1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
|
/*
* Copyright (C) 2013, 2014 Apple Inc. All rights reserved.
* Copyright (C) 2014 Samsung Electronics
* Copyright (C) 2014 University of Szeged
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ==============================================================================
*
* University of Illinois/NCSA
* Open Source License
*
* Copyright (c) 2009-2014 by the contributors of LLVM/libc++abi project.
*
* All rights reserved.
*
* Developed by:
*
* LLVM Team
*
* University of Illinois at Urbana-Champaign
*
* http://llvm.org
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal with
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is furnished to do
* so, subject to the following conditions:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimers.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimers in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the names of the LLVM Team, University of Illinois at
* Urbana-Champaign, nor the names of its contributors may be used to
* endorse or promote products derived from this Software without specific
* prior written permission.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE
* SOFTWARE.
*
* ==============================================================================
*
* Copyright (c) 2009-2014 by the contributors of LLVM/libc++abi project.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "config.h"
#include "FTLUnwindInfo.h"
#if ENABLE(FTL_JIT)
#if OS(DARWIN)
#include <mach-o/compact_unwind_encoding.h>
#endif
#include <wtf/ListDump.h>
namespace JSC { namespace FTL {
UnwindInfo::UnwindInfo() { }
UnwindInfo::~UnwindInfo() { }
namespace {
#if OS(DARWIN)
struct CompactUnwind {
void* function;
uint32_t size;
compact_unwind_encoding_t encoding;
void* personality;
void* lsda;
};
#elif OS(LINUX)
// DWARF unwind instructions
enum {
DW_CFA_nop = 0x0,
DW_CFA_set_loc = 0x1,
DW_CFA_advance_loc1 = 0x2,
DW_CFA_advance_loc2 = 0x3,
DW_CFA_advance_loc4 = 0x4,
DW_CFA_offset_extended = 0x5,
DW_CFA_def_cfa = 0xC,
DW_CFA_def_cfa_register = 0xD,
DW_CFA_def_cfa_offset = 0xE,
DW_CFA_offset_extended_sf = 0x11,
DW_CFA_def_cfa_sf = 0x12,
DW_CFA_def_cfa_offset_sf = 0x13,
// high 2 bits are 0x1, lower 6 bits are delta
DW_CFA_advance_loc = 0x40,
// high 2 bits are 0x2, lower 6 bits are register
DW_CFA_offset = 0x80
};
enum {
DW_CFA_operand_mask = 0x3F // low 6 bits mask for opcode-encoded operands in DW_CFA_advance_loc and DW_CFA_offset
};
// FSF exception handling Pointer-Encoding constants
enum {
DW_EH_PE_ptr = 0x00,
DW_EH_PE_uleb128 = 0x01,
DW_EH_PE_udata2 = 0x02,
DW_EH_PE_udata4 = 0x03,
DW_EH_PE_udata8 = 0x04,
DW_EH_PE_sleb128 = 0x09,
DW_EH_PE_sdata2 = 0x0A,
DW_EH_PE_sdata4 = 0x0B,
DW_EH_PE_sdata8 = 0x0C,
DW_EH_PE_absptr = 0x00,
DW_EH_PE_pcrel = 0x10,
DW_EH_PE_indirect = 0x80
};
enum {
DW_EH_PE_relative_mask = 0x70
};
// 64-bit x86_64 registers
enum {
UNW_X86_64_rbx = 3,
UNW_X86_64_rbp = 6,
UNW_X86_64_r12 = 12,
UNW_X86_64_r13 = 13,
UNW_X86_64_r14 = 14,
UNW_X86_64_r15 = 15
};
enum {
DW_X86_64_RET_addr = 16
};
static uint8_t get8(uintptr_t addr) { return *((uint8_t*)addr); }
static uint16_t get16(uintptr_t addr) { return *((uint16_t*)addr); }
static uint32_t get32(uintptr_t addr) { return *((uint32_t*)addr); }
static uint64_t get64(uintptr_t addr) { return *((uint64_t*)addr); }
static uintptr_t getP(uintptr_t addr)
{
// FIXME: add support for 32 bit pointers on 32 bit architectures
