1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
|
/*
* Copyright (C) 2011, 2013, 2014 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGOSRExitCompiler.h"
#if ENABLE(DFG_JIT) && USE(JSVALUE64)
#include "DFGOperations.h"
#include "DFGOSRExitCompilerCommon.h"
#include "DFGSpeculativeJIT.h"
#include "JSCInlines.h"
#include "VirtualRegister.h"
#include <wtf/DataLog.h>
namespace JSC { namespace DFG {
void OSRExitCompiler::compileExit(const OSRExit& exit, const Operands<ValueRecovery>& operands, SpeculationRecovery* recovery)
{
m_jit.jitAssertTagsInPlace();
// 1) Pro-forma stuff.
if (Options::printEachOSRExit()) {
SpeculationFailureDebugInfo* debugInfo = new SpeculationFailureDebugInfo;
debugInfo->codeBlock = m_jit.codeBlock();
debugInfo->kind = exit.m_kind;
debugInfo->bytecodeOffset = exit.m_codeOrigin.bytecodeIndex;
m_jit.debugCall(debugOperationPrintSpeculationFailure, debugInfo);
}
// Need to ensure that the stack pointer accounts for the worst-case stack usage at exit.
m_jit.addPtr(
CCallHelpers::TrustedImm32(
-m_jit.codeBlock()->jitCode()->dfgCommon()->requiredRegisterCountForExit * sizeof(Register)),
CCallHelpers::framePointerRegister, CCallHelpers::stackPointerRegister);
// 2) Perform speculation recovery. This only comes into play when an operation
// starts mutating state before verifying the speculation it has already made.
if (recovery) {
switch (recovery->type()) {
case SpeculativeAdd:
m_jit.sub32(recovery->src(), recovery->dest());
m_jit.or64(GPRInfo::tagTypeNumberRegister, recovery->dest());
break;
case BooleanSpeculationCheck:
m_jit.xor64(AssemblyHelpers::TrustedImm32(static_cast<int32_t>(ValueFalse)), recovery->dest());
break;
default:
break;
}
}
// 3) Refine some array and/or value profile, if appropriate.
if (!!exit.m_jsValueSource) {
if (exit.m_kind == BadCache || exit.m_kind == BadIndexingType) {
// If the instruction that this originated from has an array profile, then
// refine it. If it doesn't, then do nothing. The latter could happen for
// hoisted checks, or checks emitted for operations that didn't have array
// profiling - either ops that aren't array accesses at all, or weren't
// known to be array acceses in the bytecode. The latter case is a FIXME
// while the former case is an outcome of a CheckStructure not knowing why
// it was emitted (could be either due to an inline cache of a property
// property access, or due to an array profile).
CodeOrigin codeOrigin = exit.m_codeOriginForExitProfile;
if (ArrayProfile* arrayProfile = m_jit.baselineCodeBlockFor(codeOrigin)->getArrayProfile(codeOrigin.bytecodeIndex)) {
GPRReg usedRegister;
if (exit.m_jsValueSource.isAddress())
usedRegister = exit.m_jsValueSource.base();
else
usedRegister = exit.m_jsValueSource.gpr();
GPRReg scratch1;
GPRReg scratch2;
scratch1 = AssemblyHelpers::selectScratchGPR(usedRegister);
scratch2 = AssemblyHelpers::selectScratchGPR(usedRegister, scratch1);
#if CPU(ARM64)
m_jit.pushToSave(scratch1);
m_jit.pushToSave(scratch2);
#else
m_jit.push(scratch1);
m_jit.push(scratch2);
#endif
GPRReg value;
if (exit.m_jsValueSource.isAddress()) {
value = scratch1;
m_jit.loadPtr(AssemblyHelpers::Address(exit.m_jsValueSource.asAddress()), value);
} else
value = exit.m_jsValueSource.gpr();
m_jit.load32(AssemblyHelpers::Address(value, JSCell::structureIDOffset()), scratch1);
m_jit.store32(scratch1, arrayProfile->addressOfLastSeenStructureID());
m_jit.load8(AssemblyHelpers::Address(value, JSCell::indexingTypeOffset()), scratch1);
m_jit.move(AssemblyHelpers::TrustedImm32(1), scratch2);
m_jit.lshift32(scratch1, scratch2);
m_jit.or32(scratch2, AssemblyHelpers::AbsoluteAddress(arrayProfile->addressOfArrayModes()));
#if CPU(ARM64)
m_jit.popToRestore(scratch2);
m_jit.popToRestore(scratch1);
#else
m_jit.pop(scratch2);
m_jit.pop(scratch1);
#endif
}
}
if (!!exit.m_valueProfile) {
EncodedJSValue* bucket = exit.m_valueProfile.getSpecFailBucket(0);
if (exit.m_jsValueSource.isAddress()) {
// We can't be sure that we have a spare register. So use the tagTypeNumberRegister,
// since we know how to restore it.
