1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
|
/*
* Copyright (C) 2013, 2014 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef FTLOutput_h
#define FTLOutput_h
#if ENABLE(FTL_JIT)
#include "DFGCommon.h"
#include "FTLAbbreviations.h"
#include "FTLAbstractHeapRepository.h"
#include "FTLCommonValues.h"
#include "FTLIntrinsicRepository.h"
#include "FTLState.h"
#include "FTLSwitchCase.h"
#include "FTLTypedPointer.h"
#include "FTLWeight.h"
#include "FTLWeightedTarget.h"
#include <wtf/StringPrintStream.h>
namespace JSC { namespace FTL {
// Idiomatic LLVM IR builder specifically designed for FTL. This uses our own lowering
// terminology, and has some of its own notions:
//
// We say that a "reference" is what LLVM considers to be a "pointer". That is, it has
// an element type and can be passed directly to memory access instructions. Note that
// broadly speaking the users of FTL::Output should only use references for alloca'd
// slots for mutable local variables.
//
// We say that a "pointer" is what LLVM considers to be a pointer-width integer.
//
// We say that a "typed pointer" is a pointer that carries TBAA meta-data (i.e. an
// AbstractHeap). These should usually not have further computation performed on them
// prior to access, though there are exceptions (like offsetting into the payload of
// a typed pointer to a JSValue).
//
// We say that "get" and "set" are what LLVM considers to be "load" and "store". Get
// and set take references.
//
// We say that "load" and "store" are operations that take a typed pointer. These
// operations translate the pointer into a reference (or, a pointer in LLVM-speak),
// emit get or set on the reference (or, load and store in LLVM-speak), and apply the
// TBAA meta-data to the get or set.
enum Scale { ScaleOne, ScaleTwo, ScaleFour, ScaleEight, ScalePtr };
class Output : public IntrinsicRepository {
public:
Output(LContext);
~Output();
void initialize(LModule, LValue, AbstractHeapRepository&);
LBasicBlock insertNewBlocksBefore(LBasicBlock nextBlock)
{
LBasicBlock lastNextBlock = m_nextBlock;
m_nextBlock = nextBlock;
return lastNextBlock;
}
LBasicBlock appendTo(LBasicBlock, LBasicBlock nextBlock);
void appendTo(LBasicBlock);
LBasicBlock newBlock(const char* name = "");
LValue param(unsigned index) { return getParam(m_function, index); }
LValue constBool(bool value) { return constInt(boolean, value); }
LValue constInt8(int8_t value) { return constInt(int8, value); }
LValue constInt32(int32_t value) { return constInt(int32, value); }
template<typename T>
LValue constIntPtr(T* value) { return constInt(intPtr, bitwise_cast<intptr_t>(value)); }
template<typename T>
LValue constIntPtr(T value) { return constInt(intPtr, static_cast<intptr_t>(value)); }
LValue constInt64(int64_t value) { return constInt(int64, value); }
LValue constDouble(double value) { return constReal(doubleType, value); }
LValue phi(LType type) { return buildPhi(m_builder, type); }
template<typename... Params>
LValue phi(LType type, ValueFromBlock value, Params... theRest)
{
LValue result = phi(type, theRest...);
addIncoming(result, value);
return result;
}
template<typename VectorType>
LValue phi(LType type, const VectorType& vector)
{
LValue result = phi(type);
for (unsigned i = 0; i < vector.size(); ++i)
addIncoming(result, vector[i]);
return result;
}
LValue add(LValue left, LValue right) { return buildAdd(m_builder, left, right); }
LValue sub(LValue left, LValue right) { return buildSub(m_builder, left, right); }
LValue mul(LValue left, LValue right) { return buildMul(m_builder, left, right); }
LValue div(LValue left, LValue right) { return buildDiv(m_builder, left, right); }
LValue rem(LValue left, LValue right) { return buildRem(m_builder, left, right); }
LValue neg(LValue value) { return buildNeg(m_builder, value); }
LValue doubleAdd(LValue left, LValue right) { return buildFAdd(m_builder, left, right); }
LValue doubleSub(LValue left, LValue right) { return buildFSub(m_builder, left, right); }