return get64(addr);
}
static uint64_t getULEB128(uintptr_t& addr, uintptr_t end)
{
const uint8_t* p = (uint8_t*)addr;
const uint8_t* pend = (uint8_t*)end;
uint64_t result = 0;
int bit = 0;
do {
uint64_t b;
RELEASE_ASSERT(p != pend); // truncated uleb128 expression
b = *p & 0x7f;
RELEASE_ASSERT(!(bit >= 64 || b << bit >> bit != b)); // malformed uleb128 expression
result |= b << bit;
bit += 7;
} while (*p++ >= 0x80);
addr = (uintptr_t)p;
return result;
}
static int64_t getSLEB128(uintptr_t& addr, uintptr_t end)
{
const uint8_t* p = (uint8_t*)addr;
const uint8_t* pend = (uint8_t*)end;
int64_t result = 0;
int bit = 0;
uint8_t byte;
do {
RELEASE_ASSERT(p != pend); // truncated sleb128 expression
byte = *p++;
result |= ((byte & 0x7f) << bit);
bit += 7;
} while (byte & 0x80);
// sign extend negative numbers
if ((byte & 0x40))
result |= (-1LL) << bit;
addr = (uintptr_t)p;
return result;
}
static uintptr_t getEncodedP(uintptr_t& addr, uintptr_t end, uint8_t encoding)
{
uintptr_t startAddr = addr;
const uint8_t* p = (uint8_t*)addr;
uintptr_t result;
// first get value
switch (encoding & 0x0F) {
case DW_EH_PE_ptr:
result = getP(addr);
p += sizeof(uintptr_t);
addr = (uintptr_t)p;
break;
case DW_EH_PE_uleb128:
result = getULEB128(addr, end);
break;
case DW_EH_PE_udata2:
result = get16(addr);
p += 2;
addr = (uintptr_t)p;
break;
case DW_EH_PE_udata4:
result = get32(addr);
p += 4;
addr = (uintptr_t)p;
break;
case DW_EH_PE_udata8:
result = get64(addr);
p += 8;
addr = (uintptr_t)p;
break;
case DW_EH_PE_sleb128:
result = getSLEB128(addr, end);
break;
case DW_EH_PE_sdata2:
result = (int16_t)get16(addr);
p += 2;
addr = (uintptr_t)p;
break;
case DW_EH_PE_sdata4:
result = (int32_t)get32(addr);
p += 4;
addr = (uintptr_t)p;
break;
case DW_EH_PE_sdata8:
result = get64(addr);
p += 8;
addr = (uintptr_t)p;
break;
default:
RELEASE_ASSERT_NOT_REACHED(); // unknown pointer encoding
}
// then add relative offset
switch (encoding & DW_EH_PE_relative_mask) {
case DW_EH_PE_absptr:
// do nothing
break;
case DW_EH_PE_pcrel:
result += startAddr;
break;
default:
RELEASE_ASSERT_NOT_REACHED(); // unsupported or unknown pointer encoding
}
if (encoding & DW_EH_PE_indirect)
result = getP(result);
return result;
}
// Information encoded in a CIE (Common Information Entry)
struct CIE_Info {
uintptr_t cieStart;
uintptr_t cieLength;
uintptr_t cieInstructions;
uint8_t pointerEncoding;
uint8_t lsdaEncoding;
uint8_t personalityEncoding;
uint8_t personalityOffsetInCIE;
uintptr_t personality;
int dataAlignFactor;
bool fdesHaveAugmentationData;
};
// Information about an FDE (Frame Description Entry)
struct FDE_Info {
uintptr_t fdeStart;
uintptr_t fdeLength;
uintptr_t fdeInstructions;
uintptr_t lsda;
};
// Information about a frame layout and registers saved determined
// by "running" the dwarf FDE "instructions"
enum { MaxRegisterNumber = 17 };
struct RegisterLocation {
bool saved;
int64_t offset;
};
struct PrologInfo {
uint32_t cfaRegister;
int32_t cfaRegisterOffset; // CFA = (cfaRegister)+cfaRegisterOffset
RegisterLocation savedRegisters[MaxRegisterNumber]; // from where to restore registers
};
static void parseCIE(uintptr_t cie, CIE_Info* cieInfo)
{
cieInfo->pointerEncoding = 0;
cieInfo->lsdaEncoding = 0;
cieInfo->personalityEncoding = 0;
cieInfo->personalityOffsetInCIE = 0;
cieInfo->personality = 0;
cieInfo->dataAlignFactor = 0;
cieInfo->fdesHaveAugmentationData = false;
cieInfo->cieStart = cie;
uintptr_t p = cie;
