File: FTLOutput.h

package info (click to toggle)
webkit2gtk 2.6.2%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 115,572 kB
  • ctags: 216,388
  • sloc: cpp: 1,164,175; ansic: 18,422; perl: 16,884; python: 11,608; ruby: 9,409; xml: 8,376; asm: 4,765; yacc: 2,292; lex: 891; sh: 650; makefile: 79
file content (426 lines) | stat: -rw-r--r-- 22,300 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
/*
 * Copyright (C) 2013, 2014 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#ifndef FTLOutput_h
#define FTLOutput_h

#if ENABLE(FTL_JIT)

#include "DFGCommon.h"
#include "FTLAbbreviations.h"
#include "FTLAbstractHeapRepository.h"
#include "FTLCommonValues.h"
#include "FTLIntrinsicRepository.h"
#include "FTLState.h"
#include "FTLSwitchCase.h"
#include "FTLTypedPointer.h"
#include "FTLWeight.h"
#include "FTLWeightedTarget.h"
#include <wtf/StringPrintStream.h>

namespace JSC { namespace FTL {

// Idiomatic LLVM IR builder specifically designed for FTL. This uses our own lowering
// terminology, and has some of its own notions:
//
// We say that a "reference" is what LLVM considers to be a "pointer". That is, it has
// an element type and can be passed directly to memory access instructions. Note that
// broadly speaking the users of FTL::Output should only use references for alloca'd
// slots for mutable local variables.
//
// We say that a "pointer" is what LLVM considers to be a pointer-width integer.
//
// We say that a "typed pointer" is a pointer that carries TBAA meta-data (i.e. an
// AbstractHeap). These should usually not have further computation performed on them
// prior to access, though there are exceptions (like offsetting into the payload of
// a typed pointer to a JSValue).
//
// We say that "get" and "set" are what LLVM considers to be "load" and "store". Get
// and set take references.
//
// We say that "load" and "store" are operations that take a typed pointer. These
// operations translate the pointer into a reference (or, a pointer in LLVM-speak),
// emit get or set on the reference (or, load and store in LLVM-speak), and apply the
// TBAA meta-data to the get or set.

enum Scale { ScaleOne, ScaleTwo, ScaleFour, ScaleEight, ScalePtr };

class Output : public IntrinsicRepository {
public:
    Output(LContext);
    ~Output();
    
    void initialize(LModule, LValue, AbstractHeapRepository&);
    
    LBasicBlock insertNewBlocksBefore(LBasicBlock nextBlock)
    {
        LBasicBlock lastNextBlock = m_nextBlock;
        m_nextBlock = nextBlock;
        return lastNextBlock;
    }
    
    LBasicBlock appendTo(LBasicBlock, LBasicBlock nextBlock);
    
    void appendTo(LBasicBlock);
    
    LBasicBlock newBlock(const char* name = "");
    
    LValue param(unsigned index) { return getParam(m_function, index); }
    LValue constBool(bool value) { return constInt(boolean, value); }
    LValue constInt8(int8_t value) { return constInt(int8, value); }
    LValue constInt32(int32_t value) { return constInt(int32, value); }
    template<typename T>
    LValue constIntPtr(T* value) { return constInt(intPtr, bitwise_cast<intptr_t>(value)); }
    template<typename T>
    LValue constIntPtr(T value) { return constInt(intPtr, static_cast<intptr_t>(value)); }
    LValue constInt64(int64_t value) { return constInt(int64, value); }
    LValue constDouble(double value) { return constReal(doubleType, value); }
    
    LValue phi(LType type) { return buildPhi(m_builder, type); }
    template<typename... Params>
    LValue phi(LType type, ValueFromBlock value, Params... theRest)
    {
        LValue result = phi(type, theRest...);
        addIncoming(result, value);
        return result;
    }
    template<typename VectorType>
    LValue phi(LType type, const VectorType& vector)
    {
        LValue result = phi(type);
        for (unsigned i = 0; i < vector.size(); ++i)
            addIncoming(result, vector[i]);
        return result;
    }
    
    LValue add(LValue left, LValue right) { return buildAdd(m_builder, left, right); }
    LValue sub(LValue left, LValue right) { return buildSub(m_builder, left, right); }
    LValue mul(LValue left, LValue right) { return buildMul(m_builder, left, right); }
    LValue div(LValue left, LValue right) { return buildDiv(m_builder, left, right); }
    LValue rem(LValue left, LValue right) { return buildRem(m_builder, left, right); }
    LValue neg(LValue value) { return buildNeg(m_builder, value); }

