress)
    {
        RELEASE_ASSERT(returnAddress >= instructions().begin() && returnAddress < instructions().end());
        return static_cast<Instruction*>(returnAddress) - instructions().begin();
    }

    bool isNumericCompareFunction() { return m_unlinkedCode->isNumericCompareFunction(); }

    unsigned numberOfInstructions() const { return m_instructions.size(); }
    RefCountedArray<Instruction>& instructions() { return m_instructions; }
    const RefCountedArray<Instruction>& instructions() const { return m_instructions; }

    size_t predictedMachineCodeSize();

    bool usesOpcode(OpcodeID);

    unsigned instructionCount() const { return m_instructions.size(); }

    int argumentIndexAfterCapture(size_t argument);
    
    bool hasSlowArguments();
    const SlowArgument* machineSlowArguments();

    // Exactly equivalent to codeBlock->ownerExecutable()->installCode(codeBlock);
    void install();
    
    // Exactly equivalent to codeBlock->ownerExecutable()->newReplacementCodeBlockFor(codeBlock->specializationKind())
    PassRefPtr<CodeBlock> newReplacement();
    
    void setJITCode(PassRefPtr<JITCode> code)
    {
        ASSERT(m_heap->isDeferred());
        m_heap->reportExtraMemoryCost(code->size());
        ConcurrentJITLocker locker(m_lock);
        WTF::storeStoreFence(); // This is probably not needed because the lock will also do something similar, but it's good to be paranoid.
        m_jitCode = code;
    }
    PassRefPtr<JITCode> jitCode() { return m_jitCode; }
    JITCode::JITType jitType() const
    {
        JITCode* jitCode = m_jitCode.get();
        WTF::loadLoadFence();
        JITCode::JITType result = JITCode::jitTypeFor(jitCode);
        WTF::loadLoadFence(); // This probably isn't needed. Oh well, paranoia is good.
        return result;
    }

    bool hasBaselineJITProfiling() const
    {
        return jitType() == JITCode::BaselineJIT;
    }
    
#if ENABLE(JIT)
    virtual CodeBlock* replacement() = 0;

    virtual DFG::CapabilityLevel capabilityLevelInternal() = 0;
    DFG::CapabilityLevel capabilityLevel();
    DFG::CapabilityLevel capabilityLevelState() { return m_capabilityLevelState; }

    bool hasOptimizedReplacement(JITCode::JITType typeToReplace);
    bool hasOptimizedReplacement(); // the typeToReplace is my JITType
#endif

    void jettison(Profiler::JettisonReason, ReoptimizationMode = DontCountReoptimization, const FireDetail* = nullptr);
    
    ScriptExecutable* ownerExecutable() const { return m_ownerExecutable.get(); }

    void setVM(VM* vm) { m_vm = vm; }
    VM* vm() { return m_vm; }

    void setThisRegister(VirtualRegister thisRegister) { m_thisRegister = thisRegister; }
    VirtualRegister thisRegister() const { return m_thisRegister; }

    bool usesEval() const { return m_unlinkedCode->usesEval(); }

    void setArgumentsRegister(VirtualRegister argumentsRegister)
    {
        ASSERT(argumentsRegister.isValid());
        m_argumentsRegister = argumentsRegister;
        ASSERT(usesArguments());
    }
    VirtualRegister argumentsRegister() const
    {
        ASSERT(usesArguments());
        return m_argumentsRegister;
    }
    VirtualRegister uncheckedArgumentsRegister()
    {
        if (!usesArguments())
            return VirtualRegister();
        return argumentsRegister();
    }
    void setActivationRegister(VirtualRegister activationRegister)
    {
        m_lexicalEnvironmentRegister = activationRegister;
    }

    VirtualRegister activationRegister() const
    {
        ASSERT(m_lexicalEnvironmentRegister.isValid());
        return m_lexicalEnvironmentRegister;
    }

    VirtualRegister uncheckedActivationRegister()
    {
        return m_lexicalEnvironmentRegister;
    }

    bool usesArguments() const { return m_argumentsRegister.isValid(); }

    bool needsActivation() const
    {
        ASSERT(m_lexicalEnvironmentRegister.isValid() == m_needsActivation);
        return m_needsActivation;
    }
    
    unsigned captureCount() const
    {
        if (!symbolTable())
            return 0;
        return symbolTable()->captureCount();
    }
    
    int captureStart() const
    {
        if (!symbolTable())
            return 0;
        return symbolTable()->captureStart();
    }
    
    int captureEnd() const
    {
        if (!symbolTable())
            return 0;
        return symbolTable()->captureEnd();
    }

    bool isCaptured(VirtualRegister operand, InlineCallFrame* = 0) const;
    
    int framePointerOffsetToGetActivationRegisters(int machineCaptureStart);
    int framePointerOffsetToGetActivationRegisters();

    CodeType codeType() const { return m_unlinkedCode->codeType(); }
    PutPropertySlot::Context putByIdContext() const
    {
        if (codeType() == EvalCode)
            return PutPropertySlot::PutByIdEval;
        return PutPropertySlot::PutById;
    }

    SourceProvider* source() const { return m_source.get(); }
    unsigned sourceOffset() const { return m_sourceOffset; }
    unsigned firstLineColumnOffset() const { return m_firstLineColumnOffset; }

    size_t numberOfJumpTargets() const { return m_unlinkedCode->numberOfJumpTargets(); }
    unsigned jumpTarget(int index) const { return m_unlinkedCode->jumpTarget(index); }

    void clearEvalCache();