uint64_t cieLength = get32(p);
p += 4;
uintptr_t cieContentEnd = p + cieLength;
if (cieLength == 0xffffffff) {
// 0xffffffff means length is really next 8 bytes
cieLength = get64(p);
p += 8;
cieContentEnd = p + cieLength;
}
RELEASE_ASSERT(cieLength);
// CIE ID is always 0
RELEASE_ASSERT(!get32(p)); // CIE ID is not zero
p += 4;
// Version is always 1 or 3
uint8_t version = get8(p);
RELEASE_ASSERT((version == 1) || (version == 3)); // CIE version is not 1 or 3
++p;
// save start of augmentation string and find end
uintptr_t strStart = p;
while (get8(p))
++p;
++p;
// parse code aligment factor
getULEB128(p, cieContentEnd);
// parse data alignment factor
cieInfo->dataAlignFactor = getSLEB128(p, cieContentEnd);
// parse return address register
getULEB128(p, cieContentEnd);
// parse augmentation data based on augmentation string
if (get8(strStart) == 'z') {
// parse augmentation data length
getULEB128(p, cieContentEnd);
for (uintptr_t s = strStart; get8(s) != '\0'; ++s) {
switch (get8(s)) {
case 'z':
cieInfo->fdesHaveAugmentationData = true;
break;
case 'P': // FIXME: should assert on personality (just to keep in sync with the CU behaviour)
cieInfo->personalityEncoding = get8(p);
++p;
cieInfo->personalityOffsetInCIE = p - cie;
cieInfo->personality = getEncodedP(p, cieContentEnd, cieInfo->personalityEncoding);
break;
case 'L': // FIXME: should assert on LSDA (just to keep in sync with the CU behaviour)
cieInfo->lsdaEncoding = get8(p);
++p;
break;
case 'R':
cieInfo->pointerEncoding = get8(p);
++p;
break;
default:
// ignore unknown letters
break;
}
}
}
cieInfo->cieLength = cieContentEnd - cieInfo->cieStart;
cieInfo->cieInstructions = p;
}
static void findFDE(uintptr_t pc, uintptr_t ehSectionStart, uint32_t sectionLength, FDE_Info* fdeInfo, CIE_Info* cieInfo)
{
uintptr_t p = ehSectionStart;
const uintptr_t ehSectionEnd = p + sectionLength;
while (p < ehSectionEnd) {
uintptr_t currentCFI = p;
uint64_t cfiLength = get32(p);
p += 4;
if (cfiLength == 0xffffffff) {
// 0xffffffff means length is really next 8 bytes
cfiLength = get64(p);
p += 8;
}
RELEASE_ASSERT(cfiLength); // end marker reached before finding FDE for pc
uint32_t id = get32(p);
if (!id) {
// skip over CIEs
p += cfiLength;
} else {
// process FDE to see if it covers pc
uintptr_t nextCFI = p + cfiLength;
uint32_t ciePointer = get32(p);
uintptr_t cieStart = p - ciePointer;
// validate pointer to CIE is within section
RELEASE_ASSERT((ehSectionStart <= cieStart) && (cieStart < ehSectionEnd)); // malformed FDE. CIE is bad
parseCIE(cieStart, cieInfo);
p += 4;
// parse pc begin and range
uintptr_t pcStart = getEncodedP(p, nextCFI, cieInfo->pointerEncoding);
uintptr_t pcRange = getEncodedP(p, nextCFI, cieInfo->pointerEncoding & 0x0F);
// test if pc is within the function this FDE covers
// if pc is not in begin/range, skip this FDE
if ((pcStart <= pc) && (pc < pcStart+pcRange)) {
// parse rest of info
fdeInfo->lsda = 0;
// check for augmentation length
if (cieInfo->fdesHaveAugmentationData) {
uintptr_t augLen = getULEB128(p, nextCFI);
uintptr_t endOfAug = p + augLen;
if (cieInfo->lsdaEncoding) {
// peek at value (without indirection). Zero means no lsda
uintptr_t lsdaStart = p;
if (getEncodedP(p, nextCFI, cieInfo->lsdaEncoding & 0x0F)) {
// reset pointer and re-parse lsda address
p = lsdaStart;
fdeInfo->lsda = getEncodedP(p, nextCFI, cieInfo->lsdaEncoding);
}
}
p = endOfAug;
}
fdeInfo->fdeStart = currentCFI;