    LValue doubleAdd(LValue left, LValue right) { return buildFAdd(m_builder, left, right); }
    LValue doubleSub(LValue left, LValue right) { return buildFSub(m_builder, left, right); }
    LValue doubleMul(LValue left, LValue right) { return buildFMul(m_builder, left, right); }
    LValue doubleDiv(LValue left, LValue right) { return buildFDiv(m_builder, left, right); }
    LValue doubleRem(LValue left, LValue right) { return buildFRem(m_builder, left, right); }
    LValue doubleNeg(LValue value) { return buildFNeg(m_builder, value); }

    LValue bitAnd(LValue left, LValue right) { return buildAnd(m_builder, left, right); }
    LValue bitOr(LValue left, LValue right) { return buildOr(m_builder, left, right); }
    LValue bitXor(LValue left, LValue right) { return buildXor(m_builder, left, right); }
    LValue shl(LValue left, LValue right) { return buildShl(m_builder, left, right); }
    LValue aShr(LValue left, LValue right) { return buildAShr(m_builder, left, right); }
    LValue lShr(LValue left, LValue right) { return buildLShr(m_builder, left, right); }
    LValue bitNot(LValue value) { return buildNot(m_builder, value); }
    
    LValue insertElement(LValue vector, LValue element, LValue index) { return buildInsertElement(m_builder, vector, element, index); }
    
    LValue addWithOverflow32(LValue left, LValue right)
    {
        return call(addWithOverflow32Intrinsic(), left, right);
    }
    LValue subWithOverflow32(LValue left, LValue right)
    {
        return call(subWithOverflow32Intrinsic(), left, right);
    }
    LValue mulWithOverflow32(LValue left, LValue right)
    {
        return call(mulWithOverflow32Intrinsic(), left, right);
    }
    LValue addWithOverflow64(LValue left, LValue right)
    {
        return call(addWithOverflow64Intrinsic(), left, right);
    }
    LValue subWithOverflow64(LValue left, LValue right)
    {
        return call(subWithOverflow64Intrinsic(), left, right);
    }
    LValue mulWithOverflow64(LValue left, LValue right)
    {
        return call(mulWithOverflow64Intrinsic(), left, right);
    }
    LValue doubleAbs(LValue value)
    {
        return call(doubleAbsIntrinsic(), value);
    }

    LValue doubleSin(LValue value)
    {
        return call(doubleSinIntrinsic(), value);
    }
    LValue doubleCos(LValue value)
    {
        return call(doubleCosIntrinsic(), value);
    }

    LValue doubleSqrt(LValue value)
    {
        return call(doubleSqrtIntrinsic(), value);
    }

    static bool hasSensibleDoubleToInt() { return isX86(); }
    LValue sensibleDoubleToInt(LValue);
    
    LValue signExt(LValue value, LType type) { return buildSExt(m_builder, value, type); }
    LValue zeroExt(LValue value, LType type) { return buildZExt(m_builder, value, type); }
    LValue fpToInt(LValue value, LType type) { return buildFPToSI(m_builder, value, type); }
    LValue fpToUInt(LValue value, LType type) { return buildFPToUI(m_builder, value, type); }
    LValue fpToInt32(LValue value) { return fpToInt(value, int32); }
    LValue fpToUInt32(LValue value) { return fpToUInt(value, int32); }
    LValue intToFP(LValue value, LType type) { return buildSIToFP(m_builder, value, type); }
    LValue intToDouble(LValue value) { return intToFP(value, doubleType); }
    LValue unsignedToFP(LValue value, LType type) { return buildUIToFP(m_builder, value, type); }
    LValue unsignedToDouble(LValue value) { return unsignedToFP(value, doubleType); }
    LValue intCast(LValue value, LType type) { return buildIntCast(m_builder, value, type); }
    LValue castToInt32(LValue value) { return intCast(value, int32); }
    LValue fpCast(LValue value, LType type) { return buildFPCast(m_builder, value, type); }
    LValue intToPtr(LValue value, LType type) { return buildIntToPtr(m_builder, value, type); }
    LValue ptrToInt(LValue value, LType type) { return buildPtrToInt(m_builder, value, type); }
    LValue bitCast(LValue value, LType type) { return buildBitCast(m_builder, value, type); }
    
