1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
/*
* Copyright (C) 2011 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "MarkedBlock.h"
#include "DelayedReleaseScope.h"
#include "IncrementalSweeper.h"
#include "JSCell.h"
#include "JSDestructibleObject.h"
#include "JSCInlines.h"
namespace JSC {
MarkedBlock* MarkedBlock::create(DeadBlock* block, MarkedAllocator* allocator, size_t cellSize, DestructorType destructorType)
{
ASSERT(reinterpret_cast<size_t>(block) == (reinterpret_cast<size_t>(block) & blockMask));
Region* region = block->region();
return new (NotNull, block) MarkedBlock(region, allocator, cellSize, destructorType);
}
MarkedBlock::MarkedBlock(Region* region, MarkedAllocator* allocator, size_t cellSize, DestructorType destructorType)
: HeapBlock<MarkedBlock>(region)
, m_atomsPerCell((cellSize + atomSize - 1) / atomSize)
, m_endAtom((allocator->cellSize() ? atomsPerBlock : region->blockSize() / atomSize) - m_atomsPerCell + 1)
, m_destructorType(destructorType)
, m_allocator(allocator)
, m_state(New) // All cells start out unmarked.
, m_weakSet(allocator->heap()->vm())
{
ASSERT(allocator);
HEAP_LOG_BLOCK_STATE_TRANSITION(this);
}
template<MarkedBlock::DestructorType dtorType>
inline void MarkedBlock::callDestructor(JSCell* cell)
{
// A previous eager sweep may already have run cell's destructor.
if (cell->isZapped())
return;
ASSERT(cell->structureID());
if (dtorType == MarkedBlock::Normal)
jsCast<JSDestructibleObject*>(cell)->classInfo()->methodTable.destroy(cell);
else
cell->structure(*vm())->classInfo()->methodTable.destroy(cell);
cell->zap();
}
template<MarkedBlock::BlockState blockState, MarkedBlock::SweepMode sweepMode, MarkedBlock::DestructorType dtorType>
MarkedBlock::FreeList MarkedBlock::specializedSweep()
{
ASSERT(blockState != Allocated && blockState != FreeListed);
ASSERT(!(dtorType == MarkedBlock::None && sweepMode == SweepOnly));
SamplingRegion samplingRegion((dtorType != MarkedBlock::None && blockState != New) ? "Calling destructors" : "sweeping");
// This produces a free list that is ordered in reverse through the block.
// This is fine, since the allocation code makes no assumptions about the
// order of the free list.
FreeCell* head = 0;
size_t count = 0;
for (size_t i = firstAtom(); i < m_endAtom; i += m_atomsPerCell) {
if (blockState == Marked && (m_marks.get(i) || (m_newlyAllocated && m_newlyAllocated->get(i))))
continue;
JSCell* cell = reinterpret_cast_ptr<JSCell*>(&atoms()[i]);
if (dtorType != MarkedBlock::None && blockState != New)
callDestructor<dtorType>(cell);
if (sweepMode == SweepToFreeList) {
FreeCell* freeCell = reinterpret_cast<FreeCell*>(cell);
freeCell->next = head;
head = freeCell;
++count;
}
}
// We only want to discard the newlyAllocated bits if we're creating a FreeList,
// otherwise we would lose information on what's currently alive.
if (sweepMode == SweepToFreeList && m_newlyAllocated)
m_newlyAllocated.clear();
m_state = ((sweepMode == SweepToFreeList) ? FreeListed : Marked);
return FreeList(head, count * cellSize());
}
MarkedBlock::FreeList MarkedBlock::sweep(SweepMode sweepMode)
{
ASSERT(DelayedReleaseScope::isInEffectFor(heap()->m_objectSpace));
HEAP_LOG_BLOCK_STATE_TRANSITION(this);
m_weakSet.sweep();
if (sweepMode == SweepOnly && m_destructorType == MarkedBlock::None)
return FreeList();
if (m_destructorType == MarkedBlock::ImmortalStructure)
return sweepHelper<MarkedBlock::ImmortalStructure>(sweepMode);
if (m_destructorType == MarkedBlock::Normal)
return sweepHelper<MarkedBlock::Normal>(sweepMode);
return sweepHelper<MarkedBlock::None>(sweepMode);
}
template<MarkedBlock::DestructorType dtorType>
MarkedBlock::FreeList MarkedBlock::sweepHelper(SweepMode sweepMode)
{
switch (m_state) {
case New:
ASSERT(sweepMode == SweepToFreeList);
return specializedSweep<New, SweepToFreeList, dtorType>();
case FreeListed:
// Happens when a block transitions to fully allocated.