fdeInfo->fdeLength = nextCFI - currentCFI;
fdeInfo->fdeInstructions = p;
return; // FDE found
}
p = nextCFI;
}
}
RELEASE_ASSERT_NOT_REACHED(); // no FDE found for pc
}
static void executeDefCFARegister(uint64_t reg, PrologInfo* results)
{
RELEASE_ASSERT(reg <= MaxRegisterNumber); // reg too big
results->cfaRegister = reg;
}
static void executeDefCFAOffset(int64_t offset, PrologInfo* results)
{
RELEASE_ASSERT(offset <= 0x80000000); // cfa has negative offset (dwarf might contain epilog)
results->cfaRegisterOffset = offset;
}
static void executeOffset(uint64_t reg, int64_t offset, PrologInfo *results)
{
if (reg > MaxRegisterNumber)
return;
RELEASE_ASSERT(!results->savedRegisters[reg].saved);
results->savedRegisters[reg].saved = true;
results->savedRegisters[reg].offset = offset;
}
static void parseInstructions(uintptr_t instructions, uintptr_t instructionsEnd, const CIE_Info& cieInfo, PrologInfo* results)
{
uintptr_t p = instructions;
// see Dwarf Spec, section 6.4.2 for details on unwind opcodes
while ((p < instructionsEnd)) {
uint64_t reg;
uint8_t opcode = get8(p);
uint8_t operand;
++p;
switch (opcode) {
case DW_CFA_nop:
break;
case DW_CFA_set_loc:
getEncodedP(p, instructionsEnd, cieInfo.pointerEncoding);
break;
case DW_CFA_advance_loc1:
p += 1;
break;
case DW_CFA_advance_loc2:
p += 2;
break;
case DW_CFA_advance_loc4:
p += 4;
break;
case DW_CFA_def_cfa:
executeDefCFARegister(getULEB128(p, instructionsEnd), results);
executeDefCFAOffset(getULEB128(p, instructionsEnd), results);
break;
case DW_CFA_def_cfa_sf:
executeDefCFARegister(getULEB128(p, instructionsEnd), results);
executeDefCFAOffset(getSLEB128(p, instructionsEnd) * cieInfo.dataAlignFactor, results);
break;
case DW_CFA_def_cfa_register:
executeDefCFARegister(getULEB128(p, instructionsEnd), results);
break;
case DW_CFA_def_cfa_offset:
executeDefCFAOffset(getULEB128(p, instructionsEnd), results);
break;
case DW_CFA_def_cfa_offset_sf:
executeDefCFAOffset(getSLEB128(p, instructionsEnd) * cieInfo.dataAlignFactor, results);
break;
case DW_CFA_offset_extended:
reg = getULEB128(p, instructionsEnd);
executeOffset(reg, getULEB128(p, instructionsEnd) * cieInfo.dataAlignFactor, results);
break;
case DW_CFA_offset_extended_sf:
reg = getULEB128(p, instructionsEnd);
executeOffset(reg, getSLEB128(p, instructionsEnd) * cieInfo.dataAlignFactor, results);
break;
default:
operand = opcode & DW_CFA_operand_mask;
switch (opcode & ~DW_CFA_operand_mask) {
case DW_CFA_offset:
executeOffset(operand, getULEB128(p, instructionsEnd) * cieInfo.dataAlignFactor, results);
break;
case DW_CFA_advance_loc:
break;
default:
RELEASE_ASSERT_NOT_REACHED(); // unknown or unsupported CFA opcode
}
}
}
}
static void parseFDEInstructions(const FDE_Info& fdeInfo, const CIE_Info& cieInfo, PrologInfo* results)
{
// clear results
bzero(results, sizeof(PrologInfo));
// parse CIE then FDE instructions
parseInstructions(cieInfo.cieInstructions, cieInfo.cieStart + cieInfo.cieLength, cieInfo, results);
parseInstructions(fdeInfo.fdeInstructions, fdeInfo.fdeStart + fdeInfo.fdeLength, cieInfo, results);
}
#endif
} // anonymous namespace
bool UnwindInfo::parse(void* section, size_t size, GeneratedFunction generatedFunction)
{
m_registers.clear();
RELEASE_ASSERT(!!section);
if (!section)
return false;
#if OS(DARWIN)
RELEASE_ASSERT(size >= sizeof(CompactUnwind));
CompactUnwind* data = bitwise_cast<CompactUnwind*>(section);
RELEASE_ASSERT(!data->personality); // We don't know how to handle this.