m_jit.load64(AssemblyHelpers::Address(exit.m_jsValueSource.asAddress()), GPRInfo::tagTypeNumberRegister);
m_jit.store64(GPRInfo::tagTypeNumberRegister, bucket);
m_jit.move(AssemblyHelpers::TrustedImm64(TagTypeNumber), GPRInfo::tagTypeNumberRegister);
} else
m_jit.store64(exit.m_jsValueSource.gpr(), bucket);
}
}
// What follows is an intentionally simple OSR exit implementation that generates
// fairly poor code but is very easy to hack. In particular, it dumps all state that
// needs conversion into a scratch buffer so that in step 6, where we actually do the
// conversions, we know that all temp registers are free to use and the variable is
// definitely in a well-known spot in the scratch buffer regardless of whether it had
// originally been in a register or spilled. This allows us to decouple "where was
// the variable" from "how was it represented". Consider that the
// Int32DisplacedInJSStack recovery: it tells us that the value is in a
// particular place and that that place holds an unboxed int32. We have two different
// places that a value could be (displaced, register) and a bunch of different
// ways of representing a value. The number of recoveries is two * a bunch. The code
// below means that we have to have two + a bunch cases rather than two * a bunch.
// Once we have loaded the value from wherever it was, the reboxing is the same
// regardless of its location. Likewise, before we do the reboxing, the way we get to
// the value (i.e. where we load it from) is the same regardless of its type. Because
// the code below always dumps everything into a scratch buffer first, the two
// questions become orthogonal, which simplifies adding new types and adding new
// locations.
//
// This raises the question: does using such a suboptimal implementation of OSR exit,
// where we always emit code to dump all state into a scratch buffer only to then
// dump it right back into the stack, hurt us in any way? The asnwer is that OSR exits
// are rare. Our tiering strategy ensures this. This is because if an OSR exit is
// taken more than ~100 times, we jettison the DFG code block along with all of its
// exits. It is impossible for an OSR exit - i.e. the code we compile below - to
// execute frequently enough for the codegen to matter that much. It probably matters
// enough that we don't want to turn this into some super-slow function call, but so
// long as we're generating straight-line code, that code can be pretty bad. Also
// because we tend to exit only along one OSR exit from any DFG code block - that's an
// empirical result that we're extremely confident about - the code size of this
// doesn't matter much. Hence any attempt to optimize the codegen here is just purely
// harmful to the system: it probably won't reduce either net memory usage or net
// execution time. It will only prevent us from cleanly decoupling "where was the
// variable" from "how was it represented", which will make it more difficult to add
// features in the future and it will make it harder to reason about bugs.
// 4) Save all state from GPRs into the scratch buffer.
ScratchBuffer* scratchBuffer = m_jit.vm()->scratchBufferForSize(sizeof(EncodedJSValue) * operands.size());
EncodedJSValue* scratch = scratchBuffer ? static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()) : 0;
for (size_t index = 0; index < operands.size(); ++index) {
const ValueRecovery& recovery = operands[index];
switch (recovery.technique()) {
case InGPR:
case UnboxedInt32InGPR:
case UnboxedInt52InGPR:
case UnboxedStrictInt52InGPR:
case UnboxedCellInGPR:
m_jit.store64(recovery.gpr(), scratch + index);
break;
default:
break;
}
}
// And voila, all GPRs are free to reuse.
// 5) Save all state from FPRs into the scratch buffer.
for (size_t index = 0; index < operands.size(); ++index) {
const ValueRecovery& recovery = operands[index];
switch (recovery.technique()) {
case InFPR:
m_jit.move(AssemblyHelpers::TrustedImmPtr(scratch + index), GPRInfo::regT0);
m_jit.storeDouble(recovery.fpr(), MacroAssembler::Address(GPRInfo::regT0));
break;
default:
break;
}
}
// Now, all FPRs are also free.
// 6) Save all state from the stack into the scratch buffer. For simplicity we
// do this even for state that's already in the right place on the stack.
// It makes things simpler later.
for (size_t index = 0; index < operands.size(); ++index) {
const ValueRecovery& recovery = operands[index];
switch (recovery.technique()) {
case DisplacedInJSStack:
case CellDisplacedInJSStack:
case BooleanDisplacedInJSStack:
case Int32DisplacedInJSStack:
case DoubleDisplacedInJSStack:
case Int52DisplacedInJSStack:
case StrictInt52DisplacedInJSStack:
m_jit.load64(AssemblyHelpers::addressFor(recovery.virtualRegister()), GPRInfo::regT0);
m_jit.store64(GPRInfo::regT0, scratch + index);
break;
default:
break;
}
}
// 7) Do all data format conversions and store the results into the stack.