    LValue alloca(LType type) { return buildAlloca(m_builder, type); }
    
    // Access the value of an alloca. Also used as a low-level implementation primitive for
    // load(). Never use this to load from "pointers" in the FTL sense, since FTL pointers
    // are actually integers. This requires an LLVM pointer. Broadly speaking, you don't
    // have any LLVM pointers even if you really think you do. A TypedPointer is not an
    // LLVM pointer. See comment block at top of this file to understand the distinction
    // between LLVM pointers, FTL pointers, and FTL references.
    LValue get(LValue reference) { return buildLoad(m_builder, reference); }
    // Similar to get() but for storing to the value in an alloca.
    LValue set(LValue value, LValue reference) { return buildStore(m_builder, value, reference); }
    
    LValue load(TypedPointer, LType refType);
    void store(LValue, TypedPointer, LType refType);
    
    LValue load8(TypedPointer pointer) { return load(pointer, ref8); }
    LValue load16(TypedPointer pointer) { return load(pointer, ref16); }
    LValue load32(TypedPointer pointer) { return load(pointer, ref32); }
    LValue load64(TypedPointer pointer) { return load(pointer, ref64); }
    LValue loadPtr(TypedPointer pointer) { return load(pointer, refPtr); }
    LValue loadFloat(TypedPointer pointer) { return load(pointer, refFloat); }
    LValue loadDouble(TypedPointer pointer) { return load(pointer, refDouble); }
    void store8(LValue value, TypedPointer pointer) { store(value, pointer, ref8); }
    void store16(LValue value, TypedPointer pointer) { store(value, pointer, ref16); }
    void store32(LValue value, TypedPointer pointer) { store(value, pointer, ref32); }
    void store64(LValue value, TypedPointer pointer) { store(value, pointer, ref64); }
    void storePtr(LValue value, TypedPointer pointer) { store(value, pointer, refPtr); }
    void storeFloat(LValue value, TypedPointer pointer) { store(value, pointer, refFloat); }
    void storeDouble(LValue value, TypedPointer pointer) { store(value, pointer, refDouble); }

    LValue addPtr(LValue value, ptrdiff_t immediate = 0)
    {
        if (!immediate)
            return value;
        return add(value, constIntPtr(immediate));
    }
    
    // Construct an address by offsetting base by the requested amount and ascribing
    // the requested abstract heap to it.
    TypedPointer address(const AbstractHeap& heap, LValue base, ptrdiff_t offset = 0)
    {
        return TypedPointer(heap, addPtr(base, offset));
    }
    // Construct an address by offsetting base by the amount specified by the field,
    // and optionally an additional amount (use this with care), and then creating
    // a TypedPointer with the given field as the heap.
    TypedPointer address(LValue base, const AbstractField& field, ptrdiff_t offset = 0)
    {
        return address(field, base, offset + field.offset());
    }
    
    LValue baseIndex(LValue base, LValue index, Scale, ptrdiff_t offset = 0);

    TypedPointer baseIndex(const AbstractHeap& heap, LValue base, LValue index, Scale scale, ptrdiff_t offset = 0)
    {
        return TypedPointer(heap, baseIndex(base, index, scale, offset));
    }
    TypedPointer baseIndex(IndexedAbstractHeap& heap, LValue base, LValue index, JSValue indexAsConstant = JSValue(), ptrdiff_t offset = 0)
    {
        return heap.baseIndex(*this, base, index, indexAsConstant, offset);
    }
    
    TypedPointer absolute(void* address)
    {
        return TypedPointer(m_heaps->absolute[address], constIntPtr(address));
    }
    
    LValue load8(LValue base, const AbstractField& field) { return load8(address(base, field)); }
    LValue load16(LValue base, const AbstractField& field) { return load16(address(base, field)); }
    LValue load32(LValue base, const AbstractField& field) { return load32(address(base, field)); }
    LValue load64(LValue base, const AbstractField& field) { return load64(address(base, field)); }
    LValue loadPtr(LValue base, const AbstractField& field) { return loadPtr(address(base, field)); }
    LValue loadDouble(LValue base, const AbstractField& field) { return loadDouble(address(base, field)); }
    void store8(LValue value, LValue base, const AbstractField& field) { store8(value, address(base, field)); }
    void store32(LValue value, LValue base, const AbstractField& field) { store32(value, address(base, field)); }
    void store64(LValue value, LValue base, const AbstractField& field) { store64(value, address(base, field)); }
    void storePtr(LValue value, LValue base, const AbstractField& field) { storePtr(value, address(base, field)); }
    void storeDouble(LValue value, LValue base, const AbstractField& field) { storeDouble(value, address(base, field)); }
    
    void ascribeRange(LValue loadInstruction, const ValueRange& range)
    {
        range.decorateInstruction(m_context, loadInstruction, rangeKind);
    }
    