RELEASE_ASSERT(!data->lsda); // We don't know how to handle this.
RELEASE_ASSERT(data->function == generatedFunction); // The unwind data better be for our function.
compact_unwind_encoding_t encoding = data->encoding;
RELEASE_ASSERT(!(encoding & UNWIND_IS_NOT_FUNCTION_START));
RELEASE_ASSERT(!(encoding & UNWIND_HAS_LSDA));
RELEASE_ASSERT(!(encoding & UNWIND_PERSONALITY_MASK));
#if CPU(X86_64)
RELEASE_ASSERT((encoding & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_RBP_FRAME);
int32_t offset = -((encoding & UNWIND_X86_64_RBP_FRAME_OFFSET) >> 16) * 8;
uint32_t nextRegisters = encoding;
for (unsigned i = 5; i--;) {
uint32_t currentRegister = nextRegisters & 7;
nextRegisters >>= 3;
switch (currentRegister) {
case UNWIND_X86_64_REG_NONE:
break;
case UNWIND_X86_64_REG_RBX:
m_registers.append(RegisterAtOffset(X86Registers::ebx, offset));
break;
case UNWIND_X86_64_REG_R12:
m_registers.append(RegisterAtOffset(X86Registers::r12, offset));
break;
case UNWIND_X86_64_REG_R13:
m_registers.append(RegisterAtOffset(X86Registers::r13, offset));
break;
case UNWIND_X86_64_REG_R14:
m_registers.append(RegisterAtOffset(X86Registers::r14, offset));
break;
case UNWIND_X86_64_REG_R15:
m_registers.append(RegisterAtOffset(X86Registers::r15, offset));
break;
case UNWIND_X86_64_REG_RBP:
m_registers.append(RegisterAtOffset(X86Registers::ebp, offset));
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
offset += 8;
}
#elif CPU(ARM64)
RELEASE_ASSERT((encoding & UNWIND_ARM64_MODE_MASK) == UNWIND_ARM64_MODE_FRAME);
m_registers.append(RegisterAtOffset(ARM64Registers::fp, 0));
int32_t offset = 0;
if (encoding & UNWIND_ARM64_FRAME_X19_X20_PAIR) {
m_registers.append(RegisterAtOffset(ARM64Registers::x19, offset -= 8));
m_registers.append(RegisterAtOffset(ARM64Registers::x20, offset -= 8));
}
if (encoding & UNWIND_ARM64_FRAME_X21_X22_PAIR) {
m_registers.append(RegisterAtOffset(ARM64Registers::x21, offset -= 8));
m_registers.append(RegisterAtOffset(ARM64Registers::x22, offset -= 8));
}
if (encoding & UNWIND_ARM64_FRAME_X23_X24_PAIR) {
m_registers.append(RegisterAtOffset(ARM64Registers::x23, offset -= 8));
m_registers.append(RegisterAtOffset(ARM64Registers::x24, offset -= 8));
}
if (encoding & UNWIND_ARM64_FRAME_X25_X26_PAIR) {
m_registers.append(RegisterAtOffset(ARM64Registers::x25, offset -= 8));
m_registers.append(RegisterAtOffset(ARM64Registers::x26, offset -= 8));
}
if (encoding & UNWIND_ARM64_FRAME_X27_X28_PAIR) {
m_registers.append(RegisterAtOffset(ARM64Registers::x27, offset -= 8));
m_registers.append(RegisterAtOffset(ARM64Registers::x28, offset -= 8));
}
if (encoding & UNWIND_ARM64_FRAME_D8_D9_PAIR) {
m_registers.append(RegisterAtOffset(ARM64Registers::q8, offset -= 8));
m_registers.append(RegisterAtOffset(ARM64Registers::q9, offset -= 8));
}
if (encoding & UNWIND_ARM64_FRAME_D10_D11_PAIR) {
