1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
/*
* Copyright (C) 2013 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef FTLAbstractHeap_h
#define FTLAbstractHeap_h
#if ENABLE(FTL_JIT)
#include "FTLAbbreviations.h"
#include "JSCJSValue.h"
#include <array>
#include <wtf/FastMalloc.h>
#include <wtf/HashMap.h>
#include <wtf/Noncopyable.h>
#include <wtf/OwnPtr.h>
#include <wtf/Vector.h>
#include <wtf/text/CString.h>
namespace JSC { namespace FTL {
// The FTL JIT tries to aid LLVM's TBAA. The FTL's notion of how this
// happens is the AbstractHeap. AbstractHeaps are a simple type system
// with sub-typing.
class AbstractHeapRepository;
class Output;
class TypedPointer;
class AbstractHeap {
WTF_MAKE_NONCOPYABLE(AbstractHeap); WTF_MAKE_FAST_ALLOCATED;
public:
AbstractHeap()
: m_parent(0)
, m_heapName(0)
, m_tbaaMetadata(0)
{
}
AbstractHeap(AbstractHeap* parent, const char* heapName)
: m_parent(parent)
, m_heapName(heapName)
, m_tbaaMetadata(0)
{
}
bool isInitialized() const { return !!m_heapName; }
void initialize(AbstractHeap* parent, const char* heapName)
{
m_parent = parent;
m_heapName = heapName;
}
AbstractHeap* parent() const
{
ASSERT(isInitialized());
return m_parent;
}
const char* heapName() const
{
ASSERT(isInitialized());
return m_heapName;
}
LValue tbaaMetadata(const AbstractHeapRepository& repository) const
{
ASSERT(isInitialized());
if (LIKELY(!!m_tbaaMetadata))
return m_tbaaMetadata;
return tbaaMetadataSlow(repository);
}
void decorateInstruction(LValue instruction, const AbstractHeapRepository&) const;
private:
friend class AbstractHeapRepository;
LValue tbaaMetadataSlow(const AbstractHeapRepository&) const;
AbstractHeap* m_parent;
const char* m_heapName;
mutable LValue m_tbaaMetadata;
};
// Think of "AbstractField" as being an "AbstractHeapWithOffset". I would have named
// it the latter except that I don't like typing that much.
class AbstractField : public AbstractHeap {
public:
AbstractField()
{
}
AbstractField(AbstractHeap* parent, const char* heapName, ptrdiff_t offset)
: AbstractHeap(parent, heapName)
, m_offset(offset)
{
}
void initialize(AbstractHeap* parent, const char* heapName, ptrdiff_t offset)
{
AbstractHeap::initialize(parent, heapName);
m_offset = offset;
}
ptrdiff_t offset() const
{
ASSERT(isInitialized());
return m_offset;
}
private:
ptrdiff_t m_offset;
};
class IndexedAbstractHeap {
public:
IndexedAbstractHeap(LContext, AbstractHeap* parent, const char* heapName, ptrdiff_t offset, size_t elementSize);
~IndexedAbstractHeap();
const AbstractHeap& atAnyIndex() const { return m_heapForAnyIndex; }
const AbstractField& at(ptrdiff_t index)
{
if (static_cast<size_t>(index) < m_smallIndices.size())
return returnInitialized(m_smallIndices[index], index);
return atSlow(index);
}
const AbstractField& operator[](ptrdiff_t index) { return at(index); }
TypedPointer baseIndex(Output& out, LValue base, LValue index, JSValue indexAsConstant = JSValue(), ptrdiff_t offset = 0);
private:
const AbstractField& returnInitialized(AbstractField& field, ptrdiff_t index)
{
if (UNLIKELY(!field.isInitialized()))
initialize(field, index);
return field;
}
const AbstractField& atSlow(ptrdiff_t index);
void initialize(AbstractField& field, ptrdiff_t index);
AbstractHeap m_heapForAnyIndex;
size_t m_heapNameLength;
ptrdiff_t m_offset;
size_t m_elementSize;
LValue m_scaleTerm;
bool m_canShift;
std::array<AbstractField, 16> m_smallIndices;
struct WithoutZeroOrOneHashTraits : WTF::GenericHashTraits<ptrdiff_t> {
static void constructDeletedValue(ptrdiff_t& slot) { slot = 1; }
static bool isDeletedValue(ptrdiff_t value) { return value == 1; }
};
typedef HashMap<ptrdiff_t, std::unique_ptr<AbstractField>, WTF::IntHash<ptrdiff_t>, WithoutZeroOrOneHashTraits> MapType;
OwnPtr<MapType> m_largeIndices;
Vector<CString, 16> m_largeIndexNames;
};
// A numbered abstract heap is like an indexed abstract heap, except that you
// can't rely on there being a relationship between the number you use to
// retrieve the sub-heap, and the offset that this heap has. (In particular,
// the sub-heaps don't have indices.)
class NumberedAbstractHeap {
public:
NumberedAbstractHeap(LContext, AbstractHeap* parent, const char* heapName);
~NumberedAbstractHeap();
const AbstractHeap& atAnyNumber() const { return m_indexedHeap.atAnyIndex(); }
const AbstractHeap& at(unsigned number) { return m_indexedHeap.at(number); }
const AbstractHeap& operator[](unsigned number) { return at(number); }
private:
// We use the fact that the indexed heap already has a superset of the
// functionality we need.
IndexedAbstractHeap m_indexedHeap;
};
class AbsoluteAbstractHeap {
public:
AbsoluteAbstractHeap(LContext, AbstractHeap* parent, const char* heapName);
~AbsoluteAbstractHeap();
const AbstractHeap& atAnyAddress() const { return m_indexedHeap.atAnyIndex(); }
const AbstractHeap& at(void* address)
{
return m_indexedHeap.at(bitwise_cast<ptrdiff_t>(address));
}
const AbstractHeap& operator[](void* address) { return at(address); }
private:
// The trick here is that the indexed heap is "indexed" by a pointer-width
// integer. Pointers are themselves pointer-width integers. So we can reuse
// all of the functionality.
IndexedAbstractHeap m_indexedHeap;
};
} } // namespace JSC::FTL
#endif // ENABLE(FTL_JIT)
#endif // FTLAbstractHeap_h
|