    String nameForRegister(VirtualRegister);

#if ENABLE(JIT)
    void setNumberOfByValInfos(size_t size) { m_byValInfos.resizeToFit(size); }
    size_t numberOfByValInfos() const { return m_byValInfos.size(); }
    ByValInfo& byValInfo(size_t index) { return m_byValInfos[index]; }
#endif

    unsigned numberOfArgumentValueProfiles()
    {
        ASSERT(m_numParameters >= 0);
        ASSERT(m_argumentValueProfiles.size() == static_cast<unsigned>(m_numParameters));
        return m_argumentValueProfiles.size();
    }
    ValueProfile* valueProfileForArgument(unsigned argumentIndex)
    {
        ValueProfile* result = &m_argumentValueProfiles[argumentIndex];
        ASSERT(result->m_bytecodeOffset == -1);
        return result;
    }

    unsigned numberOfValueProfiles() { return m_valueProfiles.size(); }
    ValueProfile* valueProfile(int index) { return &m_valueProfiles[index]; }
    ValueProfile* valueProfileForBytecodeOffset(int bytecodeOffset)
    {
        ValueProfile* result = binarySearch<ValueProfile, int>(
            m_valueProfiles, m_valueProfiles.size(), bytecodeOffset,
            getValueProfileBytecodeOffset<ValueProfile>);
        ASSERT(result->m_bytecodeOffset != -1);
        ASSERT(instructions()[bytecodeOffset + opcodeLength(
            m_vm->interpreter->getOpcodeID(
                instructions()[bytecodeOffset].u.opcode)) - 1].u.profile == result);
        return result;
    }
    SpeculatedType valueProfilePredictionForBytecodeOffset(const ConcurrentJITLocker& locker, int bytecodeOffset)
    {
        return valueProfileForBytecodeOffset(bytecodeOffset)->computeUpdatedPrediction(locker);
    }

    unsigned totalNumberOfValueProfiles()
    {
        return numberOfArgumentValueProfiles() + numberOfValueProfiles();
    }
    ValueProfile* getFromAllValueProfiles(unsigned index)
    {
        if (index < numberOfArgumentValueProfiles())
            return valueProfileForArgument(index);
        return valueProfile(index - numberOfArgumentValueProfiles());
    }

    RareCaseProfile* addRareCaseProfile(int bytecodeOffset)
    {
        m_rareCaseProfiles.append(RareCaseProfile(bytecodeOffset));
        return &m_rareCaseProfiles.last();
    }
    unsigned numberOfRareCaseProfiles() { return m_rareCaseProfiles.size(); }
    RareCaseProfile* rareCaseProfile(int index) { return &m_rareCaseProfiles[index]; }
    RareCaseProfile* rareCaseProfileForBytecodeOffset(int bytecodeOffset);

    bool likelyToTakeSlowCase(int bytecodeOffset)
    {
        if (!hasBaselineJITProfiling())
            return false;
        unsigned value = rareCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
        return value >= Options::likelyToTakeSlowCaseMinimumCount();
    }

    bool couldTakeSlowCase(int bytecodeOffset)
    {
        if (!hasBaselineJITProfiling())
            return false;
        unsigned value = rareCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
        return value >= Options::couldTakeSlowCaseMinimumCount();
    }

    RareCaseProfile* addSpecialFastCaseProfile(int bytecodeOffset)
    {
        m_specialFastCaseProfiles.append(RareCaseProfile(bytecodeOffset));
        return &m_specialFastCaseProfiles.last();
    }
    unsigned numberOfSpecialFastCaseProfiles() { return m_specialFastCaseProfiles.size(); }
    RareCaseProfile* specialFastCaseProfile(int index) { return &m_specialFastCaseProfiles[index]; }
    RareCaseProfile* specialFastCaseProfileForBytecodeOffset(int bytecodeOffset)
    {
        return tryBinarySearch<RareCaseProfile, int>(
            m_specialFastCaseProfiles, m_specialFastCaseProfiles.size(), bytecodeOffset,
            getRareCaseProfileBytecodeOffset);
    }

    bool likelyToTakeSpecialFastCase(int bytecodeOffset)
    {
        if (!hasBaselineJITProfiling())
            return false;
        unsigned specialFastCaseCount = specialFastCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
        return specialFastCaseCount >= Options::likelyToTakeSlowCaseMinimumCount();
    }

    bool couldTakeSpecialFastCase(int bytecodeOffset)
    {
        if (!hasBaselineJITProfiling())
            return false;
        unsigned specialFastCaseCount = specialFastCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
        return specialFastCaseCount >= Options::couldTakeSlowCaseMinimumCount();
    }

    bool likelyToTakeDeepestSlowCase(int bytecodeOffset)
    {
        if (!hasBaselineJITProfiling())
            return false;
        unsigned slowCaseCount = rareCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
        unsigned specialFastCaseCount = specialFastCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
        unsigned value = slowCaseCount - specialFastCaseCount;
        return value >= Options::likelyToTakeSlowCaseMinimumCount();
    }

    bool likelyToTakeAnySlowCase(int bytecodeOffset)
    {
        if (!hasBaselineJITProfiling())
            return false;
        unsigned slowCaseCount = rareCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
        unsigned specialFastCaseCount = specialFastCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
        unsigned value = slowCaseCount + specialFastCaseCount;
        return value >= Options::likelyToTakeSlowCaseMinimumCount();
    }

    unsigned numberOfArrayProfiles() const { return m_arrayProfiles.size(); }
    const ArrayProfileVector& arrayProfiles() { return m_arrayProfiles; }
    ArrayProfile* addArrayProfile(unsigned bytecodeOffset)
    {
        m_arrayProfiles.append(ArrayProfile(bytecodeOffset));
        return &m_arrayProfiles.last();
    }
    ArrayProfile* getArrayProfile(unsigned bytecodeOffset);
    ArrayProfile* getOrAddArrayProfile(unsigned bytecodeOffset);