m_registers.append(RegisterAtOffset(ARM64Registers::q10, offset -= 8));
m_registers.append(RegisterAtOffset(ARM64Registers::q11, offset -= 8));
}
if (encoding & UNWIND_ARM64_FRAME_D12_D13_PAIR) {
m_registers.append(RegisterAtOffset(ARM64Registers::q12, offset -= 8));
m_registers.append(RegisterAtOffset(ARM64Registers::q13, offset -= 8));
}
if (encoding & UNWIND_ARM64_FRAME_D14_D15_PAIR) {
m_registers.append(RegisterAtOffset(ARM64Registers::q14, offset -= 8));
m_registers.append(RegisterAtOffset(ARM64Registers::q15, offset -= 8));
}
#else
#error "Unrecognized architecture"
#endif
#elif OS(LINUX)
FDE_Info fdeInfo;
CIE_Info cieInfo;
PrologInfo prolog;
findFDE((uintptr_t)generatedFunction, (uintptr_t)section, size, &fdeInfo, &cieInfo);
parseFDEInstructions(fdeInfo, cieInfo, &prolog);
#if CPU(X86_64)
RELEASE_ASSERT(prolog.cfaRegister == UNW_X86_64_rbp);
RELEASE_ASSERT(prolog.cfaRegisterOffset == 16);
RELEASE_ASSERT(prolog.savedRegisters[UNW_X86_64_rbp].saved);
RELEASE_ASSERT(prolog.savedRegisters[UNW_X86_64_rbp].offset == -prolog.cfaRegisterOffset);
for (int i = 0; i < MaxRegisterNumber; ++i) {
if (prolog.savedRegisters[i].saved) {
switch (i) {
case UNW_X86_64_rbx:
m_registers.append(RegisterAtOffset(X86Registers::ebx, prolog.savedRegisters[i].offset + prolog.cfaRegisterOffset));
break;
case UNW_X86_64_r12:
m_registers.append(RegisterAtOffset(X86Registers::r12, prolog.savedRegisters[i].offset + prolog.cfaRegisterOffset));
break;
case UNW_X86_64_r13:
m_registers.append(RegisterAtOffset(X86Registers::r13, prolog.savedRegisters[i].offset + prolog.cfaRegisterOffset));
break;
case UNW_X86_64_r14:
m_registers.append(RegisterAtOffset(X86Registers::r14, prolog.savedRegisters[i].offset + prolog.cfaRegisterOffset));
break;
case UNW_X86_64_r15:
m_registers.append(RegisterAtOffset(X86Registers::r15, prolog.savedRegisters[i].offset + prolog.cfaRegisterOffset));
break;
case UNW_X86_64_rbp:
m_registers.append(RegisterAtOffset(X86Registers::ebp, prolog.savedRegisters[i].offset + prolog.cfaRegisterOffset));
break;
case DW_X86_64_RET_addr:
break;
default:
RELEASE_ASSERT_NOT_REACHED(); // non-standard register being saved in prolog
}
}
}
#elif CPU(ARM64)
// FIXME: Implement stackunwinding based on eh_frame on ARM64
#else
#error "Unrecognized architecture"
#endif
#endif
std::sort(m_registers.begin(), m_registers.end());
return true;
}
void UnwindInfo::dump(PrintStream& out) const
{
out.print(listDump(m_registers));
}
RegisterAtOffset* UnwindInfo::find(Reg reg) const
{
return tryBinarySearch<RegisterAtOffset, Reg>(m_registers, m_registers.size(), reg, RegisterAtOffset::getReg);
}
unsigned UnwindInfo::indexOf(Reg reg) const
{
if (RegisterAtOffset* pointer = find(reg))
return pointer - m_registers.begin();
return UINT_MAX;
}
} } // namespace JSC::FTL
#endif // ENABLE(FTL_JIT)
|