ASSERT(sweepMode == SweepToFreeList);
return FreeList();
case Retired:
case Allocated:
RELEASE_ASSERT_NOT_REACHED();
return FreeList();
case Marked:
return sweepMode == SweepToFreeList
? specializedSweep<Marked, SweepToFreeList, dtorType>()
: specializedSweep<Marked, SweepOnly, dtorType>();
}
RELEASE_ASSERT_NOT_REACHED();
return FreeList();
}
class SetNewlyAllocatedFunctor : public MarkedBlock::VoidFunctor {
public:
SetNewlyAllocatedFunctor(MarkedBlock* block)
: m_block(block)
{
}
void operator()(JSCell* cell)
{
ASSERT(MarkedBlock::blockFor(cell) == m_block);
m_block->setNewlyAllocated(cell);
}
private:
MarkedBlock* m_block;
};
void MarkedBlock::stopAllocating(const FreeList& freeList)
{
HEAP_LOG_BLOCK_STATE_TRANSITION(this);
FreeCell* head = freeList.head;
if (m_state == Marked) {
// If the block is in the Marked state then we know that:
// 1) It was not used for allocation during the previous allocation cycle.
// 2) It may have dead objects, and we only know them to be dead by the
// fact that their mark bits are unset.
// Hence if the block is Marked we need to leave it Marked.
ASSERT(!head);
return;
}
ASSERT(m_state == FreeListed);
// Roll back to a coherent state for Heap introspection. Cells newly
// allocated from our free list are not currently marked, so we need another
// way to tell what's live vs dead.
ASSERT(!m_newlyAllocated);
m_newlyAllocated = adoptPtr(new WTF::Bitmap<atomsPerBlock>());
SetNewlyAllocatedFunctor functor(this);
forEachCell(functor);
FreeCell* next;
for (FreeCell* current = head; current; current = next) {
next = current->next;
reinterpret_cast<JSCell*>(current)->zap();
clearNewlyAllocated(current);
}
m_state = Marked;
}
void MarkedBlock::clearMarks()
{
#if ENABLE(GGC)
if (heap()->operationInProgress() == JSC::EdenCollection)
this->clearMarksWithCollectionType<EdenCollection>();
else
this->clearMarksWithCollectionType<FullCollection>();
#else
this->clearMarksWithCollectionType<FullCollection>();
#endif
}
void MarkedBlock::clearRememberedSet()
{
m_rememberedSet.clearAll();
}
template <HeapOperation collectionType>
void MarkedBlock::clearMarksWithCollectionType()
{
ASSERT(collectionType == FullCollection || collectionType == EdenCollection);
HEAP_LOG_BLOCK_STATE_TRANSITION(this);
ASSERT(m_state != New && m_state != FreeListed);
if (collectionType == FullCollection) {
m_marks.clearAll();
#if ENABLE(GGC)
m_rememberedSet.clearAll();
#endif
// This will become true at the end of the mark phase. We set it now to
// avoid an extra pass to do so later.
m_state = Marked;
return;
}
ASSERT(collectionType == EdenCollection);
// If a block was retired then there's no way an EdenCollection can un-retire it.
if (m_state != Retired)
m_state = Marked;
}
void MarkedBlock::lastChanceToFinalize()
{
m_weakSet.lastChanceToFinalize();
clearNewlyAllocated();
clearMarksWithCollectionType<FullCollection>();
sweep();
}
MarkedBlock::FreeList MarkedBlock::resumeAllocating()
{
HEAP_LOG_BLOCK_STATE_TRANSITION(this);
ASSERT(m_state == Marked);
if (!m_newlyAllocated) {
// We didn't have to create a "newly allocated" bitmap. That means we were already Marked
// when we last stopped allocation, so return an empty free list and stay in the Marked state.
return FreeList();
}
// Re-create our free list from before stopping allocation.
return sweep(SweepToFreeList);
}
void MarkedBlock::didRetireBlock(const FreeList& freeList)
{
HEAP_LOG_BLOCK_STATE_TRANSITION(this);
FreeCell* head = freeList.head;
// Currently we don't notify the Heap that we're giving up on this block.
// The Heap might be able to make a better decision about how many bytes should
// be allocated before the next collection if it knew about this retired block.
// On the other hand we'll waste at most 10% of our Heap space between FullCollections
// and only under heavy fragmentation.
// We need to zap the free list when retiring a block so that we don't try to destroy
// previously destroyed objects when we re-sweep the block in the future.
FreeCell* next;
for (FreeCell* current = head; current; current = next) {
next = current->next;
reinterpret_cast<JSCell*>(current)->zap();
}
ASSERT(m_state == FreeListed);
m_state = Retired;
}
} // namespace JSC
|