    // Exception handling support

    size_t numberOfExceptionHandlers() const { return m_rareData ? m_rareData->m_exceptionHandlers.size() : 0; }
    HandlerInfo& exceptionHandler(int index) { RELEASE_ASSERT(m_rareData); return m_rareData->m_exceptionHandlers[index]; }

    bool hasExpressionInfo() { return m_unlinkedCode->hasExpressionInfo(); }

#if ENABLE(DFG_JIT)
    Vector<CodeOrigin, 0, UnsafeVectorOverflow>& codeOrigins()
    {
        return m_jitCode->dfgCommon()->codeOrigins;
    }
    
    // Having code origins implies that there has been some inlining.
    bool hasCodeOrigins()
    {
        return JITCode::isOptimizingJIT(jitType());
    }
        
    bool canGetCodeOrigin(unsigned index)
    {
        if (!hasCodeOrigins())
            return false;
        return index < codeOrigins().size();
    }

    CodeOrigin codeOrigin(unsigned index)
    {
        return codeOrigins()[index];
    }

    bool addFrequentExitSite(const DFG::FrequentExitSite& site)
    {
        ASSERT(JITCode::isBaselineCode(jitType()));
        ConcurrentJITLocker locker(m_lock);
        return m_exitProfile.add(locker, site);
    }

    bool hasExitSite(const ConcurrentJITLocker& locker, const DFG::FrequentExitSite& site) const
    {
        return m_exitProfile.hasExitSite(locker, site);
    }
    bool hasExitSite(const DFG::FrequentExitSite& site) const
    {
        ConcurrentJITLocker locker(m_lock);
        return hasExitSite(locker, site);
    }

    DFG::ExitProfile& exitProfile() { return m_exitProfile; }

    CompressedLazyOperandValueProfileHolder& lazyOperandValueProfiles()
    {
        return m_lazyOperandValueProfiles;
    }
#endif // ENABLE(DFG_JIT)

    // Constant Pool
#if ENABLE(DFG_JIT)
    size_t numberOfIdentifiers() const { return m_unlinkedCode->numberOfIdentifiers() + numberOfDFGIdentifiers(); }
    size_t numberOfDFGIdentifiers() const
    {
        if (!JITCode::isOptimizingJIT(jitType()))
            return 0;

        return m_jitCode->dfgCommon()->dfgIdentifiers.size();
    }

    const Identifier& identifier(int index) const
    {
        size_t unlinkedIdentifiers = m_unlinkedCode->numberOfIdentifiers();
        if (static_cast<unsigned>(index) < unlinkedIdentifiers)
            return m_unlinkedCode->identifier(index);
        ASSERT(JITCode::isOptimizingJIT(jitType()));
        return m_jitCode->dfgCommon()->dfgIdentifiers[index - unlinkedIdentifiers];
    }
#else
    size_t numberOfIdentifiers() const { return m_unlinkedCode->numberOfIdentifiers(); }
    const Identifier& identifier(int index) const { return m_unlinkedCode->identifier(index); }
#endif

    Vector<WriteBarrier<Unknown>>& constants() { return m_constantRegisters; }
    size_t numberOfConstantRegisters() const { return m_constantRegisters.size(); }
    unsigned addConstant(JSValue v)
    {
        unsigned result = m_constantRegisters.size();
        m_constantRegisters.append(WriteBarrier<Unknown>());
        m_constantRegisters.last().set(m_globalObject->vm(), m_ownerExecutable.get(), v);
        return result;
    }

    unsigned addConstantLazily()
    {
        unsigned result = m_constantRegisters.size();
        m_constantRegisters.append(WriteBarrier<Unknown>());
        return result;
    }

    bool findConstant(JSValue, unsigned& result);
    unsigned addOrFindConstant(JSValue);
    WriteBarrier<Unknown>& constantRegister(int index) { return m_constantRegisters[index - FirstConstantRegisterIndex]; }
    ALWAYS_INLINE bool isConstantRegisterIndex(int index) const { return index >= FirstConstantRegisterIndex; }
    ALWAYS_INLINE JSValue getConstant(int index) const { return m_constantRegisters[index - FirstConstantRegisterIndex].get(); }

    FunctionExecutable* functionDecl(int index) { return m_functionDecls[index].get(); }
    int numberOfFunctionDecls() { return m_functionDecls.size(); }
    FunctionExecutable* functionExpr(int index) { return m_functionExprs[index].get(); }

    RegExp* regexp(int index) const { return m_unlinkedCode->regexp(index); }

    unsigned numberOfConstantBuffers() const
    {
        if (!m_rareData)
            return 0;
        return m_rareData->m_constantBuffers.size();
    }
    unsigned addConstantBuffer(const Vector<JSValue>& buffer)
    {
        createRareDataIfNecessary();
        unsigned size = m_rareData->m_constantBuffers.size();
        m_rareData->m_constantBuffers.append(buffer);
        return size;
    }

    Vector<JSValue>& constantBufferAsVector(unsigned index)
    {
        ASSERT(m_rareData);
        return m_rareData->m_constantBuffers[index];
    }
    JSValue* constantBuffer(unsigned index)
    {
        return constantBufferAsVector(index).data();
    }