    LValue nonNegative32(LValue loadInstruction)
    {
        ascribeRange(loadInstruction, nonNegativeInt32);
        return loadInstruction;
    }
    
    LValue load32NonNegative(TypedPointer pointer) { return nonNegative32(load32(pointer)); }
    LValue load32NonNegative(LValue base, const AbstractField& field) { return nonNegative32(load32(base, field)); }
    
    LValue icmp(LIntPredicate cond, LValue left, LValue right) { return buildICmp(m_builder, cond, left, right); }
    LValue equal(LValue left, LValue right) { return icmp(LLVMIntEQ, left, right); }
    LValue notEqual(LValue left, LValue right) { return icmp(LLVMIntNE, left, right); }
    LValue above(LValue left, LValue right) { return icmp(LLVMIntUGT, left, right); }
    LValue aboveOrEqual(LValue left, LValue right) { return icmp(LLVMIntUGE, left, right); }
    LValue below(LValue left, LValue right) { return icmp(LLVMIntULT, left, right); }
    LValue belowOrEqual(LValue left, LValue right) { return icmp(LLVMIntULE, left, right); }
    LValue greaterThan(LValue left, LValue right) { return icmp(LLVMIntSGT, left, right); }
    LValue greaterThanOrEqual(LValue left, LValue right) { return icmp(LLVMIntSGE, left, right); }
    LValue lessThan(LValue left, LValue right) { return icmp(LLVMIntSLT, left, right); }
    LValue lessThanOrEqual(LValue left, LValue right) { return icmp(LLVMIntSLE, left, right); }
    
    LValue fcmp(LRealPredicate cond, LValue left, LValue right) { return buildFCmp(m_builder, cond, left, right); }
    LValue doubleEqual(LValue left, LValue right) { return fcmp(LLVMRealOEQ, left, right); }
    LValue doubleNotEqualOrUnordered(LValue left, LValue right) { return fcmp(LLVMRealUNE, left, right); }
    LValue doubleLessThan(LValue left, LValue right) { return fcmp(LLVMRealOLT, left, right); }
    LValue doubleLessThanOrEqual(LValue left, LValue right) { return fcmp(LLVMRealOLE, left, right); }
    LValue doubleGreaterThan(LValue left, LValue right) { return fcmp(LLVMRealOGT, left, right); }
    LValue doubleGreaterThanOrEqual(LValue left, LValue right) { return fcmp(LLVMRealOGE, left, right); }
    LValue doubleEqualOrUnordered(LValue left, LValue right) { return fcmp(LLVMRealUEQ, left, right); }
    LValue doubleNotEqual(LValue left, LValue right) { return fcmp(LLVMRealONE, left, right); }
    LValue doubleLessThanOrUnordered(LValue left, LValue right) { return fcmp(LLVMRealULT, left, right); }
    LValue doubleLessThanOrEqualOrUnordered(LValue left, LValue right) { return fcmp(LLVMRealULE, left, right); }
    LValue doubleGreaterThanOrUnordered(LValue left, LValue right) { return fcmp(LLVMRealUGT, left, right); }
    LValue doubleGreaterThanOrEqualOrUnordered(LValue left, LValue right) { return fcmp(LLVMRealUGE, left, right); }
    
    LValue isZero8(LValue value) { return equal(value, int8Zero); }
    LValue notZero8(LValue value) { return notEqual(value, int8Zero); }
    LValue isZero32(LValue value) { return equal(value, int32Zero); }
    LValue notZero32(LValue value) { return notEqual(value, int32Zero); }
    LValue isZero64(LValue value) { return equal(value, int64Zero); }
    LValue notZero64(LValue value) { return notEqual(value, int64Zero); }
    LValue isNull(LValue value) { return equal(value, intPtrZero); }
    LValue notNull(LValue value) { return notEqual(value, intPtrZero); }
    
    LValue testIsZero8(LValue value, LValue mask) { return isZero8(bitAnd(value, mask)); }
    LValue testNonZero8(LValue value, LValue mask) { return notZero8(bitAnd(value, mask)); }
    LValue testIsZero32(LValue value, LValue mask) { return isZero32(bitAnd(value, mask)); }
    LValue testNonZero32(LValue value, LValue mask) { return notZero32(bitAnd(value, mask)); }
    LValue testIsZero64(LValue value, LValue mask) { return isZero64(bitAnd(value, mask)); }
    LValue testNonZero64(LValue value, LValue mask) { return notZero64(bitAnd(value, mask)); }
    