LValue doubleMul(LValue left, LValue right) { return buildFMul(m_builder, left, right); }
LValue doubleDiv(LValue left, LValue right) { return buildFDiv(m_builder, left, right); }
LValue doubleRem(LValue left, LValue right) { return buildFRem(m_builder, left, right); }
LValue doubleNeg(LValue value) { return buildFNeg(m_builder, value); }
LValue bitAnd(LValue left, LValue right) { return buildAnd(m_builder, left, right); }
LValue bitOr(LValue left, LValue right) { return buildOr(m_builder, left, right); }
LValue bitXor(LValue left, LValue right) { return buildXor(m_builder, left, right); }
LValue shl(LValue left, LValue right) { return buildShl(m_builder, left, right); }
LValue aShr(LValue left, LValue right) { return buildAShr(m_builder, left, right); }
LValue lShr(LValue left, LValue right) { return buildLShr(m_builder, left, right); }
LValue bitNot(LValue value) { return buildNot(m_builder, value); }
LValue insertElement(LValue vector, LValue element, LValue index) { return buildInsertElement(m_builder, vector, element, index); }
LValue addWithOverflow32(LValue left, LValue right)
{
return call(addWithOverflow32Intrinsic(), left, right);
}
LValue subWithOverflow32(LValue left, LValue right)
{
return call(subWithOverflow32Intrinsic(), left, right);
}
LValue mulWithOverflow32(LValue left, LValue right)
{
return call(mulWithOverflow32Intrinsic(), left, right);
}
LValue addWithOverflow64(LValue left, LValue right)
{
return call(addWithOverflow64Intrinsic(), left, right);
}
LValue subWithOverflow64(LValue left, LValue right)
{
return call(subWithOverflow64Intrinsic(), left, right);
}
LValue mulWithOverflow64(LValue left, LValue right)
{
return call(mulWithOverflow64Intrinsic(), left, right);
}
LValue doubleAbs(LValue value)
{
return call(doubleAbsIntrinsic(), value);
}
LValue doubleSin(LValue value)
{
return call(doubleSinIntrinsic(), value);
}
LValue doubleCos(LValue value)
{
return call(doubleCosIntrinsic(), value);
}
LValue doubleSqrt(LValue value)
{
return call(doubleSqrtIntrinsic(), value);
}
static bool hasSensibleDoubleToInt() { return isX86(); }
LValue sensibleDoubleToInt(LValue);
LValue signExt(LValue value, LType type) { return buildSExt(m_builder, value, type); }
LValue zeroExt(LValue value, LType type) { return buildZExt(m_builder, value, type); }
LValue fpToInt(LValue value, LType type) { return buildFPToSI(m_builder, value, type); }
LValue fpToUInt(LValue value, LType type) { return buildFPToUI(m_builder, value, type); }
LValue fpToInt32(LValue value) { return fpToInt(value, int32); }
LValue fpToUInt32(LValue value) { return fpToUInt(value, int32); }
LValue intToFP(LValue value, LType type) { return buildSIToFP(m_builder, value, type); }
LValue intToDouble(LValue value) { return intToFP(value, doubleType); }
LValue unsignedToFP(LValue value, LType type) { return buildUIToFP(m_builder, value, type); }
LValue unsignedToDouble(LValue value) { return unsignedToFP(value, doubleType); }
LValue intCast(LValue value, LType type) { return buildIntCast(m_builder, value, type); }
LValue castToInt32(LValue value) { return intCast(value, int32); }
LValue fpCast(LValue value, LType type) { return buildFPCast(m_builder, value, type); }
LValue intToPtr(LValue value, LType type) { return buildIntToPtr(m_builder, value, type); }
LValue ptrToInt(LValue value, LType type) { return buildPtrToInt(m_builder, value, type); }
LValue bitCast(LValue value, LType type) { return buildBitCast(m_builder, value, type); }
LValue alloca(LType type) { return buildAlloca(m_builder, type); }
// Access the value of an alloca. Also used as a low-level implementation primitive for
// load(). Never use this to load from "pointers" in the FTL sense, since FTL pointers
// are actually integers. This requires an LLVM pointer. Broadly speaking, you don't
// have any LLVM pointers even if you really think you do. A TypedPointer is not an
// LLVM pointer. See comment block at top of this file to understand the distinction
// between LLVM pointers, FTL pointers, and FTL references.