    Heap* heap() const { return m_heap; }
    JSGlobalObject* globalObject() { return m_globalObject.get(); }

    JSGlobalObject* globalObjectFor(CodeOrigin);

    BytecodeLivenessAnalysis& livenessAnalysis()
    {
        {
            ConcurrentJITLocker locker(m_lock);
            if (!!m_livenessAnalysis)
                return *m_livenessAnalysis;
        }
        std::unique_ptr<BytecodeLivenessAnalysis> analysis =
            std::make_unique<BytecodeLivenessAnalysis>(this);
        {
            ConcurrentJITLocker locker(m_lock);
            if (!m_livenessAnalysis)
                m_livenessAnalysis = WTF::move(analysis);
            return *m_livenessAnalysis;
        }
    }
    
    void validate();

    // Jump Tables

    size_t numberOfSwitchJumpTables() const { return m_rareData ? m_rareData->m_switchJumpTables.size() : 0; }
    SimpleJumpTable& addSwitchJumpTable() { createRareDataIfNecessary(); m_rareData->m_switchJumpTables.append(SimpleJumpTable()); return m_rareData->m_switchJumpTables.last(); }
    SimpleJumpTable& switchJumpTable(int tableIndex) { RELEASE_ASSERT(m_rareData); return m_rareData->m_switchJumpTables[tableIndex]; }
    void clearSwitchJumpTables()
    {
        if (!m_rareData)
            return;
        m_rareData->m_switchJumpTables.clear();
    }

    size_t numberOfStringSwitchJumpTables() const { return m_rareData ? m_rareData->m_stringSwitchJumpTables.size() : 0; }
    StringJumpTable& addStringSwitchJumpTable() { createRareDataIfNecessary(); m_rareData->m_stringSwitchJumpTables.append(StringJumpTable()); return m_rareData->m_stringSwitchJumpTables.last(); }
    StringJumpTable& stringSwitchJumpTable(int tableIndex) { RELEASE_ASSERT(m_rareData); return m_rareData->m_stringSwitchJumpTables[tableIndex]; }


    SymbolTable* symbolTable() const { return m_symbolTable.get(); }

    EvalCodeCache& evalCodeCache() { createRareDataIfNecessary(); return m_rareData->m_evalCodeCache; }

    enum ShrinkMode {
        // Shrink prior to generating machine code that may point directly into vectors.
        EarlyShrink,

        // Shrink after generating machine code, and after possibly creating new vectors
        // and appending to others. At this time it is not safe to shrink certain vectors
        // because we would have generated machine code that references them directly.
        LateShrink
    };
    void shrinkToFit(ShrinkMode);

    // Functions for controlling when JITting kicks in, in a mixed mode
    // execution world.

    bool checkIfJITThresholdReached()
    {
        return m_llintExecuteCounter.checkIfThresholdCrossedAndSet(this);
    }

    void dontJITAnytimeSoon()
    {
        m_llintExecuteCounter.deferIndefinitely();
    }

    void jitAfterWarmUp()
    {
        m_llintExecuteCounter.setNewThreshold(Options::thresholdForJITAfterWarmUp(), this);
    }

    void jitSoon()
    {
        m_llintExecuteCounter.setNewThreshold(Options::thresholdForJITSoon(), this);
    }

    const BaselineExecutionCounter& llintExecuteCounter() const
    {
        return m_llintExecuteCounter;
    }

    // Functions for controlling when tiered compilation kicks in. This
    // controls both when the optimizing compiler is invoked and when OSR
    // entry happens. Two triggers exist: the loop trigger and the return
    // trigger. In either case, when an addition to m_jitExecuteCounter
    // causes it to become non-negative, the optimizing compiler is
    // invoked. This includes a fast check to see if this CodeBlock has
    // already been optimized (i.e. replacement() returns a CodeBlock
    // that was optimized with a higher tier JIT than this one). In the
    // case of the loop trigger, if the optimized compilation succeeds
    // (or has already succeeded in the past) then OSR is attempted to
    // redirect program flow into the optimized code.

    // These functions are called from within the optimization triggers,
    // and are used as a single point at which we define the heuristics
    // for how much warm-up is mandated before the next optimization
    // trigger files. All CodeBlocks start out with optimizeAfterWarmUp(),
    // as this is called from the CodeBlock constructor.

    // When we observe a lot of speculation failures, we trigger a
    // reoptimization. But each time, we increase the optimization trigger
    // to avoid thrashing.
    JS_EXPORT_PRIVATE unsigned reoptimizationRetryCounter() const;
    void countReoptimization();
#if ENABLE(JIT)
    unsigned numberOfDFGCompiles();

    int32_t codeTypeThresholdMultiplier() const;

    int32_t adjustedCounterValue(int32_t desiredThreshold);

    int32_t* addressOfJITExecuteCounter()
    {
        return &m_jitExecuteCounter.m_counter;
    }

    static ptrdiff_t offsetOfJITExecuteCounter() { return OBJECT_OFFSETOF(CodeBlock, m_jitExecuteCounter) + OBJECT_OFFSETOF(BaselineExecutionCounter, m_counter); }
    static ptrdiff_t offsetOfJITExecutionActiveThreshold() { return OBJECT_OFFSETOF(CodeBlock, m_jitExecuteCounter) + OBJECT_OFFSETOF(BaselineExecutionCounter, m_activeThreshold); }
    static ptrdiff_t offsetOfJITExecutionTotalCount() { return OBJECT_OFFSETOF(CodeBlock, m_jitExecuteCounter) + OBJECT_OFFSETOF(BaselineExecutionCounter, m_totalCount); }

    const BaselineExecutionCounter& jitExecuteCounter() const { return m_jitExecuteCounter; }

    unsigned optimizationDelayCounter() const { return m_optimizationDelayCounter; }

    // Check if the optimization threshold has been reached, and if not,
    // adjust the heuristics accordingly. Returns true if the threshold has
    // been reached.
    bool checkIfOptimizationThresholdReached();

