1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
|
/*
* Copyright (C) 2013, 2014 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGBackwardsPropagationPhase.h"
#if ENABLE(DFG_JIT)
#include "DFGBasicBlockInlines.h"
#include "DFGGraph.h"
#include "DFGPhase.h"
#include "JSCInlines.h"
namespace JSC { namespace DFG {
class BackwardsPropagationPhase : public Phase {
public:
BackwardsPropagationPhase(Graph& graph)
: Phase(graph, "backwards propagation")
{
}
bool run()
{
m_changed = true;
while (m_changed) {
m_changed = false;
for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) {
BasicBlock* block = m_graph.block(blockIndex);
if (!block)
continue;
// Prevent a tower of overflowing additions from creating a value that is out of the
// safe 2^48 range.
m_allowNestedOverflowingAdditions = block->size() < (1 << 16);
for (unsigned indexInBlock = block->size(); indexInBlock--;)
propagate(block->at(indexInBlock));
}
}
return true;
}
private:
bool isNotNegZero(Node* node)
{
if (!node->isNumberConstant())
return false;
double value = node->asNumber();
return (value || 1.0 / value > 0.0);
}
bool isNotPosZero(Node* node)
{
if (!node->isNumberConstant())
return false;
double value = node->asNumber();
return (value || 1.0 / value < 0.0);
}
// Tests if the absolute value is strictly less than the power of two.
template<int power>
bool isWithinPowerOfTwoForConstant(Node* node)
{
JSValue immediateValue = node->asJSValue();
if (!immediateValue.isNumber())
return false;
double immediate = immediateValue.asNumber();
return immediate > -(static_cast<int64_t>(1) << power) && immediate < (static_cast<int64_t>(1) << power);
}
template<int power>
bool isWithinPowerOfTwoNonRecursive(Node* node)
{
if (node->op() != JSConstant)
return false;
return isWithinPowerOfTwoForConstant<power>(node);
}
template<int power>
bool isWithinPowerOfTwo(Node* node)
{
switch (node->op()) {
case JSConstant: {
return isWithinPowerOfTwoForConstant<power>(node);
}
case BitAnd: {
if (power > 31)
return true;
return isWithinPowerOfTwoNonRecursive<power>(node->child1().node())
|| isWithinPowerOfTwoNonRecursive<power>(node->child2().node());
}
case BitOr:
case BitXor:
case BitLShift: {
return power > 31;
}
case BitRShift:
case BitURShift: {
if (power > 31)
return true;
Node* shiftAmount = node->child2().node();
if (shiftAmount->op() != JSConstant)
return false;
JSValue immediateValue = shiftAmount->asJSValue();
if (!immediateValue.isInt32())
return false;
return immediateValue.asInt32() > 32 - power;
}
default:
return false;
}
}
template<int power>
bool isWithinPowerOfTwo(Edge edge)
{
return isWithinPowerOfTwo<power>(edge.node());
}
bool mergeDefaultFlags(Node* node)
{
bool changed = false;
if (node->flags() & NodeHasVarArgs) {
for (unsigned childIdx = node->firstChild();
childIdx < node->firstChild() + node->numChildren();
childIdx++) {
if (!!m_graph.m_varArgChildren[childIdx])
changed |= m_graph.m_varArgChildren[childIdx]->mergeFlags(NodeBytecodeUsesAsValue);
}
} else {
if (!node->child1())
return changed;
changed |= node->child1()->mergeFlags(NodeBytecodeUsesAsValue);
if (!node->child2())
return changed;
changed |= node->child2()->mergeFlags(NodeBytecodeUsesAsValue);
if (!node->child3())
return changed;
changed |= node->child3()->mergeFlags(NodeBytecodeUsesAsValue);
}
return changed;
}
void propagate(Node* node)
{
NodeFlags flags = node->flags() & NodeBytecodeBackPropMask;
switch (node->op()) {
case GetLocal: {
VariableAccessData* variableAccessData = node->variableAccessData();
flags &= ~NodeBytecodeUsesAsInt; // We don't care about cross-block uses-as-int.