LValue get(LValue reference) { return buildLoad(m_builder, reference); }
// Similar to get() but for storing to the value in an alloca.
LValue set(LValue value, LValue reference) { return buildStore(m_builder, value, reference); }
LValue load(TypedPointer, LType refType);
void store(LValue, TypedPointer, LType refType);
LValue load8(TypedPointer pointer) { return load(pointer, ref8); }
LValue load16(TypedPointer pointer) { return load(pointer, ref16); }
LValue load32(TypedPointer pointer) { return load(pointer, ref32); }
LValue load64(TypedPointer pointer) { return load(pointer, ref64); }
LValue loadPtr(TypedPointer pointer) { return load(pointer, refPtr); }
LValue loadFloat(TypedPointer pointer) { return load(pointer, refFloat); }
LValue loadDouble(TypedPointer pointer) { return load(pointer, refDouble); }
void store8(LValue value, TypedPointer pointer) { store(value, pointer, ref8); }
void store16(LValue value, TypedPointer pointer) { store(value, pointer, ref16); }
void store32(LValue value, TypedPointer pointer) { store(value, pointer, ref32); }
void store64(LValue value, TypedPointer pointer) { store(value, pointer, ref64); }
void storePtr(LValue value, TypedPointer pointer) { store(value, pointer, refPtr); }
void storeFloat(LValue value, TypedPointer pointer) { store(value, pointer, refFloat); }
void storeDouble(LValue value, TypedPointer pointer) { store(value, pointer, refDouble); }
LValue addPtr(LValue value, ptrdiff_t immediate = 0)
{
if (!immediate)
return value;
return add(value, constIntPtr(immediate));
}
// Construct an address by offsetting base by the requested amount and ascribing
// the requested abstract heap to it.
TypedPointer address(const AbstractHeap& heap, LValue base, ptrdiff_t offset = 0)
{
return TypedPointer(heap, addPtr(base, offset));
}
// Construct an address by offsetting base by the amount specified by the field,
// and optionally an additional amount (use this with care), and then creating
// a TypedPointer with the given field as the heap.
TypedPointer address(LValue base, const AbstractField& field, ptrdiff_t offset = 0)
{
return address(field, base, offset + field.offset());
}
LValue baseIndex(LValue base, LValue index, Scale, ptrdiff_t offset = 0);
TypedPointer baseIndex(const AbstractHeap& heap, LValue base, LValue index, Scale scale, ptrdiff_t offset = 0)
{
return TypedPointer(heap, baseIndex(base, index, scale, offset));
}
TypedPointer baseIndex(IndexedAbstractHeap& heap, LValue base, LValue index, JSValue indexAsConstant = JSValue(), ptrdiff_t offset = 0)
{
return heap.baseIndex(*this, base, index, indexAsConstant, offset);
}
TypedPointer absolute(void* address)
{
return TypedPointer(m_heaps->absolute[address], constIntPtr(address));
}
LValue load8(LValue base, const AbstractField& field) { return load8(address(base, field)); }
LValue load16(LValue base, const AbstractField& field) { return load16(address(base, field)); }
LValue load32(LValue base, const AbstractField& field) { return load32(address(base, field)); }
LValue load64(LValue base, const AbstractField& field) { return load64(address(base, field)); }
LValue loadPtr(LValue base, const AbstractField& field) { return loadPtr(address(base, field)); }
LValue loadDouble(LValue base, const AbstractField& field) { return loadDouble(address(base, field)); }
void store8(LValue value, LValue base, const AbstractField& field) { store8(value, address(base, field)); }
void store32(LValue value, LValue base, const AbstractField& field) { store32(value, address(base, field)); }
void store64(LValue value, LValue base, const AbstractField& field) { store64(value, address(base, field)); }
void storePtr(LValue value, LValue base, const AbstractField& field) { storePtr(value, address(base, field)); }
void storeDouble(LValue value, LValue base, const AbstractField& field) { storeDouble(value, address(base, field)); }