    // Call this to force the next optimization trigger to fire. This is
    // rarely wise, since optimization triggers are typically more
    // expensive than executing baseline code.
    void optimizeNextInvocation();

    // Call this to prevent optimization from happening again. Note that
    // optimization will still happen after roughly 2^29 invocations,
    // so this is really meant to delay that as much as possible. This
    // is called if optimization failed, and we expect it to fail in
    // the future as well.
    void dontOptimizeAnytimeSoon();

    // Call this to reinitialize the counter to its starting state,
    // forcing a warm-up to happen before the next optimization trigger
    // fires. This is called in the CodeBlock constructor. It also
    // makes sense to call this if an OSR exit occurred. Note that
    // OSR exit code is code generated, so the value of the execute
    // counter that this corresponds to is also available directly.
    void optimizeAfterWarmUp();

    // Call this to force an optimization trigger to fire only after
    // a lot of warm-up.
    void optimizeAfterLongWarmUp();

    // Call this to cause an optimization trigger to fire soon, but
    // not necessarily the next one. This makes sense if optimization
    // succeeds. Successfuly optimization means that all calls are
    // relinked to the optimized code, so this only affects call
    // frames that are still executing this CodeBlock. The value here
    // is tuned to strike a balance between the cost of OSR entry
    // (which is too high to warrant making every loop back edge to
    // trigger OSR immediately) and the cost of executing baseline
    // code (which is high enough that we don't necessarily want to
    // have a full warm-up). The intuition for calling this instead of
    // optimizeNextInvocation() is for the case of recursive functions
    // with loops. Consider that there may be N call frames of some
    // recursive function, for a reasonably large value of N. The top
    // one triggers optimization, and then returns, and then all of
    // the others return. We don't want optimization to be triggered on
    // each return, as that would be superfluous. It only makes sense
    // to trigger optimization if one of those functions becomes hot
    // in the baseline code.
    void optimizeSoon();

    void forceOptimizationSlowPathConcurrently();

    void setOptimizationThresholdBasedOnCompilationResult(CompilationResult);
    
    uint32_t osrExitCounter() const { return m_osrExitCounter; }

    void countOSRExit() { m_osrExitCounter++; }

    uint32_t* addressOfOSRExitCounter() { return &m_osrExitCounter; }

    static ptrdiff_t offsetOfOSRExitCounter() { return OBJECT_OFFSETOF(CodeBlock, m_osrExitCounter); }

    uint32_t adjustedExitCountThreshold(uint32_t desiredThreshold);
    uint32_t exitCountThresholdForReoptimization();
    uint32_t exitCountThresholdForReoptimizationFromLoop();
    bool shouldReoptimizeNow();
    bool shouldReoptimizeFromLoopNow();
#else // No JIT
    void optimizeAfterWarmUp() { }
    unsigned numberOfDFGCompiles() { return 0; }
#endif

    bool shouldOptimizeNow();
    void updateAllValueProfilePredictions();
    void updateAllArrayPredictions();
    void updateAllPredictions();

    unsigned frameRegisterCount();
    int stackPointerOffset();

    bool hasOpDebugForLineAndColumn(unsigned line, unsigned column);

    bool hasDebuggerRequests() const { return m_debuggerRequests; }
    void* debuggerRequestsAddress() { return &m_debuggerRequests; }

    void addBreakpoint(unsigned numBreakpoints);
    void removeBreakpoint(unsigned numBreakpoints)
    {
        ASSERT(m_numBreakpoints >= numBreakpoints);
        m_numBreakpoints -= numBreakpoints;
    }

    enum SteppingMode {
        SteppingModeDisabled,
        SteppingModeEnabled
    };
    void setSteppingMode(SteppingMode);

    void clearDebuggerRequests()
    {
        m_steppingMode = SteppingModeDisabled;
        m_numBreakpoints = 0;
    }
    
    // FIXME: Make these remaining members private.

    int m_numCalleeRegisters;
    int m_numVars;
    bool m_isConstructor : 1;
    
    // This is intentionally public; it's the responsibility of anyone doing any
    // of the following to hold the lock:
    //
    // - Modifying any inline cache in this code block.
    //
    // - Quering any inline cache in this code block, from a thread other than
    //   the main thread.
    //
    // Additionally, it's only legal to modify the inline cache on the main
    // thread. This means that the main thread can query the inline cache without
    // locking. This is crucial since executing the inline cache is effectively
    // "querying" it.
    //
    // Another exception to the rules is that the GC can do whatever it wants
    // without holding any locks, because the GC is guaranteed to wait until any
    // concurrent compilation threads finish what they're doing.
    mutable ConcurrentJITLock m_lock;
    
    bool m_shouldAlwaysBeInlined; // Not a bitfield because the JIT wants to store to it.
    bool m_allTransitionsHaveBeenMarked : 1; // Initialized and used on every GC.
    
    bool m_didFailFTLCompilation : 1;
    bool m_hasBeenCompiledWithFTL : 1;