bool haveArguments = false;
for (size_t index = 0; index < operands.size(); ++index) {
const ValueRecovery& recovery = operands[index];
int operand = operands.operandForIndex(index);
switch (recovery.technique()) {
case InGPR:
case UnboxedCellInGPR:
case DisplacedInJSStack:
case CellDisplacedInJSStack:
case BooleanDisplacedInJSStack:
m_jit.load64(scratch + index, GPRInfo::regT0);
m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand));
break;
case UnboxedInt32InGPR:
case Int32DisplacedInJSStack:
m_jit.load64(scratch + index, GPRInfo::regT0);
m_jit.zeroExtend32ToPtr(GPRInfo::regT0, GPRInfo::regT0);
m_jit.or64(GPRInfo::tagTypeNumberRegister, GPRInfo::regT0);
m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand));
break;
case UnboxedInt52InGPR:
case Int52DisplacedInJSStack:
m_jit.load64(scratch + index, GPRInfo::regT0);
m_jit.rshift64(
AssemblyHelpers::TrustedImm32(JSValue::int52ShiftAmount), GPRInfo::regT0);
m_jit.boxInt52(GPRInfo::regT0, GPRInfo::regT0, GPRInfo::regT1, FPRInfo::fpRegT0);
m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand));
break;
case UnboxedStrictInt52InGPR:
case StrictInt52DisplacedInJSStack:
m_jit.load64(scratch + index, GPRInfo::regT0);
m_jit.boxInt52(GPRInfo::regT0, GPRInfo::regT0, GPRInfo::regT1, FPRInfo::fpRegT0);
m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand));
break;
case InFPR:
case DoubleDisplacedInJSStack:
m_jit.move(AssemblyHelpers::TrustedImmPtr(scratch + index), GPRInfo::regT0);
m_jit.loadDouble(MacroAssembler::Address(GPRInfo::regT0), FPRInfo::fpRegT0);
m_jit.purifyNaN(FPRInfo::fpRegT0);
m_jit.boxDouble(FPRInfo::fpRegT0, GPRInfo::regT0);
m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand));
break;
case Constant:
m_jit.store64(
AssemblyHelpers::TrustedImm64(JSValue::encode(recovery.constant())),
AssemblyHelpers::addressFor(operand));
break;
case ArgumentsThatWereNotCreated:
haveArguments = true;
// We can't restore this yet but we can make sure that the stack appears
// sane.
m_jit.store64(
AssemblyHelpers::TrustedImm64(JSValue::encode(JSValue())),
AssemblyHelpers::addressFor(operand));
break;
default:
break;
}
}
// 8) Adjust the old JIT's execute counter. Since we are exiting OSR, we know
// that all new calls into this code will go to the new JIT, so the execute
// counter only affects call frames that performed OSR exit and call frames
// that were still executing the old JIT at the time of another call frame's
// OSR exit. We want to ensure that the following is true:
//
// (a) Code the performs an OSR exit gets a chance to reenter optimized
// code eventually, since optimized code is faster. But we don't
// want to do such reentery too aggressively (see (c) below).
//
// (b) If there is code on the call stack that is still running the old
// JIT's code and has never OSR'd, then it should get a chance to
// perform OSR entry despite the fact that we've exited.
//
// (c) Code the performs an OSR exit should not immediately retry OSR
// entry, since both forms of OSR are expensive. OSR entry is
// particularly expensive.
//
// (d) Frequent OSR failures, even those that do not result in the code
// running in a hot loop, result in recompilation getting triggered.
//
// To ensure (c), we'd like to set the execute counter to
// counterValueForOptimizeAfterWarmUp(). This seems like it would endanger
// (a) and (b), since then every OSR exit would delay the opportunity for
// every call frame to perform OSR entry. Essentially, if OSR exit happens
// frequently and the function has few loops, then the counter will never
// become non-negative and OSR entry will never be triggered. OSR entry
// will only happen if a loop gets hot in the old JIT, which does a pretty
// good job of ensuring (a) and (b). But that doesn't take care of (d),
// since each speculation failure would reset the execute counter.
// So we check here if the number of speculation failures is significantly
// larger than the number of successes (we want 90% success rate), and if
// there have been a large enough number of failures. If so, we set the
// counter to 0; otherwise we set the counter to
// counterValueForOptimizeAfterWarmUp().
handleExitCounts(m_jit, exit);
// 9) Reify inlined call frames.
reifyInlinedCallFrames(m_jit, exit);
// 10) Create arguments if necessary and place them into the appropriate aliased
// registers.
if (haveArguments) {
ArgumentsRecoveryGenerator argumentsRecovery;
for (size_t index = 0; index < operands.size(); ++index) {
const ValueRecovery& recovery = operands[index];
if (recovery.technique() != ArgumentsThatWereNotCreated)
continue;
argumentsRecovery.generateFor(
operands.operandForIndex(index), exit.m_codeOrigin, m_jit);
}
}
// 12) And finish.
adjustAndJumpToTarget(m_jit, exit);
}
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT) && USE(JSVALUE64)
|