    LValue select(LValue value, LValue taken, LValue notTaken) { return buildSelect(m_builder, value, taken, notTaken); }
    LValue extractValue(LValue aggVal, unsigned index) { return buildExtractValue(m_builder, aggVal, index); }
    
    LValue fence(LAtomicOrdering ordering = LLVMAtomicOrderingSequentiallyConsistent, SynchronizationScope scope = CrossThread) { return buildFence(m_builder, ordering, scope); }
    LValue fenceAcqRel() { return fence(LLVMAtomicOrderingAcquireRelease); }
    
    template<typename VectorType>
    LValue call(LValue function, const VectorType& vector) { return buildCall(m_builder, function, vector); }
    LValue call(LValue function) { return buildCall(m_builder, function); }
    LValue call(LValue function, LValue arg1) { return buildCall(m_builder, function, arg1); }
    LValue call(LValue function, LValue arg1, LValue arg2) { return buildCall(m_builder, function, arg1, arg2); }
    LValue call(LValue function, LValue arg1, LValue arg2, LValue arg3) { return buildCall(m_builder, function, arg1, arg2, arg3); }
    LValue call(LValue function, LValue arg1, LValue arg2, LValue arg3, LValue arg4) { return buildCall(m_builder, function, arg1, arg2, arg3, arg4); }
    LValue call(LValue function, LValue arg1, LValue arg2, LValue arg3, LValue arg4, LValue arg5) { return buildCall(m_builder, function, arg1, arg2, arg3, arg4, arg5); }
    LValue call(LValue function, LValue arg1, LValue arg2, LValue arg3, LValue arg4, LValue arg5, LValue arg6) { return buildCall(m_builder, function, arg1, arg2, arg3, arg4, arg5, arg6); }
    LValue call(LValue function, LValue arg1, LValue arg2, LValue arg3, LValue arg4, LValue arg5, LValue arg6, LValue arg7) { return buildCall(m_builder, function, arg1, arg2, arg3, arg4, arg5, arg6, arg7); }
    LValue call(LValue function, LValue arg1, LValue arg2, LValue arg3, LValue arg4, LValue arg5, LValue arg6, LValue arg7, LValue arg8) { return buildCall(m_builder, function, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8); }
    
    template<typename FunctionType>
    LValue operation(FunctionType function)
    {
        return intToPtr(constIntPtr(function), pointerType(operationType(function)));
    }
    
    void jump(LBasicBlock destination) { buildBr(m_builder, destination); }
    void branch(LValue condition, LBasicBlock taken, Weight takenWeight, LBasicBlock notTaken, Weight notTakenWeight);
    void branch(LValue condition, WeightedTarget taken, WeightedTarget notTaken)
    {
        branch(condition, taken.target(), taken.weight(), notTaken.target(), notTaken.weight());
    }
    
    template<typename VectorType>
    void switchInstruction(LValue value, const VectorType& cases, LBasicBlock fallThrough, Weight fallThroughWeight)
    {
        LValue inst = buildSwitch(m_builder, value, cases, fallThrough);
        
        double total = 0;
        if (!fallThroughWeight)
            return;
        total += fallThroughWeight.value();
        for (unsigned i = cases.size(); i--;) {
            if (!cases[i].weight())
                return;
            total += cases[i].weight().value();
        }
        
        Vector<LValue> mdArgs;
        mdArgs.append(branchWeights);
        mdArgs.append(constInt32(fallThroughWeight.scaleToTotal(total)));
        for (unsigned i = 0; i < cases.size(); ++i)
            mdArgs.append(constInt32(cases[i].weight().scaleToTotal(total)));
        
        setMetadata(inst, profKind, mdNode(m_context, mdArgs));
    }
    
    void ret(LValue value) { buildRet(m_builder, value); }
    
    void unreachable() { buildUnreachable(m_builder); }
    
    void trap()
    {
        call(trapIntrinsic());
    }
    
    ValueFromBlock anchor(LValue value)
    {
        return ValueFromBlock(value, m_block);
    }
    
    LValue m_function;
    AbstractHeapRepository* m_heaps;
    LBuilder m_builder;
    LBasicBlock m_block;
    LBasicBlock m_nextBlock;
};

#define FTL_NEW_BLOCK(output, nameArguments) \
    (LIKELY(!verboseCompilationEnabled()) \
    ? (output).newBlock() \
    : (output).newBlock((toCString nameArguments).data()))

} } // namespace JSC::FTL

#endif // ENABLE(FTL_JIT)

#endif // FTLOutput_h