    // Internal methods for use by validation code. It would be private if it wasn't
    // for the fact that we use it from anonymous namespaces.
    void beginValidationDidFail();
    NO_RETURN_DUE_TO_CRASH void endValidationDidFail();

    bool isKnownToBeLiveDuringGC(); // Will only return valid results when called during GC. Assumes that you've already established that the owner executable is live.


protected:
    virtual void visitWeakReferences(SlotVisitor&) override;
    virtual void finalizeUnconditionally() override;

#if ENABLE(DFG_JIT)
    void tallyFrequentExitSites();
#else
    void tallyFrequentExitSites() { }
#endif

private:
    friend class CodeBlockSet;
    
    CodeBlock* specialOSREntryBlockOrNull();
    
    void noticeIncomingCall(ExecState* callerFrame);
    
    double optimizationThresholdScalingFactor();

#if ENABLE(JIT)
    ClosureCallStubRoutine* findClosureCallForReturnPC(ReturnAddressPtr);
#endif
        
    void updateAllPredictionsAndCountLiveness(unsigned& numberOfLiveNonArgumentValueProfiles, unsigned& numberOfSamplesInProfiles);

    void setConstantRegisters(const Vector<WriteBarrier<Unknown>>& constants)
    {
        size_t count = constants.size();
        m_constantRegisters.resize(count);
        for (size_t i = 0; i < count; i++)
            m_constantRegisters[i].set(*m_vm, ownerExecutable(), constants[i].get());
    }

    void dumpBytecode(
        PrintStream&, ExecState*, const Instruction* begin, const Instruction*&,
        const StubInfoMap& = StubInfoMap(), const CallLinkInfoMap& = CallLinkInfoMap());

    CString registerName(int r) const;
    void printUnaryOp(PrintStream&, ExecState*, int location, const Instruction*&, const char* op);
    void printBinaryOp(PrintStream&, ExecState*, int location, const Instruction*&, const char* op);
    void printConditionalJump(PrintStream&, ExecState*, const Instruction*, const Instruction*&, int location, const char* op);
    void printGetByIdOp(PrintStream&, ExecState*, int location, const Instruction*&);
    void printGetByIdCacheStatus(PrintStream&, ExecState*, int location, const StubInfoMap&);
    enum CacheDumpMode { DumpCaches, DontDumpCaches };
    void printCallOp(PrintStream&, ExecState*, int location, const Instruction*&, const char* op, CacheDumpMode, bool& hasPrintedProfiling, const CallLinkInfoMap&);
    void printPutByIdOp(PrintStream&, ExecState*, int location, const Instruction*&, const char* op);
    void printPutByIdCacheStatus(PrintStream&, ExecState*, int location, const StubInfoMap&);
    void printLocationAndOp(PrintStream&, ExecState*, int location, const Instruction*&, const char* op);
    void printLocationOpAndRegisterOperand(PrintStream&, ExecState*, int location, const Instruction*& it, const char* op, int operand);

    void beginDumpProfiling(PrintStream&, bool& hasPrintedProfiling);
    void dumpValueProfiling(PrintStream&, const Instruction*&, bool& hasPrintedProfiling);
    void dumpArrayProfiling(PrintStream&, const Instruction*&, bool& hasPrintedProfiling);
    void dumpRareCaseProfile(PrintStream&, const char* name, RareCaseProfile*, bool& hasPrintedProfiling);
        
    bool shouldImmediatelyAssumeLivenessDuringScan();
    
    void propagateTransitions(SlotVisitor&);
    void determineLiveness(SlotVisitor&);
        
    void stronglyVisitStrongReferences(SlotVisitor&);
    void stronglyVisitWeakReferences(SlotVisitor&);

    void createRareDataIfNecessary()
    {
        if (!m_rareData)
            m_rareData = adoptPtr(new RareData);
    }

#if ENABLE(JIT)
    void resetStubInternal(RepatchBuffer&, StructureStubInfo&);
    void resetStubDuringGCInternal(RepatchBuffer&, StructureStubInfo&);
#endif
    WriteBarrier<UnlinkedCodeBlock> m_unlinkedCode;
    int m_numParameters;
    union {
        unsigned m_debuggerRequests;
        struct {
            unsigned m_hasDebuggerStatement : 1;
            unsigned m_steppingMode : 1;
            unsigned m_numBreakpoints : 30;
        };
    };
    WriteBarrier<ScriptExecutable> m_ownerExecutable;
    VM* m_vm;

    RefCountedArray<Instruction> m_instructions;
    WriteBarrier<SymbolTable> m_symbolTable;
    VirtualRegister m_thisRegister;
    VirtualRegister m_argumentsRegister;
    VirtualRegister m_lexicalEnvironmentRegister;

    bool m_isStrictMode;
    bool m_needsActivation;
    bool m_mayBeExecuting;
    uint8_t m_visitAggregateHasBeenCalled;

    RefPtr<SourceProvider> m_source;
    unsigned m_sourceOffset;
    unsigned m_firstLineColumnOffset;
    unsigned m_codeType;