void ascribeRange(LValue loadInstruction, const ValueRange& range)
{
range.decorateInstruction(m_context, loadInstruction, rangeKind);
}
LValue nonNegative32(LValue loadInstruction)
{
ascribeRange(loadInstruction, nonNegativeInt32);
return loadInstruction;
}
LValue load32NonNegative(TypedPointer pointer) { return nonNegative32(load32(pointer)); }
LValue load32NonNegative(LValue base, const AbstractField& field) { return nonNegative32(load32(base, field)); }
LValue icmp(LIntPredicate cond, LValue left, LValue right) { return buildICmp(m_builder, cond, left, right); }
LValue equal(LValue left, LValue right) { return icmp(LLVMIntEQ, left, right); }
LValue notEqual(LValue left, LValue right) { return icmp(LLVMIntNE, left, right); }
LValue above(LValue left, LValue right) { return icmp(LLVMIntUGT, left, right); }
LValue aboveOrEqual(LValue left, LValue right) { return icmp(LLVMIntUGE, left, right); }
LValue below(LValue left, LValue right) { return icmp(LLVMIntULT, left, right); }
LValue belowOrEqual(LValue left, LValue right) { return icmp(LLVMIntULE, left, right); }
LValue greaterThan(LValue left, LValue right) { return icmp(LLVMIntSGT, left, right); }
LValue greaterThanOrEqual(LValue left, LValue right) { return icmp(LLVMIntSGE, left, right); }
LValue lessThan(LValue left, LValue right) { return icmp(LLVMIntSLT, left, right); }
LValue lessThanOrEqual(LValue left, LValue right) { return icmp(LLVMIntSLE, left, right); }
LValue fcmp(LRealPredicate cond, LValue left, LValue right) { return buildFCmp(m_builder, cond, left, right); }
LValue doubleEqual(LValue left, LValue right) { return fcmp(LLVMRealOEQ, left, right); }
LValue doubleNotEqualOrUnordered(LValue left, LValue right) { return fcmp(LLVMRealUNE, left, right); }
LValue doubleLessThan(LValue left, LValue right) { return fcmp(LLVMRealOLT, left, right); }
LValue doubleLessThanOrEqual(LValue left, LValue right) { return fcmp(LLVMRealOLE, left, right); }
LValue doubleGreaterThan(LValue left, LValue right) { return fcmp(LLVMRealOGT, left, right); }
LValue doubleGreaterThanOrEqual(LValue left, LValue right) { return fcmp(LLVMRealOGE, left, right); }
LValue doubleEqualOrUnordered(LValue left, LValue right) { return fcmp(LLVMRealUEQ, left, right); }
LValue doubleNotEqual(LValue left, LValue right) { return fcmp(LLVMRealONE, left, right); }
LValue doubleLessThanOrUnordered(LValue left, LValue right) { return fcmp(LLVMRealULT, left, right); }
LValue doubleLessThanOrEqualOrUnordered(LValue left, LValue right) { return fcmp(LLVMRealULE, left, right); }
LValue doubleGreaterThanOrUnordered(LValue left, LValue right) { return fcmp(LLVMRealUGT, left, right); }
LValue doubleGreaterThanOrEqualOrUnordered(LValue left, LValue right) { return fcmp(LLVMRealUGE, left, right); }
LValue isZero8(LValue value) { return equal(value, int8Zero); }
LValue notZero8(LValue value) { return notEqual(value, int8Zero); }
LValue isZero32(LValue value) { return equal(value, int32Zero); }
LValue notZero32(LValue value) { return notEqual(value, int32Zero); }
LValue isZero64(LValue value) { return equal(value, int64Zero); }
LValue notZero64(LValue value) { return notEqual(value, int64Zero); }
LValue isNull(LValue value) { return equal(value, intPtrZero); }
LValue notNull(LValue value) { return notEqual(value, intPtrZero); }
LValue testIsZero8(LValue value, LValue mask) { return isZero8(bitAnd(value, mask)); }
LValue testNonZero8(LValue value, LValue mask) { return notZero8(bitAnd(value, mask)); }
LValue testIsZero32(LValue value, LValue mask) { return isZero32(bitAnd(value, mask)); }
LValue testNonZero32(LValue value, LValue mask) { return notZero32(bitAnd(value, mask)); }
LValue testIsZero64(LValue value, LValue mask) { return isZero64(bitAnd(value, mask)); }