m_changed |= variableAccessData->mergeFlags(flags);
break;
}
case SetLocal: {
VariableAccessData* variableAccessData = node->variableAccessData();
if (!variableAccessData->isLoadedFrom())
break;
flags = variableAccessData->flags();
RELEASE_ASSERT(!(flags & ~NodeBytecodeBackPropMask));
flags |= NodeBytecodeUsesAsNumber; // Account for the fact that control flow may cause overflows that our modeling can't handle.
node->child1()->mergeFlags(flags);
break;
}
case Flush: {
VariableAccessData* variableAccessData = node->variableAccessData();
m_changed |= variableAccessData->mergeFlags(NodeBytecodeUsesAsValue);
break;
}
case MovHint:
case Check:
break;
case BitAnd:
case BitOr:
case BitXor:
case BitRShift:
case BitLShift:
case BitURShift:
case ArithIMul: {
flags |= NodeBytecodeUsesAsInt;
flags &= ~(NodeBytecodeUsesAsNumber | NodeBytecodeNeedsNegZero | NodeBytecodeUsesAsOther);
flags &= ~NodeBytecodeUsesAsArrayIndex;
node->child1()->mergeFlags(flags);
node->child2()->mergeFlags(flags);
break;
}
case StringCharCodeAt: {
node->child1()->mergeFlags(NodeBytecodeUsesAsValue);
node->child2()->mergeFlags(NodeBytecodeUsesAsValue | NodeBytecodeUsesAsInt | NodeBytecodeUsesAsArrayIndex);
break;
}
case UInt32ToNumber: {
node->child1()->mergeFlags(flags);
break;
}
case ValueAdd: {
if (isNotNegZero(node->child1().node()) || isNotNegZero(node->child2().node()))
flags &= ~NodeBytecodeNeedsNegZero;
if (node->child1()->hasNumberResult() || node->child2()->hasNumberResult())
flags &= ~NodeBytecodeUsesAsOther;
if (!isWithinPowerOfTwo<32>(node->child1()) && !isWithinPowerOfTwo<32>(node->child2()))
flags |= NodeBytecodeUsesAsNumber;
if (!m_allowNestedOverflowingAdditions)
flags |= NodeBytecodeUsesAsNumber;
node->child1()->mergeFlags(flags);
node->child2()->mergeFlags(flags);
break;
}
case ArithAdd: {
if (isNotNegZero(node->child1().node()) || isNotNegZero(node->child2().node()))
flags &= ~NodeBytecodeNeedsNegZero;
if (!isWithinPowerOfTwo<32>(node->child1()) && !isWithinPowerOfTwo<32>(node->child2()))
flags |= NodeBytecodeUsesAsNumber;
if (!m_allowNestedOverflowingAdditions)
flags |= NodeBytecodeUsesAsNumber;
node->child1()->mergeFlags(flags);
node->child2()->mergeFlags(flags);
break;
}
case ArithSub: {
if (isNotNegZero(node->child1().node()) || isNotPosZero(node->child2().node()))
flags &= ~NodeBytecodeNeedsNegZero;
if (!isWithinPowerOfTwo<32>(node->child1()) && !isWithinPowerOfTwo<32>(node->child2()))
flags |= NodeBytecodeUsesAsNumber;
if (!m_allowNestedOverflowingAdditions)
flags |= NodeBytecodeUsesAsNumber;
node->child1()->mergeFlags(flags);
node->child2()->mergeFlags(flags);
break;
}
case ArithNegate: {
flags &= ~NodeBytecodeUsesAsOther;
node->child1()->mergeFlags(flags);
break;
}
case ArithMul: {
// As soon as a multiply happens, we can easily end up in the part
// of the double domain where the point at which you do truncation
// can change the outcome. So, ArithMul always forces its inputs to
// check for overflow. Additionally, it will have to check for overflow
// itself unless we can prove that there is no way for the values
// produced to cause double rounding.