    Vector<LLIntCallLinkInfo> m_llintCallLinkInfos;
    SentinelLinkedList<LLIntCallLinkInfo, BasicRawSentinelNode<LLIntCallLinkInfo>> m_incomingLLIntCalls;
    RefPtr<JITCode> m_jitCode;
#if ENABLE(JIT)
    Bag<StructureStubInfo> m_stubInfos;
    Vector<ByValInfo> m_byValInfos;
    Bag<CallLinkInfo> m_callLinkInfos;
    SentinelLinkedList<CallLinkInfo, BasicRawSentinelNode<CallLinkInfo>> m_incomingCalls;
#endif
    OwnPtr<CompactJITCodeMap> m_jitCodeMap;
#if ENABLE(DFG_JIT)
    // This is relevant to non-DFG code blocks that serve as the profiled code block
    // for DFG code blocks.
    DFG::ExitProfile m_exitProfile;
    CompressedLazyOperandValueProfileHolder m_lazyOperandValueProfiles;
#endif
    Vector<ValueProfile> m_argumentValueProfiles;
    Vector<ValueProfile> m_valueProfiles;
    SegmentedVector<RareCaseProfile, 8> m_rareCaseProfiles;
    SegmentedVector<RareCaseProfile, 8> m_specialFastCaseProfiles;
    Vector<ArrayAllocationProfile> m_arrayAllocationProfiles;
    ArrayProfileVector m_arrayProfiles;
    Vector<ObjectAllocationProfile> m_objectAllocationProfiles;

    // Constant Pool
    COMPILE_ASSERT(sizeof(Register) == sizeof(WriteBarrier<Unknown>), Register_must_be_same_size_as_WriteBarrier_Unknown);
    // TODO: This could just be a pointer to m_unlinkedCodeBlock's data, but the DFG mutates
    // it, so we're stuck with it for now.
    Vector<WriteBarrier<Unknown>> m_constantRegisters;
    Vector<WriteBarrier<FunctionExecutable>> m_functionDecls;
    Vector<WriteBarrier<FunctionExecutable>> m_functionExprs;

    RefPtr<CodeBlock> m_alternative;
    
    BaselineExecutionCounter m_llintExecuteCounter;

    BaselineExecutionCounter m_jitExecuteCounter;
    int32_t m_totalJITExecutions;
    uint32_t m_osrExitCounter;
    uint16_t m_optimizationDelayCounter;
    uint16_t m_reoptimizationRetryCounter;
    
    mutable CodeBlockHash m_hash;

    std::unique_ptr<BytecodeLivenessAnalysis> m_livenessAnalysis;

    struct RareData {
        WTF_MAKE_FAST_ALLOCATED;
    public:
        Vector<HandlerInfo> m_exceptionHandlers;

        // Buffers used for large array literals
        Vector<Vector<JSValue>> m_constantBuffers;

        // Jump Tables
        Vector<SimpleJumpTable> m_switchJumpTables;
        Vector<StringJumpTable> m_stringSwitchJumpTables;

        EvalCodeCache m_evalCodeCache;
    };
#if COMPILER(MSVC)
    friend void WTF::deleteOwnedPtr<RareData>(RareData*);
#endif
    OwnPtr<RareData> m_rareData;
#if ENABLE(JIT)
    DFG::CapabilityLevel m_capabilityLevelState;
#endif
};

// Program code is not marked by any function, so we make the global object
// responsible for marking it.

class GlobalCodeBlock : public CodeBlock {
protected:
    GlobalCodeBlock(CopyParsedBlockTag, GlobalCodeBlock& other)
    : CodeBlock(CopyParsedBlock, other)
    {
    }
        
    GlobalCodeBlock(ScriptExecutable* ownerExecutable, UnlinkedCodeBlock* unlinkedCodeBlock, JSScope* scope, PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset, unsigned firstLineColumnOffset)
        : CodeBlock(ownerExecutable, unlinkedCodeBlock, scope, sourceProvider, sourceOffset, firstLineColumnOffset)
    {
    }
};

class ProgramCodeBlock : public GlobalCodeBlock {
public:
    ProgramCodeBlock(CopyParsedBlockTag, ProgramCodeBlock& other)
    : GlobalCodeBlock(CopyParsedBlock, other)
    {
    }

    ProgramCodeBlock(ProgramExecutable* ownerExecutable, UnlinkedProgramCodeBlock* unlinkedCodeBlock, JSScope* scope, PassRefPtr<SourceProvider> sourceProvider, unsigned firstLineColumnOffset)
        : GlobalCodeBlock(ownerExecutable, unlinkedCodeBlock, scope, sourceProvider, 0, firstLineColumnOffset)
    {
    }

#if ENABLE(JIT)
protected:
    virtual CodeBlock* replacement() override;
    virtual DFG::CapabilityLevel capabilityLevelInternal() override;
#endif
};

class EvalCodeBlock : public GlobalCodeBlock {
public:
    EvalCodeBlock(CopyParsedBlockTag, EvalCodeBlock& other)
    : GlobalCodeBlock(CopyParsedBlock, other)
    {
    }
        
    EvalCodeBlock(EvalExecutable* ownerExecutable, UnlinkedEvalCodeBlock* unlinkedCodeBlock, JSScope* scope, PassRefPtr<SourceProvider> sourceProvider)
        : GlobalCodeBlock(ownerExecutable, unlinkedCodeBlock, scope, sourceProvider, 0, 1)
    {
    }
    
    const Identifier& variable(unsigned index) { return unlinkedEvalCodeBlock()->variable(index); }
    unsigned numVariables() { return unlinkedEvalCodeBlock()->numVariables(); }
    
#if ENABLE(JIT)
protected:
    virtual CodeBlock* replacement() override;
    virtual DFG::CapabilityLevel capabilityLevelInternal() override;
#endif
    
private:
    UnlinkedEvalCodeBlock* unlinkedEvalCodeBlock() const { return jsCast<UnlinkedEvalCodeBlock*>(unlinkedCodeBlock()); }
};

class FunctionCodeBlock : public CodeBlock {
public:
    FunctionCodeBlock(CopyParsedBlockTag, FunctionCodeBlock& other)
    : CodeBlock(CopyParsedBlock, other)
    {
    }

    FunctionCodeBlock(FunctionExecutable* ownerExecutable, UnlinkedFunctionCodeBlock* unlinkedCodeBlock, JSScope* scope, PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset, unsigned firstLineColumnOffset)
        : CodeBlock(ownerExecutable, unlinkedCodeBlock, scope, sourceProvider, sourceOffset, firstLineColumnOffset)
    {
    }
    
#if ENABLE(JIT)
protected:
    virtual CodeBlock* replacement() override;
    virtual DFG::CapabilityLevel capabilityLevelInternal() override;
#endif
};

inline CodeBlock* baselineCodeBlockForInlineCallFrame(InlineCallFrame* inlineCallFrame)
{
    RELEASE_ASSERT(inlineCallFrame);
    ExecutableBase* executable = inlineCallFrame->executable.get();
    RELEASE_ASSERT(executable->structure()->classInfo() == FunctionExecutable::info());
    return static_cast<FunctionExecutable*>(executable)->baselineCodeBlockFor(inlineCallFrame->specializationKind());
}

inline CodeBlock* baselineCodeBlockForOriginAndBaselineCodeBlock(const CodeOrigin& codeOrigin, CodeBlock* baselineCodeBlock)
{
    if (codeOrigin.inlineCallFrame)
        return baselineCodeBlockForInlineCallFrame(codeOrigin.inlineCallFrame);
    return baselineCodeBlock;
}

inline int CodeBlock::argumentIndexAfterCapture(size_t argument)
{
    if (argument >= static_cast<size_t>(symbolTable()->parameterCount()))
        return CallFrame::argumentOffset(argument);
    
    const SlowArgument* slowArguments = symbolTable()->slowArguments();
    if (!slowArguments || slowArguments[argument].status == SlowArgument::Normal)
        return CallFrame::argumentOffset(argument);
    
    ASSERT(slowArguments[argument].status == SlowArgument::Captured);
    return slowArguments[argument].index;
}

inline bool CodeBlock::hasSlowArguments()
{
    return !!symbolTable()->slowArguments();
}

inline Register& ExecState::r(int index)
{
    CodeBlock* codeBlock = this->codeBlock();
    if (codeBlock->isConstantRegisterIndex(index))
        return *reinterpret_cast<Register*>(&codeBlock->constantRegister(index));
    return this[index];
}

inline Register& ExecState::uncheckedR(int index)
{
    RELEASE_ASSERT(index < FirstConstantRegisterIndex);
    return this[index];
}

inline JSValue ExecState::argumentAfterCapture(size_t argument)
{
    if (argument >= argumentCount())
        return jsUndefined();
    
    if (!codeBlock())
        return this[argumentOffset(argument)].jsValue();
    
    return this[codeBlock()->argumentIndexAfterCapture(argument)].jsValue();
}

inline void CodeBlockSet::mark(void* candidateCodeBlock)
{
    // We have to check for 0 and -1 because those are used by the HashMap as markers.
    uintptr_t value = reinterpret_cast<uintptr_t>(candidateCodeBlock);
    
    // This checks for both of those nasty cases in one go.
    // 0 + 1 = 1
    // -1 + 1 = 0
    if (value + 1 <= 1)
        return;

    CodeBlock* codeBlock = static_cast<CodeBlock*>(candidateCodeBlock); 
    if (!m_oldCodeBlocks.contains(codeBlock) && !m_newCodeBlocks.contains(codeBlock))
        return;

    mark(codeBlock);
}

inline void CodeBlockSet::mark(CodeBlock* codeBlock)
{
    if (!codeBlock)
        return;
    
    if (codeBlock->m_mayBeExecuting)
        return;
    
    codeBlock->m_mayBeExecuting = true;
    // We might not have cleared the marks for this CodeBlock, but we need to visit it.
    codeBlock->m_visitAggregateHasBeenCalled = false;
#if ENABLE(GGC)
    m_currentlyExecuting.append(codeBlock);
#endif
}

template <typename Functor> inline void ScriptExecutable::forEachCodeBlock(Functor&& functor)
{
    switch (type()) {
    case ProgramExecutableType: {
        if (CodeBlock* codeBlock = jsCast<ProgramExecutable*>(this)->m_programCodeBlock.get())
            codeBlock->forEachRelatedCodeBlock(std::forward<Functor>(functor));
        break;
    }
        
    case EvalExecutableType: {
        if (CodeBlock* codeBlock = jsCast<EvalExecutable*>(this)->m_evalCodeBlock.get())
            codeBlock->forEachRelatedCodeBlock(std::forward<Functor>(functor));
        break;
    }
        
    case FunctionExecutableType: {
        Functor f(std::forward<Functor>(functor));
        FunctionExecutable* executable = jsCast<FunctionExecutable*>(this);
        if (CodeBlock* codeBlock = executable->m_codeBlockForCall.get())
            codeBlock->forEachRelatedCodeBlock(f);
        if (CodeBlock* codeBlock = executable->m_codeBlockForConstruct.get())
            codeBlock->forEachRelatedCodeBlock(f);
        break;
    }
    default:
        RELEASE_ASSERT_NOT_REACHED();
    }
}

} // namespace JSC

#endif // CodeBlock_h