LValue testNonZero64(LValue value, LValue mask) { return notZero64(bitAnd(value, mask)); }
LValue select(LValue value, LValue taken, LValue notTaken) { return buildSelect(m_builder, value, taken, notTaken); }
LValue extractValue(LValue aggVal, unsigned index) { return buildExtractValue(m_builder, aggVal, index); }
LValue fence(LAtomicOrdering ordering = LLVMAtomicOrderingSequentiallyConsistent, SynchronizationScope scope = CrossThread) { return buildFence(m_builder, ordering, scope); }
LValue fenceAcqRel() { return fence(LLVMAtomicOrderingAcquireRelease); }
template<typename VectorType>
LValue call(LValue function, const VectorType& vector) { return buildCall(m_builder, function, vector); }
LValue call(LValue function) { return buildCall(m_builder, function); }
LValue call(LValue function, LValue arg1) { return buildCall(m_builder, function, arg1); }
LValue call(LValue function, LValue arg1, LValue arg2) { return buildCall(m_builder, function, arg1, arg2); }
LValue call(LValue function, LValue arg1, LValue arg2, LValue arg3) { return buildCall(m_builder, function, arg1, arg2, arg3); }
LValue call(LValue function, LValue arg1, LValue arg2, LValue arg3, LValue arg4) { return buildCall(m_builder, function, arg1, arg2, arg3, arg4); }
LValue call(LValue function, LValue arg1, LValue arg2, LValue arg3, LValue arg4, LValue arg5) { return buildCall(m_builder, function, arg1, arg2, arg3, arg4, arg5); }
LValue call(LValue function, LValue arg1, LValue arg2, LValue arg3, LValue arg4, LValue arg5, LValue arg6) { return buildCall(m_builder, function, arg1, arg2, arg3, arg4, arg5, arg6); }
LValue call(LValue function, LValue arg1, LValue arg2, LValue arg3, LValue arg4, LValue arg5, LValue arg6, LValue arg7) { return buildCall(m_builder, function, arg1, arg2, arg3, arg4, arg5, arg6, arg7); }
LValue call(LValue function, LValue arg1, LValue arg2, LValue arg3, LValue arg4, LValue arg5, LValue arg6, LValue arg7, LValue arg8) { return buildCall(m_builder, function, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8); }
template<typename FunctionType>
LValue operation(FunctionType function)
{
return intToPtr(constIntPtr(function), pointerType(operationType(function)));
}
void jump(LBasicBlock destination) { buildBr(m_builder, destination); }
void branch(LValue condition, LBasicBlock taken, Weight takenWeight, LBasicBlock notTaken, Weight notTakenWeight);
void branch(LValue condition, WeightedTarget taken, WeightedTarget notTaken)
{
branch(condition, taken.target(), taken.weight(), notTaken.target(), notTaken.weight());
}
template<typename VectorType>
void switchInstruction(LValue value, const VectorType& cases, LBasicBlock fallThrough, Weight fallThroughWeight)
{
LValue inst = buildSwitch(m_builder, value, cases, fallThrough);
double total = 0;
if (!fallThroughWeight)
return;
total += fallThroughWeight.value();
for (unsigned i = cases.size(); i--;) {
if (!cases[i].weight())
return;
total += cases[i].weight().value();
}
Vector<LValue> mdArgs;
mdArgs.append(branchWeights);
mdArgs.append(constInt32(fallThroughWeight.scaleToTotal(total)));
for (unsigned i = 0; i < cases.size(); ++i)
mdArgs.append(constInt32(cases[i].weight().scaleToTotal(total)));
setMetadata(inst, profKind, mdNode(m_context, mdArgs));
}
void ret(LValue value) { buildRet(m_builder, value); }
void unreachable() { buildUnreachable(m_builder); }
void trap()
{
call(trapIntrinsic());
}
ValueFromBlock anchor(LValue value)
{
return ValueFromBlock(value, m_block);
}
LValue m_function;
AbstractHeapRepository* m_heaps;
LBuilder m_builder;
LBasicBlock m_block;
LBasicBlock m_nextBlock;
};
#define FTL_NEW_BLOCK(output, nameArguments) \
(LIKELY(!verboseCompilationEnabled()) \
? (output).newBlock() \
: (output).newBlock((toCString nameArguments).data()))
} } // namespace JSC::FTL
#endif // ENABLE(FTL_JIT)
#endif // FTLOutput_h
|