if (!isWithinPowerOfTwo<22>(node->child1().node())
&& !isWithinPowerOfTwo<22>(node->child2().node()))
flags |= NodeBytecodeUsesAsNumber;
node->mergeFlags(flags);
flags |= NodeBytecodeUsesAsNumber | NodeBytecodeNeedsNegZero;
flags &= ~NodeBytecodeUsesAsOther;
node->child1()->mergeFlags(flags);
node->child2()->mergeFlags(flags);
break;
}
case ArithDiv: {
flags |= NodeBytecodeUsesAsNumber | NodeBytecodeNeedsNegZero;
flags &= ~NodeBytecodeUsesAsOther;
node->child1()->mergeFlags(flags);
node->child2()->mergeFlags(flags);
break;
}
case ArithMod: {
flags |= NodeBytecodeUsesAsNumber | NodeBytecodeNeedsNegZero;
flags &= ~NodeBytecodeUsesAsOther;
node->child1()->mergeFlags(flags);
node->child2()->mergeFlags(flags);
break;
}
case GetByVal: {
node->child1()->mergeFlags(NodeBytecodeUsesAsValue);
node->child2()->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther | NodeBytecodeUsesAsInt | NodeBytecodeUsesAsArrayIndex);
break;
}
case GetMyArgumentByValSafe: {
node->child1()->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther | NodeBytecodeUsesAsInt | NodeBytecodeUsesAsArrayIndex);
break;
}
case NewArrayWithSize: {
node->child1()->mergeFlags(NodeBytecodeUsesAsValue | NodeBytecodeUsesAsInt | NodeBytecodeUsesAsArrayIndex);
break;
}
case NewTypedArray: {
// Negative zero is not observable. NaN versus undefined are only observable
// in that you would get a different exception message. So, like, whatever: we
// claim here that NaN v. undefined is observable.
node->child1()->mergeFlags(NodeBytecodeUsesAsInt | NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther | NodeBytecodeUsesAsArrayIndex);
break;
}
case StringCharAt: {
node->child1()->mergeFlags(NodeBytecodeUsesAsValue);
node->child2()->mergeFlags(NodeBytecodeUsesAsValue | NodeBytecodeUsesAsInt | NodeBytecodeUsesAsArrayIndex);
break;
}
case ToString: {
node->child1()->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther);
break;
}
case ToPrimitive: {
node->child1()->mergeFlags(flags);
break;
}
case PutByValDirect:
case PutByVal: {
m_graph.varArgChild(node, 0)->mergeFlags(NodeBytecodeUsesAsValue);
m_graph.varArgChild(node, 1)->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther | NodeBytecodeUsesAsInt | NodeBytecodeUsesAsArrayIndex);
m_graph.varArgChild(node, 2)->mergeFlags(NodeBytecodeUsesAsValue);
break;
}
case Switch: {
SwitchData* data = node->switchData();
switch (data->kind) {
case SwitchImm:
// We don't need NodeBytecodeNeedsNegZero because if the cases are all integers
// then -0 and 0 are treated the same. We don't need NodeBytecodeUsesAsOther
// because if all of the cases are integers then NaN and undefined are
// treated the same (i.e. they will take default).
node->child1()->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsInt);
break;
case SwitchChar: {
// We don't need NodeBytecodeNeedsNegZero because if the cases are all strings
// then -0 and 0 are treated the same. We don't need NodeBytecodeUsesAsOther
// because if all of the cases are single-character strings then NaN
// and undefined are treated the same (i.e. they will take default).
node->child1()->mergeFlags(NodeBytecodeUsesAsNumber);
break;
}
case SwitchString:
// We don't need NodeBytecodeNeedsNegZero because if the cases are all strings
// then -0 and 0 are treated the same.
node->child1()->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther);
break;
case SwitchCell:
// There is currently no point to being clever here since this is used for switching
// on objects.
mergeDefaultFlags(node);
break;
}
break;
}
case Identity:
// This would be trivial to handle but we just assert that we cannot see these yet.
RELEASE_ASSERT_NOT_REACHED();
break;
// Note: ArithSqrt, ArithSin, and ArithCos and other math intrinsics don't have special
// rules in here because they are always followed by Phantoms to signify that if the
// method call speculation fails, the bytecode may use the arguments in arbitrary ways.
// This corresponds to that possibility of someone doing something like:
// Math.sin = function(x) { doArbitraryThingsTo(x); }
default:
mergeDefaultFlags(node);
break;
}
}
bool m_allowNestedOverflowingAdditions;
bool m_changed;
};
bool performBackwardsPropagation(Graph& graph)
{
SamplingRegion samplingRegion("DFG Backwards Propagation Phase");
return runPhase<BackwardsPropagationPhase>(graph);